Archeometrical Characterization of Rock Art Pigments from Puerto Roque Open-Air Rock Art Shelter (Valencia De Alcantara, Extremadura, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Micro-Raman Spectroscopy
2.2. Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
2.3. Energy-Dispersive X-ray Micro-Fluorescence (EDxrf)
2.4. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Raman Spectra Results
3.2. Fourier-Transform Infrared Spectroscopy (ATR-FTIR) Results
3.3. X-ray Fluorescence (EDxrf) Results
3.4. SEM-EDS Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oliveira, J.; Torres, M.F. O Abrigo do Ninho do Bufo-o painel da parturiente e o seu contexto (Marvão–Portugal). Sci. Antiq. 2021, 24–51. Available online: https://www.scientiaantiquitatis.uevora.pt/index.php/SA/article/view/313 (accessed on 15 February 2024).
- González Cordero, A. Datos para Ia conrextualizaci6n del arte rupestre en Ia Alta Extremadura. Zephyrus 1999, 52, 191–220. [Google Scholar]
- Rogerio-Candelera, M.A.; Vanhaecke, F.; Resano, M.; Marzo, P.; Porca, E.; Alloza, R.; Saiz-Jimenez, C. Combinação de análise de imagens e técnicas analíticas para a distinção de diferentes fases num painel rochoso (La Coquinera II, Obón, Teruel). In Proceedings of the Actas IV Congreso El Arte Rupestre del Arco Mediterráneo de la Península Ibérica, Valência, Spain, 4–5 December 2008; pp. 327–334. [Google Scholar]
- Collado Giraldo, H.; García Arranz, J.J. Reflexiones sobre la fase inicial del arte rupestre esquemático en Extremadura a raíz de las recientes investigaciones. In Actas del II Congreso de Arte Rupestre Esquemático en la Península Ibérica: Comarca de Los Vélez, 5–8 de mayo 2010; Ayuntamiento de Vélez Blanco: Almería, Spain, 2013; pp. 287–299. [Google Scholar]
- Edwards, H.G.M.; Newton, E.M.; Russ, J. Raman spectroscopic analysis of pigments and substrata in prehistoric rock art. J. Mol. Struct. 2000, 550, 245–256. [Google Scholar] [CrossRef]
- Hoerlé, S.; Bertrand, L.; Mguni, S.; Jacobson, L. Microanalysis and Dating for Rock Art Studies: Towards a Common Analytical Strategy. S. Afr. Archaeol. Bull. 2010, 65, 221–228. [Google Scholar]
- Fleming, M.I.A. Aplicação da arqueometria no estudo de coleções arqueológicas. Revista CPC 2007, 6, 219–230. [Google Scholar] [CrossRef]
- Resano, M.; García-Ruiz, E.; Alloza, R.; Marzo, M.P.; Vandenabeele, P.; Vanhaecke, F. Espectrometria de massa por ablação a laser com plasma indutivamente acoplado para acaracterização de pigmentos em arte rupestre pré-histórica. Anal. Chem. 2007, 79, 8947–8955. [Google Scholar] [CrossRef]
- Lavé, J. Painted rock art and the archaeology of performance: The Magura Cave, Bulgaria. J. Archaeol. Method Theory 2013, 20, 446–476. [Google Scholar]
- Müller, C.M.; Pejcic, B.; Esteban, L.; Piane, C.; Raven, M.; Mizaikoff, B. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems. Sci. Rep. 2014, 4, 6764. [Google Scholar] [CrossRef]
- Franquelo, M.L.; Perez-Rodriguez, J.L. A new approach to the determination of the synthetic or natural origin of red pigments through spectroscopic analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 166, 103–111. [Google Scholar] [CrossRef]
- Huntley, J.; Wallis, L.A.; Stephenson, B.; Davis, A. A multi-technique approach to contextualizing painted rock art in the Central Pilbara of Western Australia: Integrating in-field and laboratory methods. Quat. Int. 2021, 572, 52–73. [Google Scholar] [CrossRef]
- Gomes, H.; Collado, H.; Martins, A.; Nash, G.H.; Rosina, P.; Vaccaro, C.; Volpe, L. Pigment in western Iberian schematic rock art: An analytical approach. Mediterr. Archaeol. Archaeom. 2015, 15, 163–175. [Google Scholar] [CrossRef]
