Investigation of Topsoil Salinity and Soil Texture Using the EM38-MK2 and the WET-2 Sensors in Greece
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Survey Design
2.2. EM38-MK2 Sensor and WET-2 Probe
2.3. Field Measurements Using the EM38-MK2 and the WET-2 Sensors
2.4. Soil Sampling and Laboratory Analysis
2.5. Statistical Analysis and Predictive Modeling
3. Results and Discussion
3.1. Descriptive Statistics of the Soil Properties Determined in the Laboratory
3.2. Descriptive Analysis of the EM38-MK2 and WET-2 Measurements
3.3. Correlation of ECe and Soil Properties with the Measurements of EM38-MK2 and WET-2
3.4. Principal Components Analysis
3.5. Prediction of Soil Salinity and Texture Using the EM38-MK2 and WET-2 Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Global Status of Salt-Affected Soils; FAO: Rome, Italy, 2024; ISBN 978-92-5-139307-9. [Google Scholar]
- Triantakonstantis, D.; Detsikas, S.E. Chapter 6-Mapping the Greek Salt Affected Soils with the Use of Machine Learning and Remote Sensing Data. In Earth Observation for Monitoring and Modeling Land Use; Petropoulos, G.P., Da Silva Fuzzo, D.F., Triantakonstantis, D., Fischer Filho, J.A., Srivastava, P.K., Lamine, S., Eds.; Earth Observation; Elsevier: Amsterdam, The Netherlands, 2025; pp. 129–150. ISBN 978-0-323-95193-7. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The Threat of Soil Salinity: A European Scale Review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. Soil Sci. 1954, 78, 154. [Google Scholar] [CrossRef]
- Besma, Z.; Christian, W.; Didier, M.; Pierre, M.J.; Mohamed, H. Soil Salinization Monitoring Method Evolution at Various Spatial and Temporal Scales in Arid Context: A Review. Arab. J. Geosci. 2021, 14, 283. [Google Scholar] [CrossRef]
- Naimi, S.; Ayoubi, S.; Zeraatpisheh, M.; Dematte, J.A.M. Ground Observations and Environmental Covariates Integration for Mapping of Soil Salinity: A Machine Learning-Based Approach. Remote Sens. 2021, 13, 4825. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Wei, Y.; Shi, Q.; Ding, J. Characterizing Soil Salinity at Multiple Depth Using Electromagnetic Induction and Remote Sensing Data with Random Forests: A Case Study in Tarim River Basin of Southern Xinjiang, China. Sci. Total Environ. 2021, 754, 142030. [Google Scholar] [CrossRef] [PubMed]
- Corwin, D.L.; Scudiero, E. Review of Soil Salinity Assessment for Agriculture across Multiple Scales Using Proximal and/or Remote Sensors; Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 158, pp. 1–130. ISBN 978-0-12-817412-8. [Google Scholar]
- Wang, Z.; Miao, Z.; Yu, X.; He, F. Vis-NIR Spectroscopy Coupled with PLSR and Multivariate Regression Models to Predict Soil Salinity under Different Types of Land Use. Infrared Phys. 2023, 133, 104826. [Google Scholar] [CrossRef]
- Swanhart, S.; Weindorf, D.C.; Chakraborty, S.; Bakr, N.; Zhu, Y.; Nelson, C.; Shook, K.; Acree, A. Soil Salinity Measurement Via Portable X-Ray Fluorescence Spectrometry. Soil Sci. 2014, 179, 417. [Google Scholar] [CrossRef]
- Huang, J.; Koganti, T.; Santos, F.A.M.; Triantafilis, J. Mapping Soil Salinity and a Fresh-Water Intrusion in Three-Dimensions Using a Quasi-3d Joint-Inversion of DUALEM-421S and EM34 Data. Sci. Total Environ. 2017, 577, 395–404. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Brevik, E.C. The Use of Electromagnetic Induction Techniques in Soils Studies. Geoderma 2014, 223–225, 33–45. [Google Scholar] [CrossRef]
