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Abstract: The adequate modeling and estimation of solar radiation plays a vital role in designing 
solar energy applications. In fact, unnecessary environmental changes result in several problems 
with the components of solar photovoltaic and affects the energy generation network. Various com-
putational algorithms have been developed over the past decades to improve the efficiency of pre-
dicting solar radiation with various input characteristics. This research provides five approaches for 
forecasting daily global solar radiation (GSR) in two Moroccan cities, Tetouan and Tangier. In this 
regard, autoregressive integrated moving average (ARIMA), autoregressive moving average 
(ARMA), feed forward back propagation neural networks (FFBP), hybrid ARIMA-FFBP, and hybrid 
ARMA-FFBP were selected to compare and forecast the daily global solar radiation with different 
combinations of meteorological parameters. In addition, the performance in three approaches has 
been calculated in terms of the statistical metric correlation coefficient (R²), root means square error 
(RMSE), stand deviation (σ), the slope of best fit (SBF), legate’s coefficient of efficiency (LCE), and 
Wilmott’s index of agreement (WIA). The best model is selected by using the computed statistical 
metric, which is present, and the optimal value. The R² of the forecasted ARIMA, ARMA, FFBP, 
hybrid ARIMA-FFBP, and ARMA-FFBP models is varying between 0.9472% and 0.9931%. The 
range value of SPE is varying between 0.8435 and 0.9296. The range value of LCE is 0.8954 and 
0.9696 and the range value of WIA is 0.9491 and 0.9945. The outcomes show that the hybrid ARIMA–
FFBP and hybrid ARMA–FFBP techniques are more effective than other approaches due to the im-
proved correlation coefficient (R2). 

Keywords: Time series analysis; Solar radiation; Meteorological parameters; ARIMA; FFBP; Hybrid 
ARIMA-FFBP; Hybrid ARMA-FFBP; Forecasting 
 

1. Introduction 
The global consideration of renewable energy sources such as solar energy, wind, 

hydro, and biomass has remarkably increased in terms of sustainable energy due to the 
reduction of fossil fuels. In this regard, the implementation of solar energy sources has 
widely focused on the use of photovoltaic (PV) systems, thermal solar energy, and con-
centrated solar energy [1]. In particular, the emergence of renewable energy has enhanced 
solar radiation forecasting in the activity and management of the modern smart grid, with 
renewable energy generation [2,3]. 
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Solar radiation forecasting has become crucial to accurately predict the efficiency of 
solar energy conversion systems and ensure the electrical grid’s reliability and safety. Spe-
cifically, global solar radiation is the most critical aspect of solar energy, which is essential 
for implementing renewable, solar energy systems, and PV system sizing [4,5]. Moreover, 
a precise understanding of solar radiation could optimize the accuracy of the electricity 
network and increase the efficiency of the smart grid. Therefore, appropriate solar radia-
tion forecasting significantly improves solar energy usage, rises the economic losses due 
to electrical constraints, and maximizes the return on investment in photovoltaic grids [6]. 
However, solar radiation is considered one of the prime resources and it plays a signifi-
cant role in the foreseeable future, particularly in developing countries. 