- Rosina, P.; Gomes, H.; Collado, H.; Nicoli, M.; Volpe, L.; Vaccaro, C. Μicro-Raman spectroscopy for the characterization of rock-art pigments from Abrigo del Águila (Badajoz–Spain). Opt. Laser Technol. 2018, 102, 274–281. [Google Scholar] [CrossRef]
- Rosina, P.; Collado, H.; Garcês, S.; Gomes, H.; Eftekhari, N.; Nicoli, M.; Vaccaro, C. Benquerencia (La Serena–Spain) rock art: An integrated spectroscopy analysis with FTIR and Raman. Heliyon 2019, 5, e02561. [Google Scholar] [CrossRef]
- Garcês, S.; Collado, H.; Rosina, P.; Gomes, H.; Nash, G.; Nicoli, M.; Vaccaro, C. Identification of organic material in Los Buitres 1 rock art shelter, Badajoz, Spain. Complutum 2022, 33, 347–361. [Google Scholar] [CrossRef]
- Nicoli, M.; Eftekhari, N.; Vaccaro, C.; Collado Giraldo, H.; Garcês, S.; Gomes, H.; Lattao, V.; Rosina, P. A multi-analytical evaluation of the depositional pattern on open-air rock art panels at “Abrigo del Lince” (Badajoz, Spain). Environ. Sci. Pollut. Res. 2023, 30, 24344–24360. [Google Scholar] [CrossRef]
- Hernanz, A.; Mas, M.; Gavilán, B.; Hernández, B. Raman microscopy and IR spectroscopy of prehistoric paintings from Los Murciélagos cave (Zuheros, Córdoba, Spain). J. Raman Spectrosc. 2006, 37, 492–497. [Google Scholar] [CrossRef]
- Hernanz, A.; Ruiz-López, J.; Gavira Vallejo, J.M. Pigmentos, aglutinantes y pátinas: Caracterización fisicoquímica de la tecnología de las pinturas rupestres levantinas. In The Levantine Question. Post-Paleolithic Rock Art in the Iberian Peninsula; García Arranz, J.J., Collado Giraldo, H., Nash, G., Eds.; Universidad de Extremadura: Badajoz, Spain, 2010; pp. 345–365. [Google Scholar] [CrossRef]
- Hernanz, A.; Gavira-Vallejo, J.M.; Ruiz-López, J.F.; Martin, S.; Maroto-Valiente, Á.; Balbín-Behrmann, R.; Menédez, M.; Alcolea-González, J.J. Spectroscopy of Palaeolithic rock paintings from the Tito Bustillo and El Buxu Caves, Asturias, Spain. J. Raman Spectrosc. 2012, 43, 1644–1650. [Google Scholar] [CrossRef]
- Baldellou, V.; Alloza, R. El análisis de pigmentos en Aragón: Otra forma de documentar el arte rupestre. In Proceedings of the Jornadas Técnicas para la gestión del arte rupestre, Património Mundial. Parque Cultural del Río Vero, Alquézar-Huesca, Comarca de Somontano de Barbaste, Spain, 28–31 May 2012; pp. 73–83. [Google Scholar]
- Iriarte, M.; Hernan, A.; Ruiz-López, J.; Martin, S. Raman Spectroscopy of Prehistoric Paintings from the Abrigo Remacha Rock Shelter (Villaseca, Segovia, Spain). J. Raman Spectrosc. 2013, 44, 1557–1562. [Google Scholar] [CrossRef]
- Mas, M.; Jorge, A.; Gavilán, B.; Solís, M.; Parra, E.; Pérez, P.P. Minateda Rock Shelters (Albacete) And Post-Palaeolithic Art of the Mediterranean Basin in Spain: Pigments, surfaces and patinas. J. Archaeol. Sci. 2013, 40, 4635–4647. [Google Scholar] [CrossRef]
- López-Montalvo, E.; Roldán, C.; Badal, E.; Murcia-Mascarós, S.; Villaverde, V. Identification of plant cells in black pigments of prehistoric Spanish Levantine rock art by means of a multi-analytical approach. A new method for social identity materialisation using chaîne opératoire. PLoS ONE 2017, 12, e0172225. [Google Scholar] [CrossRef]
- Thomas, A. Colours from the Earth; Van Nostrand Reinhold: New York, NY, USA, 1980. [Google Scholar]
- Fuller, C. Natural Colored Iron Oxide Pigments. In Pigment Handbook, 2nd ed.; Lewis, P., Ed.; John Wiley Sons: New York, NY, USA, 1988; pp. 281–286. [Google Scholar]
- Menu, M.; Walter, P. Matières picturales et techniques de peinture. In La Conservation des Grottes Ornées; Brunet, J., Vouvé, J., Eds.; CNRS: París, France, 1996; pp. 31–41. [Google Scholar]
