Model-Free Adaptive Cooperative Control Strategy of Multiple Electric Springs: A Hierarchical Approach for EV-Integrated AC Micro-Grid
Abstract
Highlights
- Proposal of a novel hierarchical cooperative control strategy for multi-EV-ES systems, integrating directed-graph-based consensus for upper-level power distribution and model-free adaptive constrained control (MFACC) for lower-level voltage regulation.
- The MFACC framework introduces an anti-windup compensator and pseudo-partial derivative (PPD)-based output observer to suppress voltage oscillations caused by inverter saturation, achieving precise tracking with minimal harmonic distortion.
- The strategy enables distributed power decoupling without requiring precise system parameters, leveraging local agent communication to stabilize bus voltage/frequency and allocate active/reactive power proportionally.
- The approach significantly enhances micro-grid resilience against voltage fluctuations from EV/renewable integration, maintaining PCC voltage at reference value, while transferring fluctuations to non-critical loads.
- Reduced reliance on model parameters lowers implementation barriers for V2G systems, with faster stabilization time and lower overshoot compared to conventional methods.
- Theoretical support for such data-driven control architectures can increase the penetration of electric vehicles without compromising grid stability, thereby accelerating the decarbonization of the power system.
Abstract
1. Introduction
- The method employs a regulation strategy based on local information exchange among neighboring EV-ES units. This approach addresses the shortcomings of traditional droop control in maintaining voltage/frequency stability and achieving accurate power distribution within the multi-EV-ES system.
- Considering disturbances in the micro-grid, a novel estimation algorithm is proposed to establish a more accurate dynamic linearization data model for disturbances, using the compact form dynamical linearization method.
- To address voltage oscillation issues caused by inverter duty cycle saturation, MFACC is proposed. It employs an input-constrained anti-windup compensator and pseudo-partial derivative-based output observer to ensure power quality in the micro-grid.
2. Topology and Mathematical Modelling of EV-ES
2.1. Topology of EV-ES
2.2. The Mathematical Model of EV-ES
3. Integrated Cooperative Control Design for Multi-EV-ES
3.1. Multi-EV-ES Distributed Upper-Level Controller Design
3.2. Analysis of Lipschitz Condition
3.3. Lower-Level Model-Free Voltage Controller Design
4. Simulation Results
4.1. Grid-Side Voltage Fluctuation Test
4.2. Micro-Grid Topology Changing Test
4.3. Power Fluctuation Test
4.4. Controller Parameter Test
4.5. Charging Mode Switching Test
4.6. Saturation Test
5. Conclusions
- In the upper-level controller, the consensus algorithm based on directed graphs effectively achieves cooperative adjustments of voltage, frequency, and power by exchanging local information with adjacent EV-ES.
- In the lower-level controller, compared to PR control, both MFAC and MFACC can achieve satisfactory control performance. Furthermore, as an improvement over MFAC, MFACC exhibits superior response speed, smaller overshoot, and lower harmonic content in simulation analysis. This enhancement contributes to the improvement of micro-grid power quality.