The forecasting of solar radiation was commonly discussed in the literature review. 
Several researchers have categorized the forecasting solar radiation into four types such 
as very-short-, short-, medium- and long-forecasting [7]. However, the appropriate ap-
proaches are required to improve solar radiation forecasting model accuracy and reduce 
the negative effects of system fluctuations. These are structured in two main methods, 
namely, the time series statistical method and the physical techniques, and the combina-
tion of the above techniques called the hybrid techniques [8]. The selected techniques are 
depending entirely on the forecasting horizon, available data information, and locations. 
In addition, the physical techniques are based on various equations, which describe the 
transmission phenomena and thermodynamic mechanisms, occurring in the atmosphere 
and on the surface of the earth. However, the equations become more complex when ad-
ditional variables are added such as temperature, wind speed, dust, and humidity [9]. The 
forecast accuracy of the physical techniques mainly depends on the accuracy of the col-
lected data and various information about the location. Further, the time series statistical 
technique is purely based on the relationship between the past values of the weather pa-
rameters and the solar radiation that are identified and used in the forecasting process. 
This could include forecasting methods such as artificial neural networks, vector support 
machines, Markov chains, auto-regressive models, or regression models. Additionally, the 
time series could be described as a series of measurements collected over time at regular 
intervals; it is flexible and requires fewer data inputs, resulting in simple implementation 
and less cost. However, the main limitation of forecasting time series is the absence of 
deterministic causes [10]. According to this background, numerous papers have devel-
oped various models and techniques with the times series analysis, based on artificial 
neural networks (ANNs) [11]. In [12], have presented a brief overview of the different 
techniques to determine their source and forecast solar radiation using ANNs in Greece. 
Further, the results elaborate that the geographical pattern and the different climatic con-
ditions enhance the cloud’s temporal and spatial variability. A new model has been de-
veloped based on the ensemble of spatiotemporal deep learning models and variational 
Bayesian inference which uses spatiotemporal information to forecast solar radiation in 
the literature [13]. In [14], the authors compared eleven statistical and machine learning 
models for hourly solar radiation forecasting based on three meteorological locations with 
different collected data, and they explain that the precision and performance of each 
model are related to the variation of both the meteorological location and solar radiation 
information. In addition, the efficiency of the models was compared in terms of the statis-
tical metrics named normalized root mean square error (RMSE), mean absolute error 
(MAE), and skill score. For weak variability, the auto-regressive moving average and 
multi-layer perceptron are the best predictors. The feedforward backpropagation algo-
rithm was used by [15] to predict daily global solar radiation in 25 cities around the king-
dom of Morocco. Several meteorological astronomical and geographical coordinates were 
employed as input data to predict the outcoming output. Multiple combination parame-
ters were adopted to select the most suitable configuration with optimal input data for 
each study location. According to statistical metrics, the obtained result is, respectively, 
twelve inputs for Er-Rachidia, Marrakech, Medilt, Taza, Oujda, Nador, Tetouan, Tangier, 
Al-Auin, Dakhla, Settat, and Safi, seven inputs for Fes, Ifrane, Beni-Mellal, and Meknes; 
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six inputs for Agadirand Rabat; five inputs for Sidi Ifni, Essaouira, Casablanca, and Keni-
tra; and four inputs for Ouarzazate, Larache, and Al-Hoceima. In terms of accuracy, the 
R² of the selected best inputs parameters varies between 0.9860% and 0.9920%, with the 
range value of MBE (%) being from −0.1076% to −0.5931%, the RMSE between 0.1990 and 
0.4580%, the range value of the NRMSE is between 0.0355 and 0.8938, and the lowest value 
of the MAPE is between 0.0019 and 0.0060%. This technique could be used to predict other 
parameters for locations where measurement instrumentation is unavailable or costly to 
obtain. In the meantime, the authors of [16] presented a comparative optimization of daily 
global solar radiation forecasting with different machine learning and time series meth-
ods. The selected methods are compared with the persistence technique and measured 
data. Several statistical metrics are assessed to obtain the most appropriate method, which 
presents the lowest value accuracy. The select result is, respectively, the RMSE (%) and 
MBE (%) values of several models employed in this study, and were computed to be 
mostly positive. The range value of the selected model measured by RMSE (%) and MBE 
(%) varied between 4.64% to 8.87% and 6% to 22.93%. Based on all statistical metrics, the 
lower value of the selected model corresponds to the neural FFBP (6×10×1) in comparison 
with the other models. The appropriate one performs well and is close to the measured 
data. The authors of [17] presented a complete and detailed synthesis of solar radiation 
modeling, forecasting, and solar radiation data using artificial intelligence methods: 
ANN, fuzzy logic, genetic algorithm, expert system, and a hybrid method. It is proven 
that solar radiation is a vital factor in PV system performance and sizing. The same re-
searchers have presented a combination of the above methods for generating horizontal 
global solar radiation by combining ANN and library of Markov transition metrics (MTM) 
approaches based on three-parameter coordinates (longitude, altitude, and latitude) and 
the data were collected from a data basis of 60 stations in Algeria over 9 years. This pre-
diction is comparatively accurate related to the relative Root Mean Square Error (RMSE), 
which is less than 8.2%. On other hand, López et al. [18] have chosen the automatic rele-
vance determination method (ARD) based on the ANN model to select the relevant input 
parameters in direct normal solar irradiance forecasting. Clearness index and relative air 
mass were considered the most important input parameters to the neural network. Ac-
cording to J. Lampinen et al. [19], Penny et al. [20], and B. Belmahdi et al. [8], the ARD and 
ANN are the priority distribution on the network weights and determine the most rele-
vant input parameters by introducing a hyperparameter for each input unit of the ANN. 
In ANNs, the important prior distribution of the network weights is controlled by the 
hyperparameters. Here, the ANN is presented with training data, and posterior weight 
distribution and hyperparameters are calculated using the Bayes rules. 