- Elias, M.; Chartier, C.; Prévot, G.; Garay, H.; Vignaud, C. The colour of ochres explained by their composition. Mater. Sci. Eng. B 2006, 127, 70–80. [Google Scholar] [CrossRef]
- Hodgskiss, T. Identifying grinding, scoring, and rubbing use-wear on experimental ochre pieces. J. Archaeol. Sci. 2010, 37, 3344–3358. [Google Scholar] [CrossRef]
- Gialanella, S.; Belli, R.; Dalmeri, G.; Lonardelli, I.; Mattarelli, M.; Montagna, M.; Toniutti, L. Artificial or natural origin of hematite-based red pigments. Archaeometry 2011, 53, 950–962. [Google Scholar] [CrossRef]
- Martí Oliver, B.; Hernandez Perez, M.S. El Neolític Valencià. Arte Rupestre i cultura material. In Serie d’Investigació Prehistórica de la Diputación de Valencià; Servei d’Investigacio Prehistorica: Valencia, Spain, 1988; 116p. [Google Scholar]
- Carrasco Rus, J.; Navarrete Enciso, M.S.; Pachón Romero, J.A. Nuevos datos para el estudio de representaciones zoomorfas en el arte esquemático de Andalucía. Rev. Tabona 2005, 13, 41–54. [Google Scholar]
- A.I.C. American Institute for Conservation. Code of Ethics and Guidelines for Practice. AIC. 2023. Available online: https://www.culturalheritage.org/ (accessed on 15 February 2024).
- Huntley, J.; Westaway, K.E.; Gore, D.B.; Aubert, M.; Ross, J.; Morwood, M.J. Non-Destructive or Noninvasive? The Potential Effect of X-ray Fluorescence Spectrometers on Luminescence Age Estimates of Archaeological Samples. Geoarchaeology 2016, 31, 592–602. [Google Scholar] [CrossRef]
- Horn, K.R.; Walker, G.; Winton, V.; Ramanaidou, E.; Hamlett, C.; Hamlett, B. Field characterization of rock art paintings using non-invasive reflectance spectroscopy in the search for organic paint binders at Genealogy and Stickman Rock-shelters in the Weld Range (Western Australia). J. Archaeol. Sci. Rep. 2020, 34, 102617. [Google Scholar]
- Wainright, I.N.M.; Helwig, K.; Rolandi, D.S.; Gradin, C.; Podestá, M.M.; Onetto, M.; Achero, C.A. Rock Paintings Conservation and Pigment Analysis at Cueva de las Manos and Cerro de los Indios, Santa Cruz (Patagonia). In ICOM Committee for Conservation, 13th Triennial Meeting, Rio de Janeiro, 22–27 September 2002; Vontobel, R., Ed.; James and James; Science Publishers: London, UK, 2002; pp. 582–589. [Google Scholar]
- Castellucci, E.M.; Perardi, A.; Zoppi, A. La Spettroscopia Micro-Raman E Le Sue Applicazioni/Micro-Raman Spectroscopy and Its Applications. OPD Restauro 1999, 11, 16–29. [Google Scholar]
- Burgio, L.; Clark, R.J.H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Acta Spectrochim. Part A 2001, 57, 1491–1521. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Edwards, H.G.M.; Moens, L. A Decade of Raman Spectroscopy in Art andArchaeology. Chem. Rev. 2007, 107, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Buzgar, N.; Apopei, A.I. The Raman study on certain carbonates. Analele Scintifice Ale Univ. Al. I. Cuza Iasi 2009, 55, 97–112. [Google Scholar]
- Lebon, M.; Beck, L.; Lahli, S.; Rousselière, H.; Castaing, J.; Durán, A. Étude de parois ornées par Analyses In Situ. Apports, Limites et Potentiel des Techniques de DRX-XRF, m-Raman Portables: L’exemple de Rouffignac”, MADAPCA-2011.Lucile Beck, Hélène Rousselière, Jacques Castaing, Adrian Duran, Matthieu Lebon, Sophia Lahlil et Frédéric Plassard, « Analyse In Situ des Dessins Préhistoriques de la Grotte de Rouffignac par Fluorescence X et Diffraction X portable », ArcheoSciences [En ligne], 36 | 2012, mis en Ligne le 31 Décembre 2014, Consulté le 20 Février 2024. Available online: http://journals.openedition.org/archeosciences/3874 (accessed on 15 February 2024).