- The topology of multi-EV-ES is flexible, and the proposed hierarchical control system can adapt flexibly to accommodate more EV-ES embedded in the micro-grid for cooperative control.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thoker, Z.A.; Lone, S.A. Higher order sliding mode reactive power control of a hybrid power system with wind power and parameter uncertainty. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2023, 237, 888–903. [Google Scholar]
- Chen, G.; Li, Y.; Wang, J.; Chen, H.; Luo, Y. Enhancing Sustainability in Power Systems: A High-Capacity Testing System Based on a Power System. Sustainability 2025, 17, 3679. [Google Scholar] [CrossRef]
- Ouyang, J.; Li, A.; Diao, Y.; Huang, F. Power Feasible Region Modeling and Voltage Support Control for V2G Charging Station Under Grid Fault Conditions. Sustainability 2025, 17, 3713. [Google Scholar] [CrossRef]
- Ding, J.; Jiao, X.; Zhang, J. Robust adaptive control for hybrid electric vehicles using sliding mode control. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2024, 238, 272–287. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Z.; Liu, X. Integrated Energy System Optimization for Electric Vehicles and Demand Response within Carbon Trading Mechanism. J. Electr. Eng. Technol. 2024, 19, 4013–4025. [Google Scholar] [CrossRef]
- Paramasivam, A.; Vijayalakshmi, S.; Swamynathan, K.; Mahalingam, N.; Gughan, N.M. Innovative Smart Network Enabled Charging Station for Future Electric Vehicle. J. Inst. Eng. (India) Ser. B 2024, 105, 147–156. [Google Scholar] [CrossRef]
- Li, J.; Fang, Z.; Wang, Q.; Zhang, M.; Li, Y.; Zhang, W. Optimal Operation with Dynamic Partitioning Strategy for Centralized Shared Energy Storage Station with Integration of Large-scale Renewable Energy. IEEE J. Mod. Power Syst. Clean Energy 2024, 12, 359–370. [Google Scholar] [CrossRef]
- Zhou, J.; Li, S.; Meng, T.; Zhou, X.; Liang, G.; Zhao, Y. Optimal Operation of Integrated Energy Systems Based on Multi-Energy Coupling With Power-to-Gas Technology. J. Energy Resour. Technol. 2023, 145, 051704. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, L.; Liu, G.; Xu, D.; Yang, C. Finite-time disturbance observer–based funnel voltage control strategy for vehicle-to-grid inverter in islanded mode. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2021, 235, 1571–1582. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.; Yang, Z.; Li, G. Coordinating Flexible Demand Response and Renewable Uncertainties for Scheduling of Community Integrated Energy Systems With an Electric Vehicle Charging Station: A Bi-Level Approach. IEEE Trans. Sustain. Energy 2021, 12, 2321–2331. [Google Scholar] [CrossRef]
- Tian, S.; Xiao, Q.; Li, T.; Jin, Y.; Mu, Y.; Jia, H.; Li, W.; Teodorescu, R.; Guerrero, J.M. An Optimization Strategy for EV-Integrated Microgrids Considering Peer-to-Peer Transactions. Sustainability 2024, 16, 8955. [Google Scholar] [CrossRef]
- Aldhanhani, T.; Abraham, A.; Hamidouche, W.; Shaaban, M. Future Trends in Smart Green IoV: Vehicle-to-Everything in the Era of Electric Vehicles. IEEE Open J. Veh. Technol. 2024, 5, 278–297. [Google Scholar] [CrossRef]
- Hui, S.Y.; Lee, C.K.; Wu, F.F. Electric Springs—A New Smart Grid Technology. IEEE Trans. Smart Grid 2012, 3, 1552–1561. [Google Scholar] [CrossRef]
- Lee, C.K.; Liu, H.; Tan, S.C.; Chaudhuri, B.; Hui, S.Y.R. Electric Spring and Smart Load: Technology, System-Level Impact, and Opportunities. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6524–6544. [Google Scholar] [CrossRef]
- Lenka, R.K.; Panda, A.K.; Dash, A.R.; Senapati, L.; Tiwary, N. A Unified Control of Grid-Interactive Off-Board EV Battery Charger With Improved Power Quality. IEEE Trans. Transp. Electrif. 2023, 9, 920–933. [Google Scholar] [CrossRef]
- Panda, D.; Kundu, P.; Rajpurohit, B.S. Real-Time Voltage Control and Harmonics Elimination of Islanded Microgrid Using Back-to-Back Electric Spring. IEEE Trans. Ind. Appl. 2024, 60, 5825–5839. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, H.; Zhu, H.; Buja, G. A Novel Topology for DC Electric Spring With Parallel Structure. IEEE J. Emerg. Sel. Top. Circuits Syst. 2023, 13, 582–595. [Google Scholar] [CrossRef]
- Vaishnav, V.; Sharma, D.; Jain, A. Quadratic-Droop-Based Distributed Secondary Control of Microgrid With Detail-Balanced Communication Topology. IEEE Syst. J. 2023, 17, 3401–3412. [Google Scholar] [CrossRef]
- Fan, B.; Li, Q.; Wang, W.; Yao, G.; Ma, H.; Zeng, X.; Guerrero, J.M. A Novel Droop Control Strategy of Reactive Power Sharing Based on Adaptive Virtual Impedance in Microgrids. IEEE Trans. Ind. Electron. 2022, 69, 11335–11347. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, B.; Zhao, D. A Novel Event-Triggered Secondary Control Strategy for Distributed Generalized Droop Control in Microgrid Considering Time Delay. IEEE Trans. Power Electron. 2023, 38, 5963–5978. [Google Scholar] [CrossRef]
- Aquib, M.; Vijay, A.S.; Doolla, S.; Chandorkar, M.C. Power Sharing Enhancement Strategies for Parallel-Connected Voltage Source Inverters With Common dc and ac Buses in Islanded Microgrids: Two New Control Schemes. IEEE Ind. Appl. Mag. 2024, 30, 12–26. [Google Scholar] [CrossRef]
- Wang, W.; Ma, Q.; Lin, L.; Guan, T.; Tian, D.; Li, S.; Li, J. Adaptive observer-based attack location and defense strategy in smart grid. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2022, 236, 294–304. [Google Scholar] [CrossRef]
- Xia, Z.; Yu, W.; Liu, Y.; Jia, W.; Chen, G. Penalty-Function-Type Multi-Agent Approaches to Distributed Nonconvex Optimal Resource Allocation. IEEE Trans. Netw. Sci. Eng. 2024, 11, 4169–4180. [Google Scholar] [CrossRef]
- Xing, M.; Lu, J.; Liu, Y.; Chen, X. Event-Based Bipartite Consensus of Multi-Agent Systems Subject to DoS Attacks. IEEE Trans. Netw. Sci. Eng. 2023, 10, 68–80. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, D.; Zhang, H.; Su, H. Adaptive Secure Practical Fault-Tolerant Output Regulation of Multiagent Systems With DoS Attacks by Asynchronous Communications. IEEE Trans. Netw. Sci. Eng. 2023, 10, 4046–4055. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z. Application of Repetitive Control in Electric Spring. IEEE Access 2020, 8, 216607–216616. [Google Scholar] [CrossRef]
- Mok, K.T.; Tan, S.C.; Hui, S.Y.R. Decoupled Power Angle and Voltage Control of Electric Springs. IEEE Trans. Power Electron. 2016, 31, 1216–1229. [Google Scholar] [CrossRef]
- Chen, X.; Hou, Y.; Hui, S.Y.R. Distributed Control of Multiple Electric Springs for Voltage Control in Microgrid. IEEE Trans. Smart Grid 2017, 8, 1350–1359. [Google Scholar] [CrossRef]
- Yang, H.; Li, T.; Long, Y.; Chen, C.L.P.; Xiao, Y. Distributed Virtual Inertia Implementation of Multiple Electric Springs Based on Model Predictive Control in DC Microgrids. IEEE Trans. Ind. Electron. 2022, 69, 13439–13450. [Google Scholar] [CrossRef]
- Wang, Q.; Zuo, W.; Cheng, M.; Deng, F.; Buja, G. Decoupled Power Control With Indepth Analysis of Single-Phase Electric Springs. IEEE Access 2020, 8, 21866–21874. [Google Scholar] [CrossRef]
- Liu, T.; Hou, Z. Model-Free Adaptive Containment Control for Unknown Multi-Input Multi-Output Nonlinear MASs With Output Saturation. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 2156–2166. [Google Scholar] [CrossRef]
- Moreno-Valenzuela, J. A Class of Proportional-Integral With Anti-Windup Controllers for DC–DC Buck Power Converters With Saturating Input. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 157–161. [Google Scholar] [CrossRef]
- Kim, S.; Kim, K.H.; Cui, S.; Jung, J.J. Adjustable Virtual Impedance via Anti-windup Method for Enhancing Transient Stability and Grid-Forming Capability Under Current Limiting Conditions. IEEE Trans. Power Electron. 2025, 40, 6423–6428. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, W.; Jiang, B.; Shi, P.; Wang, S. Directed-Graph-Observer-Based Model-Free Cooperative Sliding Mode Control for Distributed Energy Storage Systems in DC Microgrid. IEEE Trans. Ind. Inform. 2020, 16, 1224–1235. [Google Scholar] [CrossRef]
- Hong, H.; Yu, C.; Yu, W. Adaptive Fixed-Time Control for Attitude Consensus of Disturbed Multi-Spacecraft Systems With Directed Topologies. IEEE Trans. Netw. Sci. Eng. 2022, 9, 1451–1461. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, W.; Shi, P.; Jiang, B. Model-Free Cooperative Adaptive Sliding-Mode-Constrained-Control for Multiple Linear Induction Traction Systems. IEEE Trans. Cybern. 2020, 50, 4076–4086. [Google Scholar] [CrossRef]
- Mohamadian, S.; Pairo, H.; Ghasemian, A. A Straightforward Quadrature Signal Generator for Single-Phase SOGI-PLL With Low Susceptibility to Grid Harmonics. IEEE Trans. Ind. Electron. 2022, 69, 6997–7007. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Yu, W.; Zhu, L.; Tang, Q. Neural-Network Based Adaptive Self-Triggered Consensus of Nonlinear Multi-Agent Systems With Sensor Saturation. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1531–1541. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Yu, W. Finite-Time Fuzzy Adaptive Consensus for Heterogeneous Nonlinear Multi-Agent Systems. IEEE Trans. Netw. Sci. Eng. 2020, 7, 3057–3066. [Google Scholar] [CrossRef]
- Shi, J. Cooperative Control for Nonlinear Multi-Agent Systems Based on Event-Triggered Scheme. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1977–1981. [Google Scholar] [CrossRef]
- Li, F.; Hou, Z. Controller-Dynamic-Linearization-Based Distributed Model-Free Adaptive Control for Nonlinear Multiagent Systems. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 985–996. [Google Scholar] [CrossRef]
- Xu, D.; Shi, Y.; Ji, Z. Model-Free Adaptive Discrete-Time Integral Sliding-Mode-Constrained-Control for Autonomous 4WMV Parking Systems. IEEE Trans. Ind. Electron. 2018, 65, 834–843. [Google Scholar] [CrossRef]
- Wang, X.; Hua, C.; Qiu, Y. Event-Triggered Model-Free Adaptive Control for Nonlinear Multiagent Systems Under Jamming Attacks. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 14458–14466. [Google Scholar] [CrossRef]
- Wang, A.; Wei, S. Sliding Mode Control for Permanent Magnet Synchronous Motor Drive Based on an Improved Exponential Reaching Law. IEEE Access 2019, 7, 146866–146875. [Google Scholar] [CrossRef]
- Luo, R.; Sun, B.; Hou, X.; Shi, W.; Zhang, G.; Fan, J. Optimal Design of 100–2000 V 4H–SiC Power MOSFETs Using Multi-Objective Particle Swarm Optimization Algorithms. IEEE Electron Device Lett. 2024, 45, 786–788. [Google Scholar] [CrossRef]
- Mahmoud, K.; Hussein, M.M.; Abdel-Nasser, M.; Lehtonen, M. Optimal Voltage Control in Distribution Systems With Intermittent PV Using Multiobjective Grey-Wolf-Lévy Optimizer. IEEE Syst. J. 2020, 14, 760–770. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
0.1 | 10 | 1 | |||
1200 | 50 | 10 | |||
3 | 60 | T/s |
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
0.1 | 5 | ||||
−1 | 1 | ||||
1.5 | 0.9 | ||||
0.002 | 0.01 | 0 |
Performance | MCA-SMC | MCA-PR | MCA-MFAC | MCA-MFACC |
---|---|---|---|---|
Stabilization time/s | 0.15 | 0.24 | 0.12 | 0.11 |
Overshoot/% | 1.45 | 1.91 | 1.25 | 1.13 |
THD % | 3.56 | 7.54 | 2.13 | 1.01 |
Performance | MCA-SMC | MCA-PR | MCA-MFAC |
---|---|---|---|
Stabilization time | 8.609 [0.1469 s, 0.1511 s] | 1.428 [0.2351 s, 0.2429 s] | 0.0083 [0.1140 s, 0.1240 s] |
Overshoot | 3.1939 [1.45%, 1.45%] | 1.3157 [1.90%, 1.91%] | 3.148 [1.24%, 1.25%] |
THD | 3.8269 [3.56%, 3.56%] | 3.8336 [7.54%, 7.55%] | 2.7005 [2.12%, 2.13%] |
PCC1 | PCC2 | PCC3 | PCC4 | |
---|---|---|---|---|
Max Absolute Error % | 1.2011 | 1.2535 | 1.3291 | 1.6465 |
Max Relative Error % | 1.4968 | 1.5524 | 1.8671 | 2.1081 |
Values | |||||
---|---|---|---|---|---|
1.1 | 0.15 s 1.20% 1.54% | 0.15 s 1.20% 1.53% | 0.14 s 1.20% 1.53% | 0.16 s 1.20% 1.54% | 0.16 s 1.20% 1.54% |
1.0 | 0.15 s 1.20% 1.21% | 0.14 s 1.19% 1.19% | 0.14 s 1.19% 1.19% | 0.14 s 1.19% 1.20% | 0.16 s 1.19% 1.22% |
0.9 | 0.14 s 1.16% 1.08% | 0.12 s 1.15% 1.07% | 0.11 s 1.13% 1.01% | 0.13 s 1.15% 1.06% | 0.16 s 1.15% 1.10% |
0.8 | 0.16 s 1.19% 1.18% | 0.15 s 1.19% 1.13% | 0.15 s 1.19% 1.06% | 0.14 s 1.19% 1.11% | 0.16 s 1.19% 1.17% |
0.7 | 0.16 s 1.19% 1.28% | 0.15 s 1.19% 1.27% | 0.15 s 1.19% 1.24% | 0.15 s 1.19% 1.24% | 0.16 s 1.19% 1.25% |
Parameter Value | Overshoot | Stabilization Time |
---|---|---|
1.13% | 0.11 s | |
1.34% | 0.15 s | |
1.67% | 0.2 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Dai, Y.; Li, L.; Sun, J.; Huang, X. Model-Free Adaptive Cooperative Control Strategy of Multiple Electric Springs: A Hierarchical Approach for EV-Integrated AC Micro-Grid. Smart Cities 2025, 8, 132. https://doi.org/10.3390/smartcities8040132
Chen H, Dai Y, Li L, Sun J, Huang X. Model-Free Adaptive Cooperative Control Strategy of Multiple Electric Springs: A Hierarchical Approach for EV-Integrated AC Micro-Grid. Smart Cities. 2025; 8(4):132. https://doi.org/10.3390/smartcities8040132
Chicago/Turabian StyleChen, Hongtao, Yuchen Dai, Lei Li, Jianfeng Sun, and Xiaoning Huang. 2025. "Model-Free Adaptive Cooperative Control Strategy of Multiple Electric Springs: A Hierarchical Approach for EV-Integrated AC Micro-Grid" Smart Cities 8, no. 4: 132. https://doi.org/10.3390/smartcities8040132
APA StyleChen, H., Dai, Y., Li, L., Sun, J., & Huang, X. (2025). Model-Free Adaptive Cooperative Control Strategy of Multiple Electric Springs: A Hierarchical Approach for EV-Integrated AC Micro-Grid. Smart Cities, 8(4), 132. https://doi.org/10.3390/smartcities8040132