Recently, time series forecasting models have taken the attention of researchers in 
different fields for their power and ability to forecast complex systems [11]. Especially, the 
autoregressive integrated moving average (ARIMA) was utilized in the COVID-2019 pan-
demic [21], hydroelectricity [22], agriculture [23], and groundwater-based irrigation [24]. 
Generally, ARIMA models are an integration of autoregressive models (AR) and moving 
average models (MA), which have proven reasonable precision in the forecasting of sta-
tionary time-series information. Further, it is strongly assumed that the prospective data 
values are linearly dependent on present and past data values. However, several real-
world time series data result from dynamic non-linear structures that cannot be accurately 
modeled by ARIMA. Consequently, artificial neural networks (ANNs) are considered the 
most commonly implemented algorithms for nonlinear time series modeling. In another 
word, the ANNs have a range of benefits with respect to ARIMA and other forecasting 
frameworks, which are capable of executing a dynamic non-linear function. Hence, the 
ANNs are capable of reconstructing every continuously measurable function with arbi-
trary desired accuracy [11]. Moreover, ANNs are flexibly data-driven in design, which 
ensures that ANN models could be modified with the characteristics of time series data 
information. Several studies have been carried out to compare the performance of ma-
chine learning (ML) and deep learning (DL) algorithms in forecasting solar radiation [25]. 
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In some cases, ML algorithms have been found to be more accurate than DL algorithms 
[26], while DL methods have been found to be more accurate than ML algorithms in others 
[27]. In this context, Table 1 summarizes the difference between ARIMA and FFBP in solar 
radiation forecasting in various locations. 

Table 1. Selected studies on ARIMA and ANN modeling of solar radiation. 

References Simple and Combined Modeling for Short-Term and Long-Term Prediction of Solar Radiation 

[28] Seasonal ARIMA (0, 1, 2) (1, 0, 1)30 was found to be a suitable model for predicting daily solar radia-
tion at Reese Research Centre of Lubbock, Texas 

[29] ARIMA (1, 0, 0) was found reasonable in capturing the autocorrelative structures of the daily aver-
age of solar irradiance in Awali, Kingdom of Bahrain. 

[30] 
Non-seasonal ARIMA (2, 1, 3) was trained to predict day-ahead hourly global horizontal irradiance
(GHI) in Abu Dhabi. 

[8] Hybrid ARIMA-backed propagation does not outperform ARIMA for hourly solar irradiance from
National Solar Radiation Database (NRSDB) site from 2008 to 2009. 

[31] ARMA (2, 0) and ARMA (4, 0) were identified as appropriate models combined with ANN for the
prediction of daily global solar radiation. 

[32] ARIMA (2, 1, 1) was developed for the prediction of the daily clearness index In Abu Dhabi. 

[33] 
Employed ARMA, which revealed that the residuals were best estimated by non-seasonal ARMA (2,
0) for daily solar radiation data over four locations in Malaysia. 

[34] Employed ANN-BP neural network and multilayered feed-forward neural network 

As a novel method for time series forecasting, hybrid ARIMA-FFBP and ARMA-
FFBP models have been developed. FFBP is a sort of feed-forward neural network that 
employs log sigmoidal functions. In comparison to single models and other hybrid mod-
els like SARIMA-MLP, it has been observed that this hybrid technique increases accuracy 
and minimizes errors. These hybrid ARIMA-FFBP, and ARMA-FFBP models could be fur-
ther deployed to forecast the future performance and energy capacity of solar energy sys-
tems. Here, both have accompanied a different combination of parameters for inputs to 
select the adequate model. In addition, the daily solar radiation data is collected from two 
cities called Tetouan and Tangier in northern Morocco. These locations are essential, as 
the solar energy intensities are utilized in the photovoltaic and thermal system and the 
region has the largest port in the Mediterranean area. Several statistical metrics are eval-
uated and calculated to validate the performance of the forecast values. 