- Caggiani, M.C.; Cosentino, A.; Mangone, A. Pigments Checker version 3.0, a handy set for conservation scientists: A free online Raman spectra database. Microchem. J. 2016, 129, 123–132. [Google Scholar] [CrossRef]
- Prinsloo, L.C.; Tournié, A.; Colomban, P.; Paris, C.; Bassett, S.T. In search of the optimum Raman/IR signatures of potential ingredients used in San/Bushman rock art paint. J. Archaeol. Sci. 2013, 40, 2981–2990. [Google Scholar] [CrossRef]
- Bhargava, R.; Wang, S.Q.; Koenig, J.L. FTIR microspectroscopy of polymeric systems. Adv. Polym. Sci. 2003, 163, 137–191. [Google Scholar]
- Prinsloo, L.C.; Wadley, L.; Lombard, M. Infrared reflectance spectroscopy as an analytical technique for the study of residues on stone tools: Potential and challenges. J. Archaeol. Sci. 2014, 41, 732–739. [Google Scholar] [CrossRef]
- Mauser, K.E.; Mueller, L. Detection limits in X-ray fluorescence analysis. In Proceedings of the Second International Symposium on Analytical Chemistry in the Exploration, Mining and Processing of Materials, Pretoria, South Africa, 15–19 April 1985; p. 348. [Google Scholar]
- Clark, R.J.H.; Curri, M.L. The identification by Raman Microscopy and X-ray diffraction of iron oxide pigments and of the red pigments found on Italian pottery fragments. J. Mol. Struct. 1998, 440, 105–111. [Google Scholar] [CrossRef]
- Börjesson, J.; Mattsson, S.; Mori, Y.; Zucchiatti, A.; Ninomiya, T.; Szalóki, I.; Osán, J.; de Hoog, J.; Van Grieken, R. New Applications. In X-ray Spectrometry: Recent Technological Advances; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 487–592. [Google Scholar]
- Verma, H.R. X-ray fluorescence (XRF) and particle-induced X-ray emission (PIXE). In Atomic and Nuclear Analytical Methods: XRF, Mössbauer, XPS, NAA and B63Ion-Beam Spectroscopic Techniques; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–90. [Google Scholar]
- Roldán, C.; Murcia-Mascarós, S.; Ferrero, J.; Villaverdem, V.; Martínez, R.; Guillem, P. Application of field portable EDXRF spectrometry to analysis of pigments of Levantine rock art. X-ray Spectrom. 2010, 39, 243–250. [Google Scholar] [CrossRef]
- Josa, V.G.; Bertolino, S.R.; Laguens, A.; Riveros, J.A.; Castellano, G. X-ray and scanning electron microscopy archaeometric studies of pigments from the Aguada culture, Argentina. Microchem. J. 2010, 96, 259–268. [Google Scholar] [CrossRef]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment compendium. In A dictionary and Optical Microscopy of Historical Pigments; Elsevier Butterworth-Heinemann: Oxford, UK, 2008. [Google Scholar]
- Lofrumento, C.; Ricci, M.; Bachechi, L.; De Feo, D.; Castellucci, E.M. The first spectroscopic analysis of Ethiopian prehistoric rock painting. J. Raman Spectrosc. 2012, 43, 809–816. [Google Scholar] [CrossRef]
- Faria, D.L.A.; Lopes, F.N. Heated goethite and natural Haematite: Can Raman spectroscopy be used to differentiate them? Vib. Spectrosc. 2007, 45, 117–121. [Google Scholar] [CrossRef]
- Frost, R.L. Raman spectroscopy of natural oxalates. Anal. Chim. Acta 2004, 517, 207–214. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kritz, G.; Engel, R.G. Introduction to Organic Laboratory Techniques, 4th ed.; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2006; pp. 797–817. [Google Scholar]
- Carvalho, E. Weathering processes and rock art preservation: The case of an open-air site in NE Iberia. J. Cult. Herit. 2020, 45, 128–137. [Google Scholar]
