Highly Efficient Conversion of Methane to Methanol on Fe-Cu/ZSM-5 Under Mild Conditions: Effective Utilization of Free Radicals by Favorable Valence Ratios
Abstract
1. Introduction
2. Experimental Sections
2.1. Materials and Reagents
2.2. Synthesis of Catalysts
2.3. Characterizations
2.4. Catalytic Activity Test
3. Results and Discussion
3.1. Structural and Morphological Characteristics
3.2. Catalytic Performance Evaluation
3.3. Mechanism Investigation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hammond, C.; Forde, M.M.; Ab Rahim, M.H.; Thetford, A.; He, Q.; Jenkins, R.L.; Dimitratos, N.; Lopez-Sanchez, J.A.; Dummer, N.F.; Murphy, D.M.; et al. Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 2012, 51, 5129–5133. [Google Scholar] [CrossRef]
- Tang, X.; Wang, L.; Yang, B.; Fei, C.; Yao, T.Y.; Liu, W.; Lou, Y.; Dai, Q.G.; Cai, Y.F.; Cao, X.M.; et al. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Appl. Catal. B Environ. 2021, 285, 119827. [Google Scholar] [CrossRef]
- Mao, Y.; Hu, P. Identification of the active sites and mechanism for partial methane oxidation to methanol over copper-exchanged CHA zeolites. Sci. China Chem. 2020, 63, 850–859. [Google Scholar] [CrossRef]
- Yu, X.; Wu, B.; Huang, M.; Lu, Z.X.; Li, J.; Zhong, L.S.; Sun, Y.H. IrFe/ZSM-5 Synergistic Catalyst for Selective Oxidation of Methane to Formic Acid. Energy Fuel 2021, 35, 4418–4427. [Google Scholar] [CrossRef]
- Wang, B.; Albarracín-Suazo, S.; Pagán-Torres, Y.; Nikolla, E. Advances in methane conversion processes. Catal. Today 2017, 285, 147–158. [Google Scholar] [CrossRef]
- Li, R.J.; Yu, C.C.; Dai, X.P.; Shen, S.K. Selective oxidation of methane to synthesis gas using lattice oxygen from perovskite LaSrFeO catalyst. Chin. J. Catal. 2002, 23, 549–554. [Google Scholar] [CrossRef]
- Meng, X.G.; Cui, X.J.; Rajan, N.P.; Yu, L.; Deng, D.H.; Bao, X.H. Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis. Chem 2019, 5, 2296–2325. [Google Scholar] [CrossRef]
- Liu, C.-C.; Mou, C.-Y.; Yu, S.S.F.; Chan, S.I. Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure. Energy Environ. Sci. 2016, 9, 1361–1374. [Google Scholar] [CrossRef]
- Hammond, C.; Dimitratos, N.; Lopez-Sanchez, J.A.; Jenkins, R.L.; Whiting, G.; Kondratt, S.A.; ab Rahim, M.H.; Forde, M.M.; Thetford, A.; Hagen, H.; et al. Aqueous-Phase Methane Oxidation over Fe-MFI Zeolites; Promotion through Isomorphous Framework Substitution. ACS Catal. 2013, 3, 1835–1844. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, S.; Tang, Y.; Li, Y.; Nguyen, L.; Li, Y.; Shan, J.; Xiao, D.; Gagne, R.; Frenkel, A.I.; et al. Low-Temperature Transformation of Methane to Methanol on Pd1 O4 Single Sites Anchored on the Internal Surface of Microporous Silicate. Angew. Chem. Int. Ed. 2016, 55, 13441–13445. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Freakley, S.J.; McVicker, R.U.; Althahban, S.M.; Dimitratos, N.; He, Q.; Morgan, D.J.; Jenkins, R.L.; Willock, D.J.; Taylor, S.H.; et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CHOH with O2 under mild conditions. Science 2017, 358, 223–226. [Google Scholar] [CrossRef]
- Cheng, Q.P.; Li, G.N.; Yao, X.L.; Zheng, L.R.; Wang, J.H.; Emwas, A.H.; Castaño, P.; Ruiz-Martínez, J.; Han, Y. Maximizing Active Fe Species in ZSM-5 Zeolite Using Organic-Template-Free Synthesis for Efficient Selective Methane Oxidation. J. Am. Chem. Soc. 2023, 145, 5888–5898. [Google Scholar] [CrossRef]
- He, M.; Zhang, J.; Sun, X.L.; Chen, B.H.; Wang, Y.G. Theoretical Study on Methane Oxidation Catalyzed by Fe/ZSM-5: The Significant Role of Water on Binuclear Iron Active Sites. J. Phys. Chem. C 2016, 120, 27422–27429. [Google Scholar] [CrossRef]
- Yu, T.; Li, Z.; Jones, W.; Liu, Y.; He, Q.; Song, W.; Du, P.; Yang, B.; An, H.; Farmer, D.M.; et al. Identifying key mononuclear Fe species for low-temperature methane oxidation. Chem. Sci. 2021, 12, 3152–3160. [Google Scholar] [CrossRef]
- Dinh, K.T.; Sullivan, M.M.; Serna, P.; Meyer, R.J.; Dinca, M.; Román-Leshkov, Y. Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged Zeolites. ACS Catal. 2018, 8, 8306–8313. [Google Scholar] [CrossRef]
- Battiston, A.A.; Bitter, J.H.; de Groot, F.M.F.; Overweg, A.R.; Stephan, O.; van Bokhoven, J.A.; Kooyman, P.J.; van der Spek, C.; Vankó, G.; Koningsberger, D.C. Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3. J. Catal. 2003, 213, 251–271. [Google Scholar] [CrossRef]
- Freakley, S.J.; Dimitratos, N.; Willock, D.J.; Taylor, S.H.; Kiely, C.J.; Hutchings, G.J. Methane Oxidation to Methanol in Water. Acc. Chem. Res. 2021, 54, 2614–2623. [Google Scholar] [CrossRef]
- Dinh, K.T.; Sullivan, M.M.; Narsimhan, K.; Serna, P.; Meyer, R.J.; Dinca, M.; Román-Leshkov, Y. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. J. Am. Chem. Soc. 2019, 141, 11641–11650. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Li, Z.; Lin, L.; Chu, S.Q.; Su, Y.; Song, W.Y.; Wang, A.Q.; Weckhuysen, B.M.; Luo, W.H. Highly Selective Oxidation of Methane into Methanol over Cu-Promoted Monomeric Fe/ZSM-5. ACS Catal. 2021, 11, 6684–6691. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, Y.; Zhao, S.; Wang, B.; Gong, J. A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nat. Commun. 2013, 4, 2339. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Seong, J.; Lee, K.-M.; Kim, H.-H.; Choi, J.; Kim, J.-H.; Lee, C. Chloride-enhanced oxidation of organic contaminants by Cu(II)-catalyzed Fenton-like reaction at neutral pH. J. Hazard. Mater. 2018, 344, 1174–1180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, W.; Wu, S.; Yin, R.; Zhu, M. Surface dual redox cycles of Mn(III)/Mn(IV) and Cu(I)/Cu(II) for heterogeneous peroxymonosulfate activation to degrade diclofenac: Performance, mechanism and toxicity assessment. J. Hazard. Mater. 2021, 410, 124623. [Google Scholar] [CrossRef]
- Luo, L.; Han, X.; Wang, K.; Xu, Y.; Xiong, L.; Ma, J.; Guo, Z.; Tang, J. Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+. Nat. Commun. 2023, 14, 2690. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Tan, J.; Zhang, Z.; Han, P.; Yin, M.; Wan, S.; Lin, J.; Wang, S.; Wang, Y. Direct conversion of methane to formaldehyde and CO on B2O3 catalysts. Nat. Commun. 2020, 11, 5693. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Y. Facile synthesis of N-doped carbon supported iron species for highly efficient methane conversion with H2O2 at ambient temperature. Appl. Catal. A Gen. 2021, 615, 118052. [Google Scholar] [CrossRef]
- Delahay, G.; Valade, D.; Guzmán-Vargas, A.; Coq, B. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods. Appl. Catal. B Environ. 2005, 55, 149–155. [Google Scholar] [CrossRef]
- Jianguo, L.; Mingyue, D.; Tiejun, W.; Longlong, M. Structure and Performance of Cu-Fe Bimodal Support for Higher Alcohol Syntheses. Acta Phys.-Chim. Sin. 2012, 28, 1964–1970. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Wang, P.; Yu, D.; Zhao, H.-Y.; Lyu, X.-L.; Lei, L.-L. Evolution mechanism of active sites for selective catalytic reduction of NOx with NH3 over Fe-ZSM-5 catalysts doped by Ce/Cu. J. Cent. South Univ. 2022, 29, 2239–2252. [Google Scholar] [CrossRef]
- Hsu, Y.Y.; Suen, N.T.; Chang, C.C.; Hung, S.F.; Chen, C.L.; Chan, T.S.; Dong, C.L.; Chan, C.C.; Chen, S.Y.; Chen, H.M. Heterojunction of Zinc Blende/Wurtzite in ZnCdS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches. Acs Appl. Mater. Interfaces 2015, 7, 22558–22569. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.; Han, S.J.; Yoo, J.; Choi, J.H.; Lee, J.K.; Song, J.H.; Lee, J.; Song, I.K. Hydrogen production by steam reforming of simulated liquefied natural gas (LNG) over nickel catalyst supported on mesoporous phosphorus-modified alumina xerogel. Appl. Catal. B Environ. 2014, 148–149, 269–280. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Szécsényi, Á.; Li, G.; Gascon, J.; Pidko, E.A. Mechanistic Complexity of Methane Oxidation with H2O2 by Single-Site Fe/ZSM-5 Catalyst. ACS Catal. 2018, 8, 7961–7972. [Google Scholar] [CrossRef]
- Xing, X.; Li, N.; Cheng, J.; Sun, Y.G.; Zhang, Z.S.; Zhang, X.; Hao, Z.P. Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of butylamine. J. Environ. Sci. 2020, 96, 55–63. [Google Scholar] [CrossRef]
- Dou, B.J.; Li, S.M.; Liu, D.L.; Zhao, R.Z.; Liu, J.G.; Hao, Q.L.; Bin, F. Catalytic oxidation of ethyl acetate and toluene over Cu-Ce-Zr supported ZSM-5/TiO2 catalysts. RSC Adv. 2016, 6, 53852–53859. [Google Scholar] [CrossRef]
- Li, S.M.; Hao, Q.L.; Zhao, R.Z.; Liu, D.L.; Duan, H.Z.; Dou, B.J. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts. Chem. Eng. J. 2016, 285, 536–543. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, Z.; Liu, S.; Niu, H.; Hu, T.; Liu, T.; Xie, Y. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Appl. Catal. B Environ. 2000, 26, 25–35. [Google Scholar] [CrossRef]
- Dasireddy, V.D.B.C.; Likozar, B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity. Renew. Energy 2019, 140, 452–460. [Google Scholar] [CrossRef]
- Forde, M.M.; Armstrong, R.D.; McVicker, R.; Wells, P.P.; Dimitratos, N.; He, Q.; Lu, L.; Jenkins, R.L.; Hammond, C.; Lopez-Sanchez, J.A.; et al. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: Tuning alcohol selectivity through catalyst pre-treatment. Chem. Sci. 2014, 5, 3603–3616. [Google Scholar] [CrossRef]
- Taran, O.P.; Yashnik, S.A.; Boltenkov, V.V.; Parkhomchuk, E.V.; Sashkina, K.A.; Ayusheev, A.B.; Babushkin, D.E.; Parmon, V.N. Formic Acid Production Via Methane Peroxide Oxidation Over Oxalic Acid Activated Fe-MFI Catalysts. Top. Catal. 2019, 62, 491–507. [Google Scholar] [CrossRef]
- Oda, A.; Aono, K.; Murata, N.; Murata, K.; Yasumoto, M.; Tsunoji, N.; Sawabe, K.; Satsuma, A. Rational design of ZSM-5 zeolite containing a high concentration of single Fe sites capable of catalyzing the partial oxidation of methane with high turnover frequency. Catal. Sci. Technol. 2022, 12, 542–550. [Google Scholar] [CrossRef]
- Xie, P.F.; Ding, J.; Yao, Z.H.; Pu, T.C.; Zhang, P.; Huang, Z.N.; Wang, C.H.; Zhang, J.L.; Zecher-Freeman, N.; Zong, H.; et al. Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nat. Commun. 2022, 13, 1375. [Google Scholar] [CrossRef]
- Bai, S.X.; Liu, F.F.; Huang, B.L.; Li, F.; Lin, H.P.; Wu, T.; Sun, M.Z.; Wu, J.B.; Shao, Q.; Xu, Y.; et al. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat. Commun. 2020, 11, 954. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Song, X.G.; Feng, S.Q.; Yuan, Q.; Jiang, M.; Yan, L.; Ding, Y.J. Direct conversion of methane to oxygenates on porous organic polymers supported Rh mononuclear complex catalyst under mild conditions. Appl. Catal. B Environ. 2021, 293, 120208. [Google Scholar] [CrossRef]
- Liu, B.; Huang, M.Y.; Fang, Z.H.; Kong, L.; Xu, Y.B.; Li, Z.J.; Liu, X.H. Breaking the scaling relationship in selective oxidation of methane via dynamic Metal-Intermediate Coordination-Induced modulation of reactivity descriptors on an atomically dispersed Rh/ZrO catalyst. J. Catal. 2022, 416, 68–84. [Google Scholar] [CrossRef]
- Artsiusheuski, M.A.; Verel, R.; van Bokhoven, J.A.; Sushkevich, V.L. Methane Transformation over Copper-Exchanged Zeolites: From Partial Oxidation to C-C Coupling and Formation of Hydrocarbons. ACS Catal. 2021, 11, 12543–12556. [Google Scholar] [CrossRef]
- Fellah, M.F. CO and NO Adsorptions on Different Iron Sites of Fe-ZSM-5 Clusters: A Density Functional Theory Study. J. Phys. Chem. C 2011, 115, 1940–1951. [Google Scholar] [CrossRef]
- Marwood, M.; Doepper, R.; Renken, A. In-situ surface and gas phase analysis for kinetic studies under transient conditions—The catalytic hydrogenation of CO2. Appl. Catal. A Gen. 1997, 151, 223–246. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Qi, G.S.; Weng, D. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3. J. Catal. 2012, 289, 21–29. [Google Scholar] [CrossRef]
- Mihaylov, M.; Ivanova, E.; Chakarova, K.; Novachka, P.; Hadjiivanov, K. Reduced iron sites in Fe–BEA and Fe–ZSM-5 zeolites: FTIR study of CO adsorption and 12C16O–13C18O co-adsorption. Appl. Catal. A Gen. 2011, 391, 3–10. [Google Scholar] [CrossRef]
- Ab Rahim, M.H.; Forde, M.M.; Jenkins, R.L.; Hammond, C.; He, Q.; Dimitratos, N.; Lopez-Sanchez, J.A.; Carley, A.F.; Taylor, S.H.; Willock, D.J.; et al. Oxidation of Methane to Methanol with Hydrogen Peroxide Using Supported Gold–Palladium Alloy Nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 1280–1284. [Google Scholar] [CrossRef]
- Williams, C.; Carter, J.H.; Dummer, N.F.; Chow, Y.K.; Morgan, D.J.; Yacob, S.; Serna, P.; Willock, D.J.; Meyer, R.J.; Taylor, S.H.; et al. Selective Oxidation of Methane to Methanol Using Supported AuPd Catalysts Prepared by Stabilizer-Free Sol-Immobilization. ACS Catal. 2018, 8, 2567–2576. [Google Scholar] [CrossRef]
- Kwon, Y.; Kim, T.Y.; Kwon, G.; Yi, J.; Lee, H. Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. J. Am. Chem. Soc. 2017, 139, 17694–17699. [Google Scholar] [CrossRef]
- Fang, Z.; Murayama, H.; Zhao, Q.; Liu, B.; Jiang, F.; Xu, Y.; Tokunaga, M.; Liu, X. Selective mild oxidation of methane to methanol or formic acid on Fe–MOR catalysts. Catal. Sci. Technol. 2019, 9, 6946–6956. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J.; Li, W.; Li, C.; Zhu, L.; Zhou, Z.; Zhang, L.; Zhang, X.; Yuan, L. Highly selective catalytic oxidation of methane to methanol using Cu–Pd/anatase. Energy Environ. Sci. 2024, 17, 9122–9133. [Google Scholar] [CrossRef]
- Yu, B.; Cheng, L.; Dai, S.; Jiang, Y.; Yang, B.; Li, H.; Zhao, Y.; Xu, J.; Zhang, Y.; Pan, C.; et al. Silver and Copper Dual Single Atoms Boosting Direct Oxidation of Methane to Methanol via Synergistic Catalysis. Adv. Sci. 2023, 10, 2302143. [Google Scholar] [CrossRef]
- Antil, N.; Chauhan, M.; Akhtar, N.; Newar, R.; Begum, W.; Malik, J.; Manna, K. Metal–Organic Framework-Encaged Monomeric Cobalt(III) Hydroperoxides Enable Chemoselective Methane Oxidation to Methanol. ACS Catal. 2022, 12, 11159–11168. [Google Scholar] [CrossRef]
- Cui, X.; Li, H.; Wang, Y.; Hu, Y.; Hua, L.; Li, H.; Han, X.; Liu, Q.; Yang, F.; He, L.; et al. Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms. Chem 2018, 4, 1902–1910. [Google Scholar] [CrossRef]
Catalyst | Surface Area (m2/g) | t-Plot Micropore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
Fe/ZSM-5 | 310.20 | 0.11 | 1.82 |
Fe3Cu1 | 261.64 | 0.10 | 1.92 |
Fe1Cu1 | 272.62 | 0.10 | 1.87 |
Fe1Cu3 | 286.02 | 0.11 | 1.85 |
Cu/ZSM-5 | 298.93 | 0.12 | 1.88 |
HZSM-5 | 391.17 | 0.13 | 1.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Pu, Y.; Li, Y.; Fu, M. Highly Efficient Conversion of Methane to Methanol on Fe-Cu/ZSM-5 Under Mild Conditions: Effective Utilization of Free Radicals by Favorable Valence Ratios. Surfaces 2025, 8, 69. https://doi.org/10.3390/surfaces8040069
Zhang H, Pu Y, Li Y, Fu M. Highly Efficient Conversion of Methane to Methanol on Fe-Cu/ZSM-5 Under Mild Conditions: Effective Utilization of Free Radicals by Favorable Valence Ratios. Surfaces. 2025; 8(4):69. https://doi.org/10.3390/surfaces8040069
Chicago/Turabian StyleZhang, Huajie, Yunhan Pu, Yanjun Li, and Mingli Fu. 2025. "Highly Efficient Conversion of Methane to Methanol on Fe-Cu/ZSM-5 Under Mild Conditions: Effective Utilization of Free Radicals by Favorable Valence Ratios" Surfaces 8, no. 4: 69. https://doi.org/10.3390/surfaces8040069
APA StyleZhang, H., Pu, Y., Li, Y., & Fu, M. (2025). Highly Efficient Conversion of Methane to Methanol on Fe-Cu/ZSM-5 Under Mild Conditions: Effective Utilization of Free Radicals by Favorable Valence Ratios. Surfaces, 8(4), 69. https://doi.org/10.3390/surfaces8040069