The rest of the paper is organized as follows. Section 2 contains collected data and 
the proposed methodology (forecasting method). Section 3 contains summarizes the sta-
tistical metric employed in this work. Section 4 contains the main finding and simulation 
results of the short-term forecasted daily global solar radiation. Lastly, the conclusion has 
been presented in Section 4. 

2. Materials and Methods 
2.1. Data Collection and Study Sites 

The data was analyzed from the 1 January 2015 to the 31 December 2015, and con-
ducted in a meteorological station installed on the rooftop of the Faculty of Science, Ab-
delmalek Essaadi Tetouan University (Figure 1). This station consists of pyranometers in 
Kipp & Zonen brands, model CM-11, for the measurement of global solar radiation. An-
other identical pyranometer and the shadow ring is operated to measure the diffuse solar 
radiation. The shadow ring has a width of 7.6 cm, a radius of 31 cm, an anemometer 
equipped with a wind vane with a horizontal axis turbine for the measurement of the 
wind speed, and direction—along with a Campbell scientific thermo-hygrometer contain-
ing two probes—to measure the temperature and the relative humidity. In addition, the 
local station uses a rain gauge to measure precipitation. 
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Figure 1. Weather station of Abdelmalek Essaadi University, Faculty of Sciences, Morocco. 

In Figure 2, we plot the daily range of the mean (Tmean), maximum (Tmax), and mini-
mum (Tmin), temperature. The three-temperature dataset describes the timescale distribu-
tion of day-to-day temperature variations in the Tetouan and Tangier sites. The annual 
temperature variation reveals the succession of warm and cold periods over the year. The 
analysis is conducted for each day. The recorded Tmax was observed in the July period (38 
°C for Tetouan and 36.6 °C for Tangier), while the Tmin was observed in the January period 
(6 °C for Tetouan and 2 °C for Tangier). The distribution of the Tmin is close to normal 
condition. 

 
Figure 2. Mean, maximum, and minimum daily temperature of Tetouan and Tangier sites. 

Figure 3A,B show a representative behavior of the daily global solar radiation from 
January to December 2015 of the Tetouan and Tangier sites. The total solar radiation over 
the year was 18.63 MJ/m² and 19.99 MJ/m² with a standard deviation of 1.98 kW.h/m² and 
1.76 kW.h/m² for the Tetouan and Tangier sites, respectively. In the warm period, the low-
est solar radiation deviation was 1.106 kWh/m² for the Tetouan site and 0.7375 kW.h/m² 
for the Tangier site. The highest solar radiation deviation in the cold period was 7.48 
kW.h/m² and 7.413 kW.h/m for Tetouan and Tangier sites, respectively. As for month av-
erages, the highest solar radiation months over the year were from May to July, while the 
lowest values were from December to January. 
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Figure 3. (A,B) Daily global solar radiation distribution through a year of two sites. 

In Figure 4A,B shows the daily wind speed (Ws) and relative humidity (Rh) over the 
year for the Tetouan and Tangier sites. The range value of wind speed varies by about 
13.02 m/s and 13.3 m/s, respectively, for the Tetouan and Tangier sites. In the cold period, 
the highest relative humidity for the Tetouan and Tangier sites was 94.5% and 92.58%. In 
a warm period, the lowest relative humidity was 49.75% and 55.54%, respectively, for Te-
touan and Tangier sites. 

 

 
Figure 4. (A) Distribution of daily wind speed (m/s) and (B) relative humidity (%). 

The manipulations may require other types of meteorological parameters such as 
ambient temperature (T, °C; maximum, minimum, average, difference, and ratio), day 
number, day length, wind speed (Ws, m/s; average), relative humidity (RH,%), top of at-
mosphere radiation (TOA radiation), and geographic coordinates (Latitude, Altitude, and 
Longitude). These are exogenous data, whose periods and characteristics of measure-
ments are summarized in Table 2. 

Table 2. Daily average inputs parameters data of Tetouan and Tanger sites. 