- Frost, R.L.; Ding, Z.; Ruan, H.D. Thermal analysis of goethite. Relevance to Australian indigenous art. J. Therm. Anal Calorim. 2003, 71, 783–797. [Google Scholar] [CrossRef]
- Madejova, J. FTIR Techniques in Clay Mineral Studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Garcês, S.; Gomes, H.; Haddad, L.; Cura, P.; Rosina, P. In search of the ATR-FTIR signatures of experimentally mixed ingredients presumably used in prehistoric rock art. Rock Art Res. 2019, 36, 182–188. [Google Scholar]
- Nuevo, M.J.; Martín Sánchez, A.; Oliveira, C.; De Oliveira, J. In situ energy dispersive X-ray fluorescence analysis of rock art pigments from the ‘Abrigo dos Gaivões’ and ‘Igreja dos Mouros’ caves (Portugal). X-ray Spectrom. 2012, 41, 1–5. [Google Scholar] [CrossRef]
- Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A.P.; Chryssoulakis, Y. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: Application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim Acta A 2000, 56, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Livingston, A.; Robinson, E.; Armitage, R.A. Characterizing the binders in rock paintings by THM-GC–MS: La Casa de Las Golondrinas, Guatemala, a cautionary tale for radiocarbon dating. Int. J. Mass Spectrom. 2009, 284, 142–151. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Rivas, T.; Carrera, F.; García, L. Deterioration processes affecting prehistoric rock art engravings in granite in NW Spain. Earth Surf. Process. Landf. 2018, 43, 2435–2448. [Google Scholar] [CrossRef]
- Sotiropoulou, S.; Papliaka, Z.E.; Vaccari, L. Micro FTIR imaging for the investigation of deteriorated organic binders in wall painting stratigraphies of different techniques and periods. Microchem. J. 2016, 124, 559–567. [Google Scholar] [CrossRef]
- Hradil, D.; Grygar, T.; Hradilova, J.; Bezdic, P. Clay and iron oxide pigments in the history of painting. Clay Sci. 2003, 22, 223–236. [Google Scholar] [CrossRef]
- Dayet, L. Invasive and non-invasive analyses of ochre and iron-based pigment raw materials: A methodological perspective. Minerals 2021, 11, 210. [Google Scholar] [CrossRef]
- Oliveira, C.; Bettencourt, A.M.S.; Araújo, A.; Gonçalves, L.; Kuźniarska-Biernacka, I.; Costa, A.L. Integrated analytical techniques for the study of colouring materials from two megalithic barrows. Archaeometry 2017, 59, 1065–1081. [Google Scholar] [CrossRef]
- Oliveira, C.; Bettencourt, A.M.; Goncalves, L.; Alves, M.C.; Ribeiro, A.T.; Barbosa, A.; Martín-Seijo, M.; Ribeiro, J.; Guedes, J.; Delerue-Matos, C. A multi-analytical study of rock paintings from Leandro 5 Megalithic barrow, North-Western Portugal. Rock Art Res. 2019, 36, 164–172. [Google Scholar]
- Pomiès, M.P.; Menu, M. Red palaeolithic pigments: Natural hematite or heated goethite? Archaeometry 1999, 41, 275–285. [Google Scholar] [CrossRef]
- Gomes, H.; Rosina, P.; Collado Giraldo, H.; García Arranz, J.J.; Da Silva Nobre, L.F.; Domínguez García, I.M.; Rivera Rubio, E.; Rodríguez Dorado, L.; Torrado Cárdeno, J.M.; Villalba de Alvarado, M.; et al. Archaeometric characterization analyses on rock art pigments and natural concretions at Friso del Terror-Monfragüe National Park, Cáceres, Spain. Sobre Rocas Huesos Las Soc. Prehistóricas Sus. Manifestaciones Plásticas 2015, 411–423. [Google Scholar] [CrossRef]