- De Carlo, L.; Vivaldi, G.A.; Caputo, M.C. Electromagnetic Induction Measurements for Investigating Soil Salinization Caused by Saline Reclaimed Water. Atmosphere 2022, 13, 73. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Application of Soil Electrical Conductivity to Precision Agriculture: Theory, Principles, and Guidelines. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-Go Soil Sensors for Precision Agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.A.; Sotirakoglou, K. Evaluation of Soil Salinity Using the Dielectric Sensor WET-2. Soil Res. 2022, 61, 397–409. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P. Determination of Soil Salinity Based on WET Measurements Using the Concept of Salinity Index. J. Plant Nutr. Soil Sci. 2018, 181, 600–605. [Google Scholar] [CrossRef]
- De Paz, J.M.; Visconti, F.; Rubio, J.L. Spatial Evaluation of Soil Salinity Using the WET Sensor in the Irrigated Area of the Segura River Lowland. Z. Pflanzenernähr. Bodenk. 2011, 174, 103–112. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P.; Seyfried, M.S. Response of Three Soil Water Sensors to Variable Solution Electrical Conductivity in Different Soils. VZJ 2014, 13, 1–13. [Google Scholar] [CrossRef]
- Zemni, N.; Bouksila, F.; Persson, M.; Slama, F.; Berndtsson, R.; Bouhlila, R. Laboratory Calibration and Field Validation of Soil Water Content and Salinity Measurements Using the 5TE Sensor. Sensors 2019, 19, 5272. [Google Scholar] [CrossRef]
- Kargas, G.; Persson, M.; Kanelis, G.; Markopoulou, I.; Kerkides, P. Prediction of Soil Solution Electrical Conductivity by the Permittivity Corrected Linear Model Using a Dielectric Sensor. J. Irrig. Drain Eng. 2017, 143, 04017030. [Google Scholar] [CrossRef]
- Petsetidi, P.A.; Kargas, G. Assessment and Mapping of Soil Salinity Using the EM38 and EM38MK2 Sensors: A Focus on the Modeling Approaches. Land 2023, 12, 1932. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.A.; Bullock, D.G.; Clay, D.E.; Palm, H.L.; Pierce, F.J.; Schuler, R.T.; et al. Relating Apparent Electrical Conductivity to Soil Properties across the North-Central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Bouksila, F.; Persson, M.; Bahri, A.; Berndtsson, R. Electromagnetic Induction Prediction of Soil Salinity and Groundwater Properties in a Tunisian Saharan Oasis. Hydrol. Sci. J. 2012, 57, 1473–1486. [Google Scholar] [CrossRef]
- Triantafilis, J.; Odeh, I.O.A.; McBratney, A.B. Five Geostatistical Models to Predict Soil Salinity from Electromagnetic Induction Data Across Irrigated Cotton. Soil Sci. Soc Amer. J. 2001, 65, 869–878. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology. Sensors 2017, 17, 2540. [Google Scholar] [CrossRef]
- Corwin, D.; Scudiero, E. Field-Scale Apparent Soil Electrical Conductivity. Soil Sci. Soc. Am. J. 2020, 84, 1405–1441. [Google Scholar] [CrossRef]
- Mahmood, H.S.; Hoogmoed, W.B.; van Henten, E.J. Sensor Data Fusion to Predict Multiple Soil Properties. Precis. Agric 2012, 13, 628–645. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Rossel, R.A.V.; Sudduth, K.A.; Lammers, P.S.; Adamchuk, V.I.; Rossel, R.A.V.; Sudduth, K.A.; Lammers, P.S. Sensor Fusion for Precision Agriculture. In Sensor Fusion-Foundation and Applications; IntechOpen: London, UK, 2011; ISBN 978-953-307-446-7. [Google Scholar]
- Grunwald, S.; Vasques, G.M.; Rivero, R.G. Fusion of Soil and Remote Sensing Data to Model Soil Properties; Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; Volume 131, pp. 1–109. ISBN 978-0-12-802136-1. [Google Scholar]
- Schmidinger, J.; Barkov, V.; Tavakoli, H.; Correa, J.; Ostermann, M.; Atzmueller, M.; Gebbers, R.; Vogel, S. Which and How Many Soil Sensors Are Ideal to Predict Key Soil Properties: A Case Study with Seven Sensors. Geoderma 2024, 450, 117017. [Google Scholar] [CrossRef]