Cities 
TAO  
(KWh 

/m²/Day) 
Kt 

Tmean 
(°C) 

Tmax 
(°C) 

Tmin 
(°C) 

∆𝑻 
(°C) 

Tratio 
(°C) 

𝑹𝒉 
(%) 

𝑾𝒔 
(m/s) 𝑫𝒍𝒆𝒏𝒈𝒕𝒉 Longitude 

(Degree) 
Latitude 
(Degree) 

Altitude 
(Degree) 

Tangier 5.92 0.681 17.429 21.8 13.3 8.6 1.5878 73.542 4.708 12.338 −5.9 35.733 21 
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Tetouan 4.909 0.653 18.671 22.4 15.5 7.1 1.423 70.08 4.263 12.306 −5.33 35.58 10 

2.2. ARIMA and ARMA Model 
Generally, the ARIMA model could be recognized as the combination of several 

models named p, d, q, and AR (p) refers to the order of the autoregressive component. In 
fact, the I(d) integrated refers to the degree of differentiation involved, and MA(q) repre-
sents the order of the average movement of the components [35]. Moreover, the AR as-
sumes that each value of the time series depends on the weighted production sum in the 
previous values and the most residual regression coefficient. An autoregressive model 
could be considered an autoregressive model of order (p) [36], which represents the pre-
vious (lagged) values of the dependent variable. MA is utilized to calculate the mean for 
a specified set of values and predict the following periods; MA (moving average) refers to 
the lagged error terms (i.e., residues) created by the model, which is represented by (q) 
[37]. The elements of the series could be affected by past errors (or a random shock), which 
are impossible to compute by the autoregressive component. The coupled AR(p) and MA 
(q) built an ARMA model which is commonly used in forecasting tacks [38]. The general 
ARIMA model p, d, q can be expressed as Equation (1): 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 .* 1 .*ep p tp pB B B X t c B B Bϕ ϕ ϕ θ θ θ   − − − − = + − − − −      (1) 

Or in a general form as Equation (2): 

where φi refers to the i-th term autoregressive parameter, θi refers to the ith term moving 
average parameter, c is the constant, et is defined as an error at time t, Bp refers to the p-th 
order backward shift operator, and X(t) is defined as a time series value at time t. 

The first step in ARIMA and ARMA construction is to identify the time series sta-
tionary data as presented in Figure 5, and then significant seasonality in the time series. 
The assumptions which were accounted for in the ARIMA model are that the time series 
should be stationary, the flow data must be separated to secure the sequence stationary, 
the data should vary continuously, and the data has consisted of a logarithmic transition 
to rendering the variance stable to accommodate the stationary variability. In addition, 
the two methods which were deployed in the pattern recognition process are the sequence 
of correlograms called the autocorrelation (ACF) function and the partial autocorrelation 
function [39–41]. The ACF and PACF are considered the most important elements of time 
series analysis and forecasting. In particular, the ACF determines the amount of the linear 
dependency around measurements in the time series, while the PACF enables the calcu-
lation of the number of autoregressive terms necessary to demonstrate the time lag char-
acteristics. Moreover, the Akaike Information Criterion was used as a provided tool to 
select the optimal AIC, where the lowest AIC was identified as a parsimonious model 
[39,40,42]. 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 .* 1 .*ep p tp pB B B X t c B B Bϕ ϕ ϕ θ θ θ   − − − − = + − − − −      (2)
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Figure 5. Flowchart of the proposed Autoregressive Integrated Moving Average modeling of daily. 

2.3. Artificial Neural Network Model (FFBP) 
Neural networks are approximately similar to the human brain’s computing and cre-

ate awareness of basic processing units called neurons. Neurons are divided into layers, 
and synaptic connections (weight) interconnect the neighboring layers. In particular, it is 
possible to distinguish three separate types of layers: the input layer, which connects the 
input information; the output layer, which generates the final output; and one or more 
hidden layers, which serve as intermediate computational layers between input and out-
put [43]. In addition, the input values are measured by the first weights of the information 
exchange. Hence, the products are applied to the neuron with a particular parameter des-
ignated bias. This is utilized to extend the total number of the products over a reasonable 
range by becoming inputs for hidden layer nodes, which attach a non-linear activation 
structure (a sigmoid unit) to the total above-generated hidden node. These signals are 
interpreted in the same manner through the corresponding hidden layers (if any) or the 
output layer, producing the output of the network, which is illustrated in Figure 6. 