- Milazzo, M.; Ludwig, N. Misurare l’arte: Analisi Scientifiche per lo Studio dei Beni Culturali; The Thief Bruno: Milan, Italy, 2010. [Google Scholar]
- Ospitali, F.; Smith, D.C.; Lorblanchet, M. Preliminary investigations by Raman microscopy of prehistoric pigments in the wall-painted cave at Roucadour, Quercy, France. J. Raman Spectrosc. 2006, 37, 1063–1071. [Google Scholar] [CrossRef]
- Wreschner, E.E. Red Ochre and Human Evolution: A Case for Discussion. Curr. Anthropol. 1980, 21, 631–644. [Google Scholar] [CrossRef]
- Pomiès, M.P.; Barbaza, M.; Menu, M.; Vignaud, C. Préparation des pigments rouges préhistoriques par chauffage. L’Anthropologie 1999, 103, 503–518. [Google Scholar]
Sample | Scientific Inquiry | EDxrf | Micro-Raman | SEM-EDS | ATR-FTIR |
---|---|---|---|---|---|
Puerto_01 | Digit painting directly on the panel (Technique 1) | Ca, Fe | Hematite | -------- | Heated Clay |
Puerto_02 | Less visible digit paintings (different chronology or erosion issues?) | --- | ----- | -------- | -------- |
Puerto_03 | Dark red pigment—linear figures made with brush? (Technique 2) | Si, Fe | Hematite | -------- | Heated Clay |
Puerto_04 | Very visible plant motif (non-geometric figure) (different purpose?) | Ca, Fe | Hematite, Carbon black, red ochre | -------- | --- |
Puerto_05 | Accumulation of pigment next to very visible human figures | Si, Ca, Fe, Sr | Hematite | -------- | Heated Clay |
Puerto_06 | Superimpositions (mixture of pigments?) | Ca, Fe | Hematite | -------- | --- |
Puerto_07 | Figure with a high level of erosion and incrustations on top | Ca, Fe | Hematite | -------- | Hematite, Quartz, and Incrustations |
Puerto_08 | Pastier texture and different hue | Ca, Fe | Goethite and Hematite | -------- | Quartz (Substrate) |
Puerto_09 | Superimpositions and good visibility of pigments (different quality?) | Si, Fe | Hematite | -------- | Quartz + Hematite |
Puerto_10 | Sun-impacted orange figures. Different hues (erosion or on purpose)? | --- | Hematite | -------- | --- |
Puerto_11 | Difficult to visualise (erosion or different technique?) | Ca, Fe | Hematite | -------- | Clay |
Puerto_12 | Usage of fingers and splashing pigment (mixture of techniques? Technique 1 and 3?) | Al, Si, P, K, Fe | Hematite | Al, P, K, Ca, Fe | --- |
Puerto_13 | Faded figure that is difficult to see (erosion or on purpose)? | Si, Ca, Fe | --- | -------- | Quartz (Substrate) |
Puerto_14 | Linear figures made from small dots (brush tool?) | Ca, Fe | Hematite, Iron oxide (Magnetite) | -------- | Quartz + Hematite |
Puerto_15 | Blurred orange figures (erosion or antiquity?) | Si, Fe | Hematite | -------- | --- |
Puerto_16 | Small, hard-to-see red dots (Technique 3?) | Si, Ca, Fe | Hematite | -------- | Quartz + Hematite |
Puerto_17 | Local raw material | Ca, Fe | Goethite | -------- | Goethite |
Puerto_18 | Local raw material | Ca, Fe | Hematite | -------- | Red Earth (Brown Ochre) |
Puerto_19 | Local raw material | Ca, Fe | Goethite and Hematite | -------- | Goethite |
PRQ_1 | PRQ_2 | PRQ_3 | PRQ_5 | PRQ_7 | PRQ_8 | PRQ_9 | PRQ_11 | PRQ_13 | PRQ_14 | PRQ_16 | PRQ_17 | PRQ_18 | PRQ_19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3627 | O-H stretching vibrations | |||||||||||||
3490 | O-H stretching vibrations | |||||||||||||
3399 | NH2 | |||||||||||||
3361 | 3331 | CH stretching | ||||||||||||
3299 | hydrogen bonds | |||||||||||||
3220 | O-H stretching (clay—ice-like structure) | |||||||||||||
3149 | FeOOH | |||||||||||||
3081 | CH/NH stretching modes | |||||||||||||
1722 | C=O stretch | |||||||||||||
1700 | C=O stretch | |||||||||||||
1670 | 1668 | (C=O) | ||||||||||||
1628 | 1614 | 1624 | 1633 | 1632 | 1641 | 1624 | H-O-H bending of water | |||||||
1575 | 1563 | N-H bending | ||||||||||||
1457 | 1466 | 1457 | Carbonyl | |||||||||||
1423 | 1429 | 1430 | 1414 | 1431 | 1431 | 1429 | 1426 | Carbonyl | ||||||
1322 | carbonyl stretching band vs. (COO-)—Whewellite/CH bend | |||||||||||||
1160 | 1161 | stretching vibration of Si-O-Si (Qz) | ||||||||||||
1079 | 1080 | 1060 | 1074 | 1070 | 1080 | 1081 | Si-O | |||||||
1034 | Si-O stretching, Clay minerals | |||||||||||||
1013 | 1010 | 1016 | 1009 | T(Al,SI)-O | ||||||||||
985 | SO4/FeO | |||||||||||||
953 | 952 | Si-OH asymmetric vibrations | ||||||||||||
917 | 900 | Al-OH | ||||||||||||
891 | OH deformation, linked to 2Al3- | |||||||||||||
795 | 794 | 796 | 791 | 792 | 794 | 795 | 790 | 794 | Si-O quartz | |||||
776 | 775 | 777 | 779 | 780 | 776 | 778 | 778 | Si-O quartz | ||||||
689 | 692 | 692 | 694 | 678 | 689 | 693 | 693 | 693 | Si-O quartz | |||||
641 | 642 | Si-O-SI Bending of silicates | ||||||||||||
614 | 605 | 617 | 625 | SO4 (sulphates) | ||||||||||
563 | Fe-O band (stretching vibration of the Fe-O bond in iron oxide) | |||||||||||||
526 | 531 | 520 | 520 | 543 | 517 | 522 | 518 | 517 | 533 | 524 | 523 | Fe-O (Hematite) | ||
450 | 461 | 462 | 459 | 455 | 466 | 458 | 459 | 457 | 459 | 467 | O-Si-O bending | |||
436 | 436 | Phono mode Hematite (crystallinity) | ||||||||||||
Burnt Clay | Resin | Dehydrated Clay | Heated Clay | Qz+Hematite+Incrostations | Quartz (Substrate) | Quartz+(Hematite) | Clay | Quartz (Substrate) | QZ+(Hematite) | Qz+(Hematite) | Ochre natural | Ochre natural (Brown Ochre) | Ochre natural | |
PRQ_1 | PRQ_2 | PRQ_3 | PRQ_5 | PRQ_7 | PRQ_8 | PRQ_9 | PRQ_11 | PRQ_13 | PRQ_14 | PRQ_16 | PRQ_17 | PRQ_18 | PRQ_19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, H.; Collado, H.; Garcês, S.; Lattao, V.; Nicoli, M.; Eftekhari, N.; Marrocchino, E.; Rosina, P. Archeometrical Characterization of Rock Art Pigments from Puerto Roque Open-Air Rock Art Shelter (Valencia De Alcantara, Extremadura, Spain). Heritage 2024, 7, 1123-1139. https://doi.org/10.3390/heritage7030053
Gomes H, Collado H, Garcês S, Lattao V, Nicoli M, Eftekhari N, Marrocchino E, Rosina P. Archeometrical Characterization of Rock Art Pigments from Puerto Roque Open-Air Rock Art Shelter (Valencia De Alcantara, Extremadura, Spain). Heritage. 2024; 7(3):1123-1139. https://doi.org/10.3390/heritage7030053
Chicago/Turabian StyleGomes, Hugo, Hipólito Collado, Sara Garcês, Virginia Lattao, Maria Nicoli, Negar Eftekhari, Elena Marrocchino, and Pierluigi Rosina. 2024. "Archeometrical Characterization of Rock Art Pigments from Puerto Roque Open-Air Rock Art Shelter (Valencia De Alcantara, Extremadura, Spain)" Heritage 7, no. 3: 1123-1139. https://doi.org/10.3390/heritage7030053
APA StyleGomes, H., Collado, H., Garcês, S., Lattao, V., Nicoli, M., Eftekhari, N., Marrocchino, E., & Rosina, P. (2024). Archeometrical Characterization of Rock Art Pigments from Puerto Roque Open-Air Rock Art Shelter (Valencia De Alcantara, Extremadura, Spain). Heritage, 7(3), 1123-1139. https://doi.org/10.3390/heritage7030053