B-Scan Imaging and 3D Visualization of Hardened Layer Depth Profile in Linear Guide Rails Based on Ultrasonic Shear Wave Backscattering Technique
Abstract
1. Introduction
1.1. Research Background
1.2. Research Status
1.3. Research Objectives and Significance
2. Materials and Methods
2.1. Principle of Ultrasonic Shear Wave Detection
2.2. Material Characterization and Microhardness Measurement of Linear Guide Rails
2.3. Ultrasonic Shear Wave Backscattering Effect in Hardened Layers
2.4. 3D Visualization Technology
3. Results
3.1. Test Specimen and Expected Outcomes
3.2. Detection System Design and Experimental Procedure
3.3. Detection Results of Ultrasonic Shear Wave A-Scan Signals for Hardened Layer Depth
3.4. B-Scan Imaging of Hardened Layer Depth Profile in Linear Guides
3.5. 3D Visualization of Hardened Layer Depth Profile in Linear Guides
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, X.M. China Manufacturing 2025 and Its Profound Impact on the Future Development of the Manufacturing Industry. Eng. Mach. Dig. 2016, 2016, 51–55. [Google Scholar]
- Tool, C.M.; Association, T. The 14th Five-Year Plan for Intelligent Manufacturing Development; Department of Equipment Industry, Ministry of Industry and Information Technology: Beijing, China, 2021. [Google Scholar]
- Zhang, S.S. Principle and Application of Linear Guide Rails. Hongdu Sci. Technol. 2004, 2, 44–49. [Google Scholar]
- Bai, Y.; Li, S.; Zong, W. Analysis of Heat Treatment Process and Technology for Metallic Materials. Chem. Manag. 2024, 25, 151–154. [Google Scholar]
- Zhang, H.Y.; Huang, F.P. Effect of Induction Heating Parameters on Quenching Microstructure and Hardened Layer Depth of 40Cr Steel. Heat Treat. 2015, 2015, 11–14. [Google Scholar]
- Yan, W.B.; Yan, M.; Yan, Z.F. Influence of Carburized Quenching Hardness on the Measurement of Hardened Layer Depth. China Stand. 2018, 2018, 157–159. [Google Scholar]
- Haderer, W.; Scherleitner, E.; Gseller, J.; Heise, B.; Mitter, T.; Ryzy, M.; Hettich, M. Spatial imaging of stratified heterogeneous microstructures: Determination of the hardness penetration depth in thermally treated steel parts by laser ultrasound. NDT E Int. 2023, 138, 102868. [Google Scholar] [CrossRef]
- Wei, Y.; Melnikov, A.; Wang, M.; Mandelis, A. Quantitative non-destructive single-frequency thermal-wave-radar imaging of case depths in hardened steels. J. Appl. Phys. 2020, 127, 245102. [Google Scholar] [CrossRef]
- Mao, H.; Li, Q.; Mao, H.; Huang, Z.; Tang, W.; Huang, H.; Li, X. Nonlinear ultrasonic characterization of carburized case depth. NDT E Int. 2020, 112, 102244. [Google Scholar] [CrossRef]
- Zhang, D.Y. Research on Ultrasonic Testing Methods for Hardened Layers. Master’s Thesis, Shenyang University of Technology, Shenyang, China, 2018. [Google Scholar]
- Sun, X.D.; Wang, Y.G.; Duanmu, P.L. Applicability of Ultrasonic Testing Method for Induction-Hardened Layer Depth. Bearing 2016, 8, 39–41. [Google Scholar] [CrossRef]
- Salchak, Y.; Sednev, D.; Kroening, M.; Borisovich, A. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument. IOP Conf. Ser. Mater. Sci. Eng. 2015, 81, 012080. [Google Scholar] [CrossRef]
- Sinding, K.; Drapaca, C.; Tittmann, B. Digital Signal Processing Methods for Ultrasonic Echoes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016, 63, 1172–1176. [Google Scholar] [CrossRef] [PubMed]
- Honarvar, F.; Zeighami, M. Application of signal processing techniques to case depth measurements by ultrasonic method. In Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008. [Google Scholar]
- Bogaerts, M. Surface hardness depth measurement using ultrasound backscattering. Adv. Mater. Process. 2019, 177, 58. [Google Scholar] [CrossRef]
- Prisco, U. Case microstructure in induction surface hardening of steels: An overview. Int. J. Adv. Manuf. Technol. 2018, 98, 2619–2637. [Google Scholar] [CrossRef]
- Beneš, P.; Vítovec, V. Selected NDT techniques in heat treatment control. Manuf. Technol. 2021, 21, 20–28. [Google Scholar] [CrossRef]
- Dong, M.; Ma, H.W.; Chen, Y. Acoustic Field Simulation of Ultrasonic Transducer Under Oblique Wedge Conditions. J. Vib. Shock. 2017, 36, 152–156. [Google Scholar] [CrossRef]
- Koppelmann, J. Ultrasonic Measurement of Hardening Depth on Steel Rolls. Mater. Test. 1967, 1967, 401–405. [Google Scholar] [CrossRef]
- Willems, H. Nondestructive Determination of Hardening Depth in Induction Hardened Components by Ultrasonic Backscattering. In Review of Progress in Quantitative Nondestructive Evaluation: Volume 10B; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1991; pp. 1707–1713. [Google Scholar]
- Yu, Y. Research on Ultrasonic Testing Technology for Defects in Carbon Fiber Winding Reinforced Structures. Master’s Thesis, Zhejiang University, Hangzhou, China, 2022. [Google Scholar]
Equipment Type | Model/Specifications | Manufacturer (Location) | Key Specifications/Functions |
---|---|---|---|
Ultrasonic Signal Transmitter & Receiver | Ultratek USB-UT350 | US Ultratek (Walnut Creek, CA, USA) | Sampling Frequency: 50 MHz |
Adjustable Pulse Width | |||
Adjustable Gain & Filter | |||
Real-time A-scan Display & Data Export | |||
USB Interface Communication | |||
Water-Immersed Point-Focusing Probe | OLYMPUS V313-SU | OLYMPUS (Tokyo, Japan) | Center Frequency: 15 MHz |
Element Diameter: 0.375 in | |||
Focal Length: 4 in | |||
Wave Type: Longitudinal Wave Transducer | |||
Inspection Water Tank | Acrylic Material | Wuxi Ivoyage Control Technology Co., Ltd. (Wuxi, China) | Dimensions: 280 mm × 280 mm × 300 mm |
Transparent Design | |||
Custom Ultrasonic Probe Holder | Self-designed & fabricated | Wuxi Ivoyage Control Technology Co., Ltd. (Wuxi, China) | Adjustable Incident Angle |
Adjustable Water Path | |||
Curvature-Adaptive to Rail Profile | |||
Portable Design | |||
Ensures Incident Angle Consistency |
Left Upper Chamfer | Left Groove | Left Lower Chamfer | Right Upper Chamfer | Right Groove | Right Lower Chamfer |
---|---|---|---|---|---|
3.450 | 1.027 | 3.475 | 3.462 | 1.026 | 3.498 |
3.449 | 1.029 | 3.474 | 3.460 | 1.027 | 3.495 |
... | ... | ... | ... | ... | ... |
3.451 | 1.028 | 3.476 | 3.462 | 1.025 | 3.496 |
Left Upper Chamfer | Left Groove | Left Lower Chamfer | Right Upper Chamfer | Right Groove | Right Lower Chamfer |
---|---|---|---|---|---|
3.500 | 1.076 | 3.462 | 3.522 | 1.080 | 3.463 |
3.497 | 1.076 | 3.458 | 3.519 | 1.082 | 3.465 |
3.502 | 1.074 | 3.461 | 3.520 | 1.082 | 3.462 |
3.500 | 1.076 | 3.462 | 3.520 | 1.080 | 3.463 |
3.500 | 1.073 | 3.460 | 3.520 | 1.079 | 3.460 |
Left Upper Chamfer | Left Groove | Left Lower Chamfer | Right Upper Chamfer | Right Groove | Right Lower Chamfer |
---|---|---|---|---|---|
3.4998 | 1.0755 | 3.4606 | 3.5202 | 1.0806 | 3.4626 |
Left Upper Chamfer | Left Groove | Left Lower Chamfer | Right Upper Chamfer | Right Groove | Right Lower Chamfer |
---|---|---|---|---|---|
3.422 | 1.027 | 3.458 | 3.418 | 1.028 | 3.458 |
Region Type | Absolute Error (mm) | Relative Error (%) |
---|---|---|
Left Upper Chamfer Region | 0.0458 | 1.33 |
Left Groove | 0.0485 | 1.24 |
Left Lower Chamfer Region | 0.0194 | 0.56 |
Right Upper Chamfer Region | 0.0632 | 1.83 |
Right Groove | 0.0562 | 0.59 |
Right Lower Chamfer Region | 0.0394 | 1.13 |
Data Source | Root Mean Square Error (mm) | Mean Absolute Error (mm) |
---|---|---|
Interpolated and Smoothed Results | 0.0371 | 0.0313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Chen, L.; Xue, M.; Yang, C. B-Scan Imaging and 3D Visualization of Hardened Layer Depth Profile in Linear Guide Rails Based on Ultrasonic Shear Wave Backscattering Technique. Acoustics 2025, 7, 55. https://doi.org/10.3390/acoustics7030055
Chen P, Chen L, Xue M, Yang C. B-Scan Imaging and 3D Visualization of Hardened Layer Depth Profile in Linear Guide Rails Based on Ultrasonic Shear Wave Backscattering Technique. Acoustics. 2025; 7(3):55. https://doi.org/10.3390/acoustics7030055
Chicago/Turabian StyleChen, Peiqiang, Lingtong Chen, Mingyang Xue, and Chenlong Yang. 2025. "B-Scan Imaging and 3D Visualization of Hardened Layer Depth Profile in Linear Guide Rails Based on Ultrasonic Shear Wave Backscattering Technique" Acoustics 7, no. 3: 55. https://doi.org/10.3390/acoustics7030055
APA StyleChen, P., Chen, L., Xue, M., & Yang, C. (2025). B-Scan Imaging and 3D Visualization of Hardened Layer Depth Profile in Linear Guide Rails Based on Ultrasonic Shear Wave Backscattering Technique. Acoustics, 7(3), 55. https://doi.org/10.3390/acoustics7030055