 
Figure 6. FFBP neural network topology. 

The connection between the output Y(t) and the input xt-1…. xt-4 could be defined in 
Equation (3): 

where the wj and wi represent the connection weights, and S1 and S2 are the activation 
function. 

The most common activation function is the logistic sigmoid function, which is given 
by the Equation (4): 

The weights are the principal regulation parameters in every FFBP. The parameter 
evaluation methods could be considered as training, where optimal relation weights are 
calculated by minimizing the objective function. 

In the following Equation (5), all input parameters are applied to train and validate 
the FFNN model, and the binomial coefficient has applied for selecting the appropriate 
input parameters: 

( ) * *1 2
1 1

q p

j i t i
j i

Y t s w s w x
    
      

−
= =

=    (3)

( ) 1
1 xs y
e−=

+  (4)

𝐶 = ෍ 𝐶௠௣ = ෍ 𝑚!ሺ𝑚 − 𝑝ሻ! 𝑝!௠௣ୀଵ௠௣ୀଵ  (5)
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where C is the number of all combinations, and m is the total number of inputs. 

2.4. Hybrid Model 
As already discussed in previous sections, the classification, the prediction, and the 

forecasting methodologies are the main aspect of the time series models analysis. Time 
series analysis forecasting is generally achieved through statistical techniques, such as lin-
ear and non-linear models. These models are commonly used since their flexibility and 
their variety of fixed pre-processing datasets. 

The main limitation of ARIMA and ARMA methods is estimating the linear relation-
ship through the pre-processing time series input data. The behavior of several input data 
contains linear and nonlinear patterns. In this context, ARIMA and ARMA models were 
fitted to simulate the linear pattern, and an artificial neural network with a backpropaga-
tion algorithm was used to simulate the nonlinear component. By taking into account the 
main advantages of the two previous techniques, a hybrid ARIMA-FFBP and ARMA-
FFBP were proposed by [8] to simulate both linear and nonlinear patterns. A general 
mathematical expression of the combined model is as follows: 

where Ψt is the linear pattern obtained by ARMA and ARIMA models and Φt is the resid-
ual that can be estimated from the feed-forward with the backpropagation algorithm. 

The linear pattern is obtained by modeling the ARMA and ARIMA models. After 
that, we subtract the residual series (Rt) from the forecasted models: 

We create the FFBP architecture model by using the subtracting residuals series: 

The forecasted series obtained from ARIMA, ARMA, and FFBP models are aggre-
gated to estimate the proposed time series: 

where Υ෡் = +i is the forecasted time series, and Ψt and Φt are the linear and nonlinear 
forecasting of the original series. 

The adopted methodology of this purpose study is divided into forth sections as de-
picted in Figure 7: 

Υ் = Ψ௧ + Φ௧ (6)

R௧ = Υ் − Φ෡ ௧ (7)

𝑁෡௧ = 𝑅௧ = 𝑠଴ + ෍ 𝑤௝𝑠ଵ ൬𝑠଴௝ + ෍ 𝑤௜௝𝑅௧ିଵ௣௜ୀଵ ൰ + 𝜀௧௤௝ୀଵ  (8)

Υ෡் = Ψ෡௧ + Φ෡ ௧ (9)
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Figure 7. The architecture of the proposed hybrid models is the Auto-Regressive Integrated Moving 
Average-Feed Forward back-propagation algorithm (ARIMA-FFBP) and Auto Regressive Moving 
Average-Feed Forward back-propagation algorithm (ARMA-FFBP). 

- Data pre-processing in section one (grey color) involves the collection of meteorolog-
ical, computational, astronomical, and geographical data. These parameters require 
many corrections of missing data and outlier removal. 

- The application of multiple combinations of several input parameters in order to se-
lect the appropriate architecture executed in section two (gold color) was accom-
plished by splitting data into two steps, which are training data (80%), testing, and 
validation (20%) data. 

- The step of the training (green color) was operating the proposed methodologies. The 
input parameters were tested by using time series model stationarity (Ljung–Box 
test). After that, the data stationarity was implemented for ARIMA and ARMA mod-
els. In the case of the ARIMA model, that involves the residual generated by the FFBP 
model, which built the combined ARIMA and FFBP models. 

- The models were built and divided into simple (ARMA, ARIMA, and FFBP), and 
hybrid methods (hybrid ARMA-FFBP and hybrid ARIMA-FFBO models; orange 
color) 

- The obtained result (grey color) was evaluated and interpreted by using various sta-
tistical metrics in order to choose the best model, which presents the lowest value of 
MBE (%), RMSE (% Sd (%), AIC, and BIC and the highest values of R², SBF, LCE, 
WIA. 
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2.5. Model Selection 
According to the fundamental issues observed by modern data, the scientist has in-

troduced meaningful conclusions for a complicated system utilizing data from a single 
determined parameter. Meanwhile, the most effective treatment of global solar radiation 
data involves the deployment of neural networks, either with data from each measure-
ment or with data from several successive measurements. The management is describable 
as Equation (10), 𝑥௧ାଵ = 𝑦ሺ𝑥௧, 𝑥௧ିଵ, … … . . 𝑥௧ି௜ሻ + 𝜀௧ (10) 

where γ represents the neural network forecaster and i is the number of successive obser-
vations. Figure 8A–C above show that ACF and PACF can have on the auto-correlogram 
of the global solar radiation time series. Here the night hours have not considered during 
the simulations [44], and several measurements taken daily have been made. 

  

  
 

Figure 8. (A,C) autocorrelation function (ACF) and (B,D) partial autocorrelation function (PACF) of 
the daily GSR from two cities. 

The parameters of the ARIMA (p, d, q) and ARMA (p, q) models were determined 
by plotting The Autocorrelation Function (ACF) and the Partial Autocorrelation Function 
(PACF) for different lags (Lag). Figure 8A–D illustrate the daily global solar radiation data 
with a 95% confidence interval. According to the figure, the significant Lags in PACF are 
shown at Lag 7 for Tetouan city, and Lag 16 for Tangier city. Further in ACF, the Lag 
shows a geometric decrease at each Lag (i.e., 1, 2, 3, 4) and the order of the autoregressive 
term in the ARMA model for Tetouan and Tangier city is 10 and 16. Concerning the 
ARIMA (p, d, q) model, the order of the p and d terms is 2, 1 for Tetouan city, and 2, 2 for 
Tangier city. In addition, the use of the stationarity method (first and second differentia-
tion for the ARIMA model) improves the prediction phenomenon, and the effectiveness 
of improvements in stationarity with the quality of the prediction would be discussed 
later in this study. 

Tables 3 and 4 compare the FFBP with the ARIMA and ARMA models, and deliver 
an example for optimization of the ARIMA and ARMA models with the parameters esti-
mated from the two study sites. It is further considered that the prediction of the two 
techniques is relatively simple and eliminated the moving average order q (q = 0). 

  



Forecasting 2023, 5 12 of 24 
 

Table 3. Estimation of ARMA model parameters for daily global solar radiation prediction for both 
cities. 

Cities ARMA Models Parameters Estimation Standard Error TS Statistic p-Value 

Tetouan ARMA (10 0 0) 

AR{1} 0.39838 0.044196 9.0139 1.989410-19 
AR{2} −0.14705 0.054537 −2.6963 0.0070107 
AR{3} 0.10918 0.054265 2.012 0.044216 
AR{4} 0.034376 0.059844 0.57443 0.56568 
AR{5} 0.10994 0.059868 1.8364 0.066304 
AR{6} 0.096692 0.056285 1.7179 0.085814 
AR{7} 0.16186 0.055111 2.9371 0.0033132 
AR{8} 0.053943 0.049207 1.0962 0.27298 
AR{9} 0.098247 0.054629 1.7985 0.072105 
AR{10} 0.050805 0.051959 0.97779 0.32818 

Tangier ARMA (16 0 0) AR{1} 0.38961 0.043978 8.8593 8.053110-19 
  AR{2} 0.06638 0.057461 1.1552 0.248 
  AR{3} 0.23474 0.053071 4.4231 9.73110-6 
  AR{4} −0.0063764 0.062151 −0.1026 0.91828 
  AR{5} 0.061862 0.061564 1.0048 0.31498 
  AR{6} 0.083309 0.054007 1.5426 0.12293 
  AR{7} −0.00041644 0.06213 −0.006702 0.99465 
  AR{8} 0.034286 0.066352 0.51674 0.60534 
  AR{9} 0.0060834 0.055003 0.1106 0.91193 
  AR{10} −0.05637 0.054918 −1.0264 0.30469 
  AR{11} −0.046987 0.059012 −0.79623 0.4259 
  AR{12} 0.10782 0.047812 2.255 0.024135 
  AR{13} −0.04943 0.049427 −1.0001 0.31728 
  AR{14} 0.0078379 0.052373 0.14966 0.88104 
  AR{15} −0.0036433 0.054602 −0.066725 0.9468 
  AR{16} 0.16003 0.048865 3.2749 0.0010569 

Table 4. Estimation of ARIMA model parameters for the prediction of daily global solar radiation 
of the two cities (Tetouan and Tangier). 

Cities ARMA Models Parameters Estimation Standard  
Error 

TS Statistic  p-Value 

Tetouan  ARIMA (2.1.0) AR{1} −0.03912 0.009215 −4.2452 0.21838 
  AR{2} −0.15594 0.012313 −12.6654 0.92005 
Tangier  ARIMA (2.2.0) AR{1} −0.58945 0.009849 −59.8438 0.16258 
  AR{2} −0.33481 0.010903 −30.7077 0.44859 

In the models, the measurement data set has divided into three parts: a learning set 
(80%), a validation set (10%), and a test set (10%). 

The weight (wij) adjustment is performed by the training set, and the validation set 
assures whether the error is within a certain range (this set is not adjusted weights directly, 
instead giving the optimal number of hidden layers or determining a breakpoint for the 
backscatter algorithm). Finally, the accuracy of the model on the test data facilitates the 
prediction performance of the model. 

The hidden layer could be suggested even for preliminary analysis or modeling. Fur-
ther, the application of more than one hidden layer has significantly increased the number 
of measurable variables. However, the improvement in the number of variables would 
reduce the training phase without increasing network performance. In this analysis, one 
hidden layer has been implemented, and identifying the correct number of neurons in the 
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hidden layer is critical for effective implementation since it greatly improves neural net-
work efficiency. If the hidden layer has included insufficient neurons, the neural network 
output could be degrading. On the other side, if the hidden layer has accompanied by 
excess neurons, it would increase the parameter complexity and the training data set 
could be over-adjusted. Therefore, the most appropriate approach to determining the cor-
rect number of neurons in the hidden layer is through experiments, such as adopting a 
trial-and-error procedure [45]. The analysis of the results below presents the daily global 
solar radiation prediction set using the FFBP model. The application of multiple architec-
tures has been deployed to select the appropriate model with a low value of root mean 
square error (RMSE in%). In addition, the selection of input variables is carried out by the 
combination method. Table 5 shows the prediction result of different FFBP architectures 
with coefficients of variation for the two cities. 

Table 5. Daily GSR forecasting models with multiple FFBP network architecture. 

C
iti

es
 

Measured Data 
FFBP  

Architecture 

Coefficient of 
Variation 

(CV) 

RMSE  
(%) 

Te
to

ua
n 

𝐾௧ FFBP (1 × 2 × 1) 0.575 0.5957 𝐾௧, 𝑇𝑂𝐴 FFBP (2 × 2 × 1) 0.571 0.5119 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫ FFBP (3 × 2 × 1) 0.562 0.5045 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢ FFBP (4 × 2 × 1) 0.555 0.5002 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇 FFBP (5 × 2 × 1) 0.526 0.5002 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘ FFBP (6 × 2 × 1) 0.519 0.4975 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡ FFBP (7 × 2 × 1) 0.492 0.4966 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐿𝑜𝑛𝑔 FFBP (8 × 2 × 1) 0.473 0.4935 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐿𝑜𝑛𝑔, 𝐴𝑙𝑡 FFBP (9 × 2 × 1) 0.457 0.4928 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐿𝑜𝑛𝑔, 𝐴𝑙𝑡, 𝐿𝑎𝑡 FFBP (10 × 2 × 1) 0.440 0.4915 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐿𝑜𝑛𝑔, 𝐴𝑙𝑡, 𝐿𝑎𝑡, 𝛿 FFBP (11 × 2 × 1) 0.435 0.4901 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐴𝑙