Risk, Uncertainty, and Resiliency in the Face of Ancient Climate Change: The Case for Legumes
Abstract
1. Introduction
2. Climatic Fluctuation, Resiliency, and Risk Management
3. The Problem of Legumes
4. The Benefits of Legume Exploitation
5. Legume Toxicity
6. Future Directions in the Archaeology of Toxic Legumes
7. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Weiss, H. (Ed.) Megadrought and Collapse: From Early Agriculture to Angkor; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Kaniewski, D.; Marriner, N.; Cheddadi, R.; Guiot, J.; Van Campo, E. The 4.2 Ka BP Event in the Levant. Clim. Past 2018, 14, 1529–1542. [Google Scholar] [CrossRef]
- Petraglia, M.D.; Groucutt, H.S.; Guagnin, M.; Breeze, P.S.; Boivin, N. Human Responses to Climate and Ecosystem Change in Ancient Arabia. Proc. Natl. Acad. Sci. USA 2020, 117, 8263–8270. [Google Scholar] [CrossRef]
- Marston, J.M. Archaeological Markers of Agricultural Risk Management. J. Anthr. Archaeol. 2011, 30, 190–205. [Google Scholar] [CrossRef]
- Marston, J.M. Modeling Resilience and Sustainability in Ancient Agricultural Systems. J. Ethnobiol. 2015, 35, 585–605. [Google Scholar] [CrossRef]
- He, K.; Lu, H.; Jin, G.; Wang, C.; Zhang, H.; Zhang, J.; Xu, D.; Shen, C.; Wu, N.; Guo, Z. Antipodal Pattern of Millet and Rice Demography in Response to 4.2 Ka Climate Event in China. Quat. Sci. Rev. 2022, 295, 107786. [Google Scholar] [CrossRef]
- Zohary, D.; Hopf, M. Domestication of Pulses in the Old World. Science 1973, 182, 887–894. [Google Scholar] [CrossRef]
- Sarpaki, A. The Palaeoethnobotanical Approach: The Mediterranean Triad or Is It a Quartet. In Agriculture in Ancient Greece: Proceedings of the Seventh International Symposium at the Swedish Institute of Athens, Greece, 16–17 May 1990; Wells, B., Ed.; Paul Åströms Förlag: Stockhom, Sweden, 1992; pp. 61–76. [Google Scholar]
- Hamilakis, Y. Archaeology and the Senses: Human Experience, Memory, and Affect; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- VanDerwarker, A.M.; Marcoux, J.B.; Hollenbach, K.D. Farming and Foraging at the Crossroads: The Consequences of Cherokee and European Interaction Through the Late Eighteenth Century. Am. Antiq. 2013, 78, 68–88. [Google Scholar] [CrossRef]
- Riehl, S.; Asouti, E.; Karakaya, D.; Starkovich, B.M.; Zeidi, M.; Conard, N.J. Resilience at the Transition to Agriculture: The Long-Term Landscape and Resource Development at the Aceramic Neolithic Tell Site of Chogha Golan (Iran). BioMed Res. Int. 2015, 2015, 532481. [Google Scholar] [CrossRef]
- Løvschal, M. Retranslating Resilience Theory in Archaeology. Annu. Rev. Anthr. 2022, 51, 195–211. [Google Scholar] [CrossRef]
- Marston, J.M. Archaeological Approaches to Agricultural Economies. J. Archaeol. Res. 2021, 29, 327–385. [Google Scholar] [CrossRef]
- Gremillion, K.J.; Barton, L.; Piperno, D.R. Particularism and the Retreat from Theory in the Archaeology of Agricultural Origins. Proc. Natl. Acad. Sci. USA 2014, 111, 6171–6177. [Google Scholar] [CrossRef] [PubMed]
- Zeder, M.A. Core Questions in Domestication Research. Proc. Natl. Acad. Sci. USA 2015, 112, 3191–3198. [Google Scholar] [CrossRef] [PubMed]
- Zeder, M.A. Reply to Mohlenhoff et al.: Human Behavioral Ecology Needs a Rethink That Niche-Construction Theory Can Provide. Proc. Natl. Acad. Sci. USA 2015, 112, E3094. [Google Scholar] [CrossRef] [PubMed]
- Mohlenhoff, K.A.; Coltrain, J.B.; Codding, B.F. Optimal Foraging Theory and Niche-Construction Theory Do Not Stand in Opposition. Proc. Natl. Acad. Sci. USA 2015, 112, E3093. [Google Scholar] [CrossRef]
- Quintus, S.; Allen, M.S. Niche Construction and Long-Term Trajectories of Food Production. J. Archaeol. Res. 2024, 32, 209–261. [Google Scholar] [CrossRef]
- Damm, J.C. Conflict and Consumption: Foodways, Practice, and Identity at New Kingdom Jaffa. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2021. Available online: https://escholarship.org/uc/item/6n7456cb (accessed on 21 May 2025).
- Paulette, T. Inebriation and the Early State: Beer and the Politics of Affect in Mesopotamia. J. Anthr. Archaeol. 2021, 63, 101330. [Google Scholar] [CrossRef]
- Zohary, D.; Hopf, M.; Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in South-West Asia, Europe, and the Mediterranean Basin, 4th ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Caracuta, V.; Vardi, J.; Paz, Y.; Boaretto, E. Farming Legumes in the Pre-Pottery Neolithic: New Discoveries from the Site of Ahihud (Israel). PLoS ONE 2017, 12, e0177859. [Google Scholar] [CrossRef]
- Fuller, D.Q.; Willcox, G.; Allaby, R.G. Early Agricultural Pathways: Moving Outside the ‘Core Area’ Hypothesis in Southwest Asia. J. Exp. Bot. 2012, 63, 617–633. [Google Scholar] [CrossRef]
- Finlayson, B. Imposing the Neolithic on the Past. Levant 2013, 45, 133–148. [Google Scholar] [CrossRef]
- Fuller, D.Q.; Stevens, C.J. Open for Competition: Domesticates, Parasitic Domesticoids and the Agricultural Niche. Archaeol. Int. 2018, 20, 110. [Google Scholar] [CrossRef]
- Arranz-Otaegui, A.; Roe, J. Revisiting the Concept of the ‘Neolithic Founder Crops’ in Southwest Asia. Veg. Hist. Archaeobotany 2023, 32, 475–499. [Google Scholar] [CrossRef]
- Morales, J.; Jordà, G.P.; Peña-Chocarro, L.; Bokbot, Y.; Vera, J.C.; Sánchez, R.M.M.; Linstädter, J. The Introduction of South-Western Asian Domesticated Plants in North-Western Africa: An Archaeobotanical Contribution from Neolithic Morocco. Quat. Int. 2016, 412, 96–109. [Google Scholar] [CrossRef]
- Abbo, S.; Gopher, A.; Bar-Gal, G.K. Plant Domestication and the Origins of Agriculture in the Ancient Near East; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Täckholm, V. Students’ Flora of Egypt; Cairo University: Beirut, Lebanon, 1974. [Google Scholar]
- Boulos, L. Flora of Egypt (Azollaceae—Oxalidaceae); Flora of Egypt; Al Hadara Publishing: Cairo, Egypt, 1999; Volume 1. [Google Scholar]
- Valamoti, S.M.; Moniaki, A.; Karathanou, A. An Investigation of Processing and Consumption of Pulses among Prehistoric Societies: Archaeobotanical, Experimental and Ethnographic Evidence from Greece. Veg. Hist. Archaeobotany 2011, 20, 381–396. [Google Scholar] [CrossRef]
- Valamoti, S.M. Plant Foods of Greece: A Culinary Journey to the Neolithic and Bronze Ages; The University of Alabama Press: Tuscaloosa, AL, USA, 2023. [Google Scholar]
- Butler, E.A. Legumes in Antiquity: A Micromorphological Investigation of Seeds of the Vicieae. Ph.D. Thesis, University College London, London, UK, 1990. [Google Scholar]
- Tsartsidou, G.; Lev-Yadun, S.; Albert, R.-M.; Miller-Rosen, A.; Efstratiou, N.; Weiner, S. The Phytolith Archaeological Record: Strengths and Weaknesses Evaluated Based on a Quantitative Modern Reference Collection from Greece. J. Archaeol. Sci. 2007, 34, 1262–1275. [Google Scholar] [CrossRef]