- Dragonetti, G.; Comegna, A.; Ajeel, A.; Deidda, G.P.; Lamaddalena, N.; Rodriguez, G.; Vignoli, G.; Coppola, A. Calibrating Electromagnetic Induction Conductivities with Time-Domain Reflectometry Measurements. Hydrol. Earth Syst. Sci. 2018, 22, 1509–1523. [Google Scholar] [CrossRef]
- Coppola, A.; Smettem, K.; Ajeel, A.; Saeed, A.; Dragonetti, G.; Comegna, A.; Lamaddalena, N.; Vacca, A. Calibration of an Electromagnetic Induction Sensor with Time-domain Reflectometry Data to Monitor Rootzone Electrical Conductivity under Saline Water Irrigation. Eur. J. Soil Sci. 2016, 67, 737–748. [Google Scholar] [CrossRef]
- Huang, J.; Mokhtari, A.R.; Cohen, D.R.; Monteiro Santos, F.A.; Triantafilis, J. Modelling Soil Salinity across a Gilgai Landscape by Inversion of EM38 and EM31 Data. Eur. J. Soil Sci. 2015, 66, 951–960. [Google Scholar] [CrossRef]
- Rudolph, S.; Mester, A.; van der Kruk, J.; Weihermüller, L.; Zimmermann, E.; Vereecken, H. Calibration of EMI Derived Apparent Electrical Conductivity Based on ERT Measurements. In Proceedings of the European Geosciences Union General Assembly 2012, Vienna, Austria, 22–27 April 2012; Volume 14, p. 9162. [Google Scholar]
- Lavoué, F.; van der Krak, J.; Rings, J.; André, F.; Moghadas, D.; Huisman, J.A.; Lambot, S.; Weiherrnüller, L.; Vanderborght, J.; Vereecken, H. Electromagnetic Induction Calibration Using Apparent Electrical Conductivity Modelling Based on Electrical Resistivity Tomography. NSG 2010, 8, 553–561. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J. Quantitative Evaluation of Soil Salinity and Its Spatial Distribution Using Electromagnetic Induction Method. Agric. Water Manag. 2010, 97, 1961–1970. [Google Scholar] [CrossRef]
- Triantafilis, J.; Santos, F.A.M.; Triantafilis, J.; Santos, F.A.M. Resolving the Spatial Distribution of the True Electrical Conductivity with Depth Using EM38 and EM31 Signal Data and a Laterally Constrained Inversion Model. Soil Res. 2010, 48, 434–446. [Google Scholar] [CrossRef]
- Paz, M.C.; Castanheira, N.L.; Paz, A.M.; Gonçalves, M.C.; Monteiro Santos, F.; Farzamian, M. Comparison of Electromagnetic Induction and Electrical Resistivity Tomography in Assessing Soil Salinity: Insights from Four Plots with Distinct Soil Salinity Levels. Land 2024, 13, 295. [Google Scholar] [CrossRef]
- Visconti, F.; De Paz, J.M. A Semi-empirical Model to Predict the EM38 Electromagnetic Induction Measurements of Soils from Basic Ground Properties. Eur. J. Soil Sci. 2021, 72, 720–738. [Google Scholar] [CrossRef]
- Visconti, F.; De Paz, J.M. Field Comparison of Electrical Resistance, Electromagnetic Induction, and Frequency Domain Reflectometry for Soil Salinity Appraisal. Soil Syst. 2020, 4, 61. [Google Scholar] [CrossRef]
- Jadoon, K.Z.; Moghadas, D.; Jadoon, A.; Missimer, T.M.; Al-Mashharawi, S.K.; McCabe, M.F. Estimation of Soil Salinity in a Drip Irrigation System by Using Joint Inversion of Multicoil Electromagnetic Induction Measurements. Water Resour. Res. 2015, 51, 3490–3504. [Google Scholar] [CrossRef]
- Vasques, G.M.; Rodrigues, H.M.; Coelho, M.R.; Baca, J.F.M.; Dart, R.O.; Oliveira, R.P.; Teixeira, W.G.; Ceddia, M.B. Field Proximal Soil Sensor Fusion for Improving High-Resolution Soil Property Maps. Soil Syst. 2020, 4, 52. [Google Scholar] [CrossRef]
- Pedrera-Parrilla, A.; Van De Vijver, E.; Van Meirvenne, M.; Espejo-Pérez, A.J.; Giráldez, J.V.; Vanderlinden, K. Apparent Electrical Conductivity Measurements in an Olive Orchard under Wet and Dry Soil Conditions: Significance for Clay and Soil Water Content Mapping. Precis. Agric 2016, 17, 531–545. [Google Scholar] [CrossRef]
- EM38-MK2-Operating-Manual.Pdf. Available online: https://geophysicalequipmentrental.com/files/2020/01/EM38-MK2-Operating-Manual.pdf (accessed on 15 June 2025).
- Korsaeth, A. Height above Ground Corrections of EM38 Readings of Soil Apparent Electrical Conductivity. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2006, 56, 333–336. [Google Scholar] [CrossRef]
- Soil Map of Greece-ESDAC-European Commission. Available online: https://esdac.jrc.ec.europa.eu/content/soil-map-greece-0 (accessed on 24 September 2025).
- Yassoglou, N.; Tsadilas, C.; Kosmas, C. The Soils of Greece; Springer International Publishing: New York, NY, USA, 2017; p. 113. ISBN 978-3-319-53334-6. [Google Scholar] [CrossRef]
- Alekseev, I.; Abakumov, E. Assessment of Soil Electrical Properties in Selected Agricultural Soils of Puchuncaví, Central Chile. Agriculture 2020, 66, 67–73. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Tomashunas, V.M.; Alekseev, I.I. Electrical Resistance Profiles of Permafrost-Affected Soils in the North of Western Siberia According to Their Vertical Electrical Sounding. Eurasian Soil Sc. 2017, 50, 1069–1076. [Google Scholar] [CrossRef]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers: Mississauga; Technical Note TN-6; Geonics Ltd.: Mississauga, ON, Canada, 1980; Available online: https://geonics.com/pdfs/technicalnotes/tn6.pdf (accessed on 15 June 2025).
- Heil, K.; Schmidhalter, U. Comparison of the EM38 and EM38-MK2 Electromagnetic Induction-Based Sensors for Spatial Soil Analysis at Field Scale. Comput. Electron. Agric. 2015, 110, 267–280. [Google Scholar] [CrossRef]
- WET-User_Manual_v1.6.Pdf. Available online: https://delta-t.co.uk/wp-content/uploads/2019/06/WET-User_Manual_v1.6.pdf (accessed on 15 June 2025).
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P.; Seyfried, M.; Sgoumbopoulou, A. WET Sensor Performance in Organic and Inorganic Media with Heterogeneous Moisture Distribution. Soil Sci. Soc. Amer. J. 2011, 75, 1244–1252. [Google Scholar] [CrossRef]
- Visconti, F.; Martínez, D.; Molina, M.J.; Ingelmo, F.; Miguel De Paz, J. A Combined Equation to Estimate the Soil Pore-Water Electrical Conductivity: Calibration with the WET and 5TE Sensors. Soil Res. 2014, 52, 419. [Google Scholar] [CrossRef]
- Rhoades, J.D. Electrical Conductivity Methods for Measuring and Mapping Soil Salinity; Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1993; Volume 49, pp. 201–251. [Google Scholar]
- Hilhorst, M.A. A Pore Water Conductivity Sensor. Soil Sci. Soc. Am. J. 2000, 64, 1922–1925. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. A Recalibration of the Hydrometer Method for Making Mechanical Analysis of Soils. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef]
- Total Carbon, Organic Carbon, and Organic Matter-Nelson-1982-Agronomy Monographs-Wiley Online Library. Available online: https://acsess.onlinelibrary.wiley.com/doi/10.2134/agronmonogr9.2.2ed.c29 (accessed on 26 September 2025).
- Zare, S.; Abtahi, A.; Fallah Shamsi, S.R.; Lagacherie, P. Combining Laboratory Measurements and Proximal Soil Sensing Data in Digital Soil Mapping Approaches. CATENA 2021, 207, 105702. [Google Scholar] [CrossRef]
- Handbook No. 60: USDA ARS. Available online: https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/publications/handbook-no-60/ (accessed on 16 June 2025).
- Dragonetti, G.; Farzamian, M.; Basile, A.; Monteiro Santos, F.; Coppola, A. In Situ Estimation of Soil Hydraulic and Hydrodispersive Properties by Inversion of Electromagnetic Induction Measurements and Soil Hydrological Modeling. Hydrol. Earth Syst. Sci. 2022, 26, 5119–5136. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Protocols and Guidelines for Field-Scale Measurement of Soil Salinity Distribution with ECa -Directed Soil Sampling. JEEG 2013, 18, 1–25. [Google Scholar] [CrossRef]
- Scudiero, E.; Corwin, D.L.; Markley, P.T.; Pourreza, A.; Rounsaville, T.; Bughici, T.; Skaggs, T.H. A System for Concurrent On-the-Go Soil Apparent Electrical Conductivity and Gamma-Ray Sensing in Micro-Irrigated Orchards. Soil Till Res. 2024, 235, 105899. [Google Scholar] [CrossRef]
- Bernatek-Jakiel, A.; Kondracka, M. Detection of Soil Pipe Network by Geophysical Approach: Electromagnetic Induction (EMI) and Electrical Resistivity Tomography (ERT). Land Degrad. Dev. 2022, 33, 1002–1014. [Google Scholar] [CrossRef]
- Michael Mertens, F.; Pätzold, S.; Welp, G. Spatial Heterogeneity of Soil Properties and Its Mapping with Apparent Electrical Conductivity. Z. Pflanzenernähr. Bodenk. 2008, 171, 146–154. [Google Scholar] [CrossRef]
- Triantafilis, J.; Lesch, S.M. Mapping Clay Content Variation Using Electromagnetic Induction Techniques. Comput. Electron. Agric. 2005, 46, 203–237. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. Characterisation of Soil Texture Variability Using the Apparent Electrical Conductivity at a Highly Variable Site. Comput. Geosci. 2012, 39, 98–110. [Google Scholar] [CrossRef]
- Farahani, H.J.; Buchleiter, G.W.; Brodahl, M.K. Characterization of Apparent Soil Electrical Conductivity Variability in Irrigated Sandy and Non-Saline Fields in Colorado. Trans. ASAE 2005, 48, 155–168. [Google Scholar] [CrossRef]
- Altdorff, D.; Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Galagedara, L. Comparison of Multi-Frequency and Multi-Coil Electromagnetic Induction (EMI) for Mapping Properties in Shallow Podsolic Soils. Sensors 2020, 20, 2330. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Chanduvi, F.; Lesch, S.M.; Food and Agriculture Organization of the United Nations. Soil Salinity Assessment: Methods and Interpretation of Electrical Conductivity Measurements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999; ISBN 978-92-5-104281-6. [Google Scholar]
- Ratshiedana, P.E.; Abd Elbasit, M.A.M.; Adam, E.; Chirima, J.G.; Liu, G.; Economon, E.B. Determination of Soil Electrical Conductivity and Moisture on Different Soil Layers Using Electromagnetic Techniques in Irrigated Arid Environments in South Africa. Water 2023, 15, 1911. [Google Scholar] [CrossRef]
- Petsetidi, P.A.; Kargas, G. Evaluation of a Multivariate Calibration Model for the WET Sensor That Incorporates Apparent Dielectric Permittivity and Bulk Soil Electrical Conductivity. Land 2024, 13, 1490. [Google Scholar] [CrossRef]
- Zemni, N.; Bouksila, F.; Slama, F.; Persson, M.; Berndtsson, R.; Bouhlila, R. Evaluation of Modified Hilhorst Models for Pore Electrical Conductivity Estimation Using a Low-Cost Dielectric Sensor. Arab. J. Geosci. 2022, 15, 1089. [Google Scholar] [CrossRef]
Survey Date | Study Site | Variable | Mean | Maximum | Minimum | SD * | CV (%) * | Skewness |
---|---|---|---|---|---|---|---|---|
2022 | Field 1./olive orchard N = 25 | ECe (dSm−1) | 1.01 | 1.96 | 0.67 | 0.34 | 33.70 | 1.38 |
Clay (%) | 33.12 | 38.40 | 26.60 | 2.99 | 9.02 | 0.25 | ||
Silt (%) | 39.62 | 45.70 | 32.60 | 3.14 | 7.93 | 0.22 | ||
Sand (%) | 27.05 | 31.00 | 19.00 | 3.21 | 11.88 | −2.41 | ||
CaCO3 (%) | 22.75 | 38.30 | 16.81 | 5.68 | 24.98 | 2.71 | ||
Field 2./potato crop N = 23 | ECe (dSm−1) | 0.92 | 1.28 | 0.64 | 0.24 | 25.67 | 2.06 | |
Clay (%) | 35.59 | 47.00 | 28.40 | 4.70 | 13.22 | 1.53 | ||
Silt (%) | 38.19 | 43.40 | 34.00 | 2.43 | 6.38 | 0.80 | ||
Sand (%) | 26.22 | 33.00 | 17.00 | 4.41 | 16.82 | −0.98 | ||
CaCO3 (%) | 9.14 | 13.94 | 6.56 | 2.08 | 22.74 | 0.90 | ||
2023 | Bare land and farmlands N = 13 | ECe (dSm−1) | 9.69 | 20.40 | 1.58 | 7.69 | 79.42 | 0.57 |
Clay (%) | 23.99 | 44.00 | 10.70 | 10.57 | 44.08 | 1.07 | ||
Silt (%) | 37.01 | 58.00 | 23.30 | 12.43 | 33.58 | 0.89 | ||
Sand (%) | 39.00 | 66.00 | 10.60 | 20.61 | 52.84 | −0.42 | ||
CaCO3 (%) | 21.21 | 31.30 | 9.63 | 9.59 | 45.22 | −0.35 | ||
2024 | Orange orchard N = 20 | ECe (dSm−1) | 0.90 | 1.32 | 0.62 | 0.17 | 19.03 | 1.88 |
Clay (%) | 16.43 | 20.20 | 12.20 | 2.20 | 13.21 | −0.26 | ||
Silt (%) | 44.78 | 52.00 | 38.60 | 3.50 | 7.82 | −0.04 | ||
Sand (%) | 39.37 | 47.20 | 29.20 | 4.50 | 11.67 | 0.27 | ||
CaCO3 (%) | 10.60 | 15.99 | 8.20 | 2.08 | 19.63 | 0.97 |
Survey Date | Study Site | Variable * | Mean | Maximum | Minimum | SD ** | CV (%) ** | Skewness |
---|---|---|---|---|---|---|---|---|
2022 | Field 1./olive orchard N = 25 | H0.5 (dSm−1) | 0.19 | 0.26 | 0.08 | 0.05 | 24.30 | −1.23 |
V0.5 (dSm−1) | 0.20 | 0.32 | 0.04 | 0.06 | 31.95 | −0.96 | ||
H1 (dSm−1) | 0.29 | 0.39 | 0.18 | 0.06 | 20.77 | −0.92 | ||
V1 (dSm−1) | 0.34 | 0.51 | 0.13 | 0.10 | 29.84 | −1.57 | ||
WET-ECa (dSm−1) | 0.11 | 0.20 | 0.07 | 0.04 | 34.88 | 1.43 | ||
ECp (dSm−1) | 1.51 | 2.00 | 1.14 | 0.17 | 11.26 | 1.96 | ||
θ (%) | 14.32 | 33.63 | 10.18 | 5.31 | 37.07 | 2.69 | ||
εb | 10.87 | 27.04 | 8.01 | 4.15 | 38.15 | 3.07 | ||
Τ (°C) | 26.98 | 28.00 | 25.50 | 1.23 | 4.39 | −0.97 | ||
Field 2./potato crop N = 23 | H0.5 (dSm−1) | 0.11 | 0.15 | 0.09 | 0.02 | 21.02 | 0.24 | |
V0.5 (dSm−1) | 0.14 | 0.17 | 0.12 | 0.02 | 12.81 | −0.04 | ||
H1 (dSm−1) | 0.20 | 0.24 | 0.17 | 0.02 | 10.75 | 0.14 | ||
V1 (dSm−1) | 0.25 | 0.32 | 0.18 | 0.04 | 16.92 | 0.39 | ||
WET-ECa (dSm−1) | 0.08 | 0.12 | 0.06 | 0.02 | 27.60 | 0.14 | ||
ECp (dSm−1) | 1.40 | 2.12 | 1.14 | 0.31 | 22.41 | 1.72 | ||
θ (%) | 11.87 | 15.50 | 10.10 | 1.70 | 14.29 | 0.88 | ||
εb | 9.01 | 11.29 | 8.01 | 1.08 | 12.04 | 1.05 | ||
Τ (°C) | 16.34 | 18.00 | 14.90 | 0.99 | 6.06 | −0.07 | ||
2023 | Bare land and farmlands N = 13 | H0.5 (dSm−1) | 1.02 | 2.57 | 0.35 | 0.84 | 82.73 | 1.60 |
V0.5 (dSm−1) | 1.24 | 2.81 | 0.36 | 0.76 | 61.39 | 1.42 | ||
H1 (dSm−1) | 1.22 | 2.88 | 0.02 | 0.88 | 72.03 | 1.00 | ||
V1 (dSm−1) | 1.38 | 2.33 | 0.17 | 0.72 | 51.73 | −0.67 | ||
WET-ECa (dSm−1) | 1.94 | 3.78 | 0.42 | 1.23 | 63.78 | 0.03 | ||
ECp (dSm−1) | 6.88 | 13.99 | 1.69 | 4.77 | 69.31 | 0.26 | ||
θ (%) | 34.69 | 44.50 | 26.10 | 6.69 | 19.27 | 0.37 | ||
εb | 23.57 | 43.30 | 7.08 | 9.61 | 40.77 | 0.58 | ||
Τ (°C) | 19.73 | 21.60 | 19.30 | 1.15 | 3.81 | 0.85 | ||
2024 | Orange orchard N = 20 | H0.5 (dSm−1) | 0.73 | 1.41 | 0.33 | 0.27 | 36.99 | 0.95 |
V0.5 (dSm−1) | 1.10 | 1.87 | 0.54 | 0.33 | 30.02 | 0.41 | ||
H1 (dSm−1) | 0.75 | 1.22 | 0.39 | 0.22 | 28.99 | 0.39 | ||
V1 (dSm−1) | 1.45 | 2.24 | 0.87 | 0.43 | 29.76 | 0.25 | ||
WET-ECa (dSm−1) | 0.34 | 0.49 | 0.22 | 0.06 | 18.32 | 0.52 | ||
ECp (dSm−1) | 0.93 | 1.14 | 0.83 | 0.09 | 9.58 | 1.93 | ||
θ (%) | 39.43 | 46.40 | 31.80 | 3.69 | 9.35 | −1.36 | ||
εb | 33.18 | 41.99 | 25.20 | 3.31 | 9.97 | 1.33 | ||
Τ (°C) | 22.64 | 23.3 | 22.3 | 0.78 | 3.59 | 0.35 |
2022 | |||||
Field 1./Olive Orchard | ΕCe (dSm−1) | Clay (%) | Silt (%) | Sand (%) | CaCO3 (%) |
ΕCe (dSm−1) | 1.00 | −0.26 | −0.07 | 0.23 | −0.47 * |
H0.5 (dSm−1) | −0.12 | −0.26 | 0.18 | 0.08 | 0.00 |
V0.5 (dSm−1) | 0.05 | −0.09 | 0.22 | −0.01 | 0.02 |
H1 (dSm−1) | 0.24 | 0.00 | 0.17 | −0.12 | 0.06 |
V1 (dSm−1) | 0.40 * | −0.14 | 0.34 | −0.07 | −0.01 |
WET-ECa (dSm−1) | 0.33 | 0.05 | 0.31 | −0.44 * | 0.47 * |
ECp (dSm−1) | 0.55 * | −0.08 | 0.16 | −0.04 | −0.11 |
εb0.5 | −0.17 | 0.00 | 0.23 | −0.33 | 0.44 * |
Τ (°C) | 0.17 | −0.07 | −0.24 | 0.18 | −0.18 |
Field 2./Potato Crop | ΕCe (dSm−1) | Clay (%) | Silt (%) | Sand (%) | CaCO3 (%) |
ΕCe (dSm−1) | 1.00 | −0.04 | −0.04 | 0.05 | 0.14 |
H0.5 (dSm−1) | −0.22 | 0.00 | −0.11 | 0.08 | −0.09 |
V0.5 (dSm−1) | 0.12 | 0.05 | 0.25 | −0.15 | 0.05 |
H1 (dSm−1) | 0.04 | 0.45 * | −0.15 | −0.33 | −0.50 * |
V1 (dSm−1) | 0.05 | 0.06 | 0.04 | −0.10 | −0.27 |
WET-ECa (dSm−1) | 0.15 | −0.09 | −0.12 | 0.21 | 0.21 |
ECp (dSm−1) | 0.10 | −0.21 | −0.21 | 0.38 | 0.25 |
εb0.5 | 0.18 | −0.01 | 0.03 | 0.00 | 0.23 |
Τ (°C) | −0.18 | −0.17 | 0.26 | −0.01 | 0.23 |
2023 | |||||
Bare Land and Farmlands | ΕCe (dSm−1) | Clay (%) | Silt (%) | Sand (%) | CaCO3 (%) |
ΕCe (dSm−1) | 1.00 | −0.04 | −0.04 | 0.05 | 0.14 |
H0.5 (dSm−1) | 0.60 * | −0.48 * | −0.30 | 0.41 * | 0.50 |
V0.5 (dSm−1) | 0.81 * | −0.31 | −0.16 | 0.29 | 0.36 |
H1 (dSm−1) | 0.57 | −0.60 * | −0.36 | 0.63 * | 0.52 |
V1 (dSm−1) | 0.64 | −0.45 | −0.02 | 0.38 | 0.14 |
WET-ECa (dSm−1) | 0.74 * | 0.26 | 0.19 | −0.29 | 0.38 |
ECp (dSm−1) | 0.92 ** | −0.30 | −0.40 | 0.34 | 0.80 * |
εb0.5 | −0.35 | 0.74 * | 0.77 * | −0.83 * | −0.67 |
Τ (°C) | 0.42 | −0.67 | −0.59 | 0.69 | 0.62 |
2024 | |||||
Orange Orchard | ΕCe (dSm−1) | Clay (%) | Silt (%) | Sand (%) | CaCO3 (%) |
ΕCe (dSm−1) | 1.00 | −0.05 | −0.09 | 0.05 | −0.02 |
H0.5 (dSm−1) | −0.16 | 0.37 | 0.48 * | −0.58 * | −0.34 |
V0.5 (dSm−1) | −0.15 | 0.35 | 0.42 * | −0.58 * | −0.40 |
H1 (dSm−1) | 0.35 | 0.09 | 0.07 | −0.08 | −0.22 |
V1 (dSm−1) | 0.17 | 0.06 | 0.09 | −0.17 | −0.37 |
WET-ECa (dSm−1) | 0.32 | 0.54 * | 0.27 | −0.43 * | 0.09 |
ECp (dSm−1) | 0.44 | 0.49 * | 0.01 | −0.21 | 0.27 |
εb0.5 | −0.06 | 0.34 | 0.31 | −0.38 | −0.11 |
Τ (°C) | 0.16 | −0.04 | 0.38 | −0.38 * | −0.23 |
Survey Date | Sample Size (N) | Sensor | Model * | adj. R2 | RMSE | MAE | RPIQ ** |
---|---|---|---|---|---|---|---|
2022 | 25 | WET-2 | ECe = 1.038 ECp–0.193 εb0.5 | 0.95 | 0.20 | 0.18 | 2.75 |
2023 | 13 | WET-2 | ECe = 1.447 ECp | 0.96 | 2.08 | 3.99 | 5.67 |
ECe = 4.963 WET-ECa | 0.82 | 4.51 | 4.00 | 2.61 | |||
EM38-MK2 | ECe = 11.738 H0.5 + 0.523 Clay–14.85 | 0.93 | 2.24 | 1.93 | 5.25 | ||
ECe = 8.372 V0.5–0.67 | 0.88 | 4.10 | 3.55 | 2.87 | |||
2024 | 20 | EM38-MK2 | Silt = 3.67 V0.5 + 39.1 | 0.49 | 3.18 | 2.50 | 2.24 |
Silt = 9.30 V0.5–3.31 H1 +38 | 0.51 | 3.74 | 2.88 | 2.15 | |||
Sand = 29.33 V0.5–30.5 H0.5 + 27.5 | 0.52 | 4.87 | 3.97 | 1.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petsetidi, P.A.; Kargas, G.; Sotirakoglou, K. Investigation of Topsoil Salinity and Soil Texture Using the EM38-MK2 and the WET-2 Sensors in Greece. AgriEngineering 2025, 7, 347. https://doi.org/10.3390/agriengineering7100347
Petsetidi PA, Kargas G, Sotirakoglou K. Investigation of Topsoil Salinity and Soil Texture Using the EM38-MK2 and the WET-2 Sensors in Greece. AgriEngineering. 2025; 7(10):347. https://doi.org/10.3390/agriengineering7100347
Chicago/Turabian StylePetsetidi, Panagiota Antonia, George Kargas, and Kyriaki Sotirakoglou. 2025. "Investigation of Topsoil Salinity and Soil Texture Using the EM38-MK2 and the WET-2 Sensors in Greece" AgriEngineering 7, no. 10: 347. https://doi.org/10.3390/agriengineering7100347
APA StylePetsetidi, P. A., Kargas, G., & Sotirakoglou, K. (2025). Investigation of Topsoil Salinity and Soil Texture Using the EM38-MK2 and the WET-2 Sensors in Greece. AgriEngineering, 7(10), 347. https://doi.org/10.3390/agriengineering7100347