- Sandias, M.; Müldner, G. Diet and Herding Strategies in a Changing Environment: Stable Isotope Analysis of Bronze Age and Late Antique Skeletal Remains from Ya’amūn, Jordan. J. Archaeol. Sci. 2015, 63, 24–32. [Google Scholar] [CrossRef]
- Madella, M.; García-Granero, J.J.; Out, W.A.; Ryan, P.; Usai, D. Microbotanical Evidence of Domestic Cereals in Africa 7000 Years Ago. PLoS ONE 2014, 9, e110177. [Google Scholar] [CrossRef]
- El Dorry, M.-A. Forbidden, Sprouted, Stewed: An Archaeobotanical and Historical Overview of Fava Beans in Ancient Egypt. In Food and Drink in Egypt and Sudan: Selected Studies in Archaeology, Culture, and History; El Dorry, M.-A., Ed.; Bibliothèque d’étude 184; Institut Français D’archéologie Orientale: Cairo, Egypt, 2023; pp. 87–104. [Google Scholar]
- Filatova, S.; Ferenc, G.; Wiebke, K. Environmental Imposition or Ancient Farmers’ Choice? A Study of the Presence of ‘Inferior’ Legumes in the Bronze Age Carpathian Basin (Hungary). In How’s Life? Living Conditions in the 2nd and 1st Millennia BCE; Corso, M.D., Kirleis, W., Kneisel, J., Taylor, N., Wieckowska-Lüth, M., Zanon, M., Eds.; Scales of Transformation in Prehistoric and Archaic Societies 4; Sidestone Press: Leiden, The Netherlands, 2019; pp. 57–84. [Google Scholar]
- Ferreira, H.; Pinto, E.; Vasconcelos, M.W. Legumes as a Cornerstone of the Transition Toward More Sustainable Agri-Food Systems and Diets in Europe. Front. Sustain. Food Syst. 2021, 5, 694121. [Google Scholar] [CrossRef]
- Sadeghi, G.; Mohammadi, L.; Ibrahim, S.; Gruber, K. Use of Bitter Vetch (Vicia ervilia) as a Feed Ingredient for Poultry. World’s Poult. Sci. J. 2009, 65, 51–64. [Google Scholar] [CrossRef]
- Murray, M.A. Fruits, Vegetables, Pulses, and Condiments. In Ancient Egyptian Materials and Technology; Nicholson, P.T., Shaw, I., Eds.; Cambridge University Press: New York, NY, USA, 2000; pp. 609–655. [Google Scholar]
- Girma, A.; Tefera, B.; Dadi, L. Grass Pea and Neurolathyrism: Farmers’ Perception on Its Consumption and Protective Measure in North Shewa, Ethiopia. Food Chem. Toxicol. 2011, 49, 668–672. [Google Scholar] [CrossRef]
- Fikre, A.; Van Moorhem, M.; Ahmed, S.; Lambein, F.; Gheysen, G. Studies on Neurolathyrism in Ethiopia: Dietary Habits, Perception of Risks and Prevention. Food Chem. Toxicol. 2011, 49, 678–684. [Google Scholar] [CrossRef]
- Graff, S.R. Culinary Preferences: Seal-Impressed Vessels from Western Syria as Specialized Cookware. In The Menial Art of Cooking: Archaeological Studies of Cooking and Food Preparation; Graff, S.R., Rodríguez-Alegría, E., Eds.; University Press of Colorado: Boulder, CO, USA, 2012; pp. 19–45. [Google Scholar]
- Deshpande, S.S. Food Legumes in Human Nutrition: A Personal Perspective. Crit. Rev. Food Sci. Nutr. 1992, 32, 333–363. [Google Scholar] [CrossRef]
- Enneking, D. The Toxicity of Vicia Species and Their Utilisation as Grain Legumes. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 1994. [Google Scholar]
- Enneking, D. The Toxicity of Vicia Species and Their Utilisation as Grain Legumes; Centre for Legumes in Mediterranean Agriculture (CLIMA) Occasional Publication 6; University of Western Australia: Adelaide, Australia, 1995. [Google Scholar]
- Rao, S. A Look at the Brighter Facets of β-N-Oxalyl-l-α,β-Diaminopropionic Acid, Homoarginine and the Grass Pea. Food Chem. Toxicol. 2011, 49, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Rivera, D.; Matilla, G.; Obón, C.; Alcaraz, F.J. Plants and Humans in the Near East and the Caucasus: Ancient and Traditional Uses of Plants as Food and Medicine, An Ethnobotanical Diachronic Review. Volume 2. The Plants: Angiosperms; Editum: Murcia, Spain, 2012; Volume 2. [Google Scholar]
- Singh, S.S.; Rao, S. Lessons from Neurolathyrism: A Disease of the Past & the Future of Lathyrus sativus (Khesari Dal). Indian J. Med. Res. 2013, 138, 32–37. [Google Scholar] [PubMed]
- Rudra, S.G.; Singh, A.; Pal, P.; Thakur, R.K. Antinutritional Factors in Lentils. In Lentils; Ahmed, J., Siddiq, M., Uebersax, M.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 339–364. [Google Scholar] [CrossRef]
- Wang, N.; Hatcher, D.W.; Gawalko, E.J. Effect of Variety and Processing on Nutrients and Certain Anti-Nutrients in Field Peas (Pisum sativum). Food Chem. 2008, 111, 132–138. [Google Scholar] [CrossRef]
- Xu, Y.; Cartier, A.; Obielodan, M.; Jordan, K.; Hairston, T.; Shannon, A.; Sismour, E. Nutritional and Anti-Nutritional Composition, and In Vitro Protein Digestibility of Kabuli Chickpea (Cicer arietinum L.) as Affected by Differential Processing Methods. J. Food Meas. Charact. 2016, 10, 625–633. [Google Scholar] [CrossRef]
- Millar, K.; Gallagher, E.; Burke, R.; McCarthy, S.; Barry-Ryan, C. Proximate Composition and Anti-Nutritional Factors of Fava-Bean (Vicia faba), Green-Pea and Yellow-Pea (Pisum sativum) Flour. Food Compos. Anal. 2019, 82, 103233. [Google Scholar] [CrossRef]
- Rahate, K.A.; Madhumita, M.; Prabhakar, P.K. Nutritional Composition, Anti-Nutritional Factors, Pretreatments-Cum-Processing Impact and Food Formulation Potential of Faba Bean (Vicia faba L.): A Comprehensive Review. LWT Food Sci. Technol. 2021, 138, 110796. [Google Scholar] [CrossRef]
- Saha, D.; Patra, A.; Arun Prasath, V.; Pandiselvam, R. Anti-Nutritional Attributes of Faba-Bean. In Faba Bean: Chemistry, Properties and Functionality; Bangar, S.P., Dhull, S.B., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 97–122. [Google Scholar] [CrossRef]
- Choi, Y.-M.; Shin, M.-J.; Lee, S.; Yoon, H.; Yi, J.; Wang, X.; Kim, H.-W.; Desta, K.T. Anti-Nutrient Factors, Nutritional Components, and Antioxidant Activities of Faba Beans (Vicia faba L.) as Affected by Genotype, Seed Traits, and Their Interactions. Food Chem. X 2024, 23, 101780. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Maya-Ocaña, K.; Ortiz-Moreno, A.; Herrera-Cabrera, B.E.; Dávila-Ortiz, G.; Múzquiz, M.; Martín-Pedrosa, M.; Burbano, C.; Cuadrado, C.; Jiménez-Martínez, C. Effect of Roasting and Boiling on the Content of Vicine, Convicine and L-3,4-Dihydroxyphenylalanine in Vicia faba L. J. Food Qual. 2012, 35, 419–428. [Google Scholar] [CrossRef]
- Khazaei, H.; Purves, R.W.; Hughes, J.; Link, W.; O’SUllivan, D.M.; Schulman, A.H.; Björnsdotter, E.; Geu-Flores, F.; Nadzieja, M.; Andersen, S.U.; et al. Eliminating Vicine and Convicine, The Main Anti-Nutritional Factors Restricting Faba Bean Usage. Trends Food Sci. Technol. 2019, 91, 549–556. [Google Scholar] [CrossRef]
- Miller, N.; Enneking, D. Bitter Vetch (Vicia ervilia): Ancient Medicinal Crop and Farmers’ Favorite for Feeding Livestock. In New Lives for Ancient and Extinct Crops; Minnis, P.E., Ed.; The University of Arizona Press: Tucson, AZ, USA, 2014. [Google Scholar]
- Haddad, S. Bitter Vetch Grains as a Substitute for Soybean Meal for Growing Lambs. Livest. Sci. 2006, 99, 221–225. [Google Scholar] [CrossRef]
- Ayașan, T. Use of Vicia ervilia L. in Animal Nutrition. Kafkas Univ. Vet. Fakültesi Derg. 2010, 16, 167–171. [Google Scholar] [CrossRef]
- Reisi, K.; Zamani, F.; Vatankhah, M.; Rahimiyan, Y. Effect of Raw and Soaked Bitter Vetch (Vicia ervilia) Seeds as Replacement Protein Source of Cotton Seed Meal on Performance and Carcass Characteristics of Lori-Bakhtiari Fattening Ram Lambs. Glob. Vet. 2011, 7, 405–410. [Google Scholar]
- Woldeamanuel, Y.W.; Hassan, A.; Zenebe, G. Neurolathyrism: Two Ethiopian Case Reports and Review of the Literature. J. Neurol. 2012, 259, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.N.; Tripathi, C.B.; Kumar, A.; Nandmer, V.; Ansari, A.Z.; Kumar, B.; Chaurasia, R.N.; Joshi, D. Lathyrism: Has the Scenario Changed in 2013? Neurol. Res. 2014, 36, 38–40. [Google Scholar] [CrossRef]
- Lambein, F.; Travella, S.; Kuo, Y.-H.; Van Montagu, M.; Heijde, M. Grass Pea (Lathyrus sativus L.): Orphan Crop, Nutraceutical or Just Plain Food? Planta 2019, 250, 821–838. [Google Scholar] [CrossRef]
- Kebede, B.; Kelbessa, U.; Ayele, N. Effect of Processing Methods on the Trypsin Inhibitor, Tannins, Phytic Acid and ODAP Contents of Grass Pea Seeds. Ethiop. J. Health Dev. 1995, 9. Available online: https://www.ajol.info/index.php/ejhd/article/view/216409 (accessed on 2 February 2025).
- Enneking, D.; Wink, M. Towards the Elimination of Anti-Nutritional Factors in Grain Legumes. In Linking Research and Marketing Opportunities for Pulses in the 21st Century; Knight, R., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 671–683. [Google Scholar]
- Urga, K.; Fufa, H.; Biratu, E.; Gebretsadik, M. Effects of Blanching and Soaking on Some Physical Characteristics of Grass Pea (Lathyrus sativus). Afr. J. Food, Agric. Nutr. Dev. 2006, 6, 1–17. [Google Scholar] [CrossRef]
- Barbour, E.; Kallas, M.; Farran, M. Immune Response to Newcastle Disease Virus in Broilers: A Useful Model for the Assessment of Detoxification of Ervil Seeds. Rev. Sci. Tech. l’OIE 2001, 20, 785–790. [Google Scholar] [CrossRef]
- Valamoti, S.M. Plant Food Ingredients and ‘Recipes’ from Prehistoric Greece: The Archaeobotanical Evidence. In Plants and Culture: Seeds of the Cultural Heritage of Europe; Morel, J.-P., Mercuri, A.M., Eds.; Edipuglia: Bari, Italy, 2009; pp. 25–38. [Google Scholar]
- Coward, F.; Shennan, S.; Colledge, S.; Conolly, J.; Collard, M. The Spread of Neolithic Plant Economies from the Near East to Northwest Europe: A Phylogenetic Analysis. J. Archaeol. Sci. 2008, 35, 42–56. [Google Scholar] [CrossRef]
- Mikić, A. Presence of Vetches (Vicia Spp.) in Agricultural and Wild Floras of Ancient Europe. Genet. Resour. Crop. Evol. 2016, 63, 745–754. [Google Scholar] [CrossRef]
- Mączyńska, A. Revolution(s) in Egypt. Over a Century of Research on the Egyptian Neolithic. In Revolutions. The Neolithisation of the Mediterranean Basin: The Transition to Food Producing Economies in North Africa, Southern Europe and the Levant; Rowland, J.M., Lucarini, G., Tassie, G.J., Eds.; Berlin Studies of the Ancient World 68; Edition Topoi: Berlin, Germany, 2021; pp. 157–168. [Google Scholar] [CrossRef]
- Banning, E.B. The Archaeologist’s Laboratory: The Analysis of Archaeological Data; Kluwer Academic: New York, NY, USA, 2000. [Google Scholar]
- Lee, G.-A. Taphonomy and Sample Size Estimation in Paleoethnobotany. J. Archaeol. Sci. 2012, 39, 648–655. [Google Scholar] [CrossRef]
- Riehl, S. Changes in Crop Production in Anatolia from the Neolithic Period until the End of the Early Bronze Age. In Prehistoric Economics of Anatolia: Subsistence Practices and Exchange. Proceedings of a Workshop Held at the Austrian Academy of Sciences in Vienna, Austria, 13–14 November 2009; Wawruschka, C., Ed.; Internationale Archäologie 18; Marie Leidorf: Rahden, Germany, 2014; pp. 59–71. [Google Scholar]
- Riehl, S.; Nesbitt, M. Crops and Cultivation in the Iron Age Near East: Change or Continuity? In Identifying Changes: The Transition from Bronze to Iron Ages in Anatolia and Its Neighbouring Regions: Proceedings of the International Workshop, Istanbul, Türkiye, 8–9 November 2002; Fischer, B., Genz, H., Jean, É., Köroǧlu, K., Eds.; Türk Eskiçağ Bilimleri Enstitüsü: Istanbul, Türkiye, 2003; pp. 301–312. [Google Scholar]
- Marston, J.M.; Castellano, L. Archaeobotany in Anatolia. In The Archaeology of Anatolia, Volume 4: Recent Discoveries (2018–2020); Steadman, S.R., McMahon, G., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2022; pp. 338–354. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damm, J.C. Risk, Uncertainty, and Resiliency in the Face of Ancient Climate Change: The Case for Legumes. Heritage 2025, 8, 252. https://doi.org/10.3390/heritage8070252
Damm JC. Risk, Uncertainty, and Resiliency in the Face of Ancient Climate Change: The Case for Legumes. Heritage. 2025; 8(7):252. https://doi.org/10.3390/heritage8070252
Chicago/Turabian StyleDamm, Jacob C. 2025. "Risk, Uncertainty, and Resiliency in the Face of Ancient Climate Change: The Case for Legumes" Heritage 8, no. 7: 252. https://doi.org/10.3390/heritage8070252
APA StyleDamm, J. C. (2025). Risk, Uncertainty, and Resiliency in the Face of Ancient Climate Change: The Case for Legumes. Heritage, 8(7), 252. https://doi.org/10.3390/heritage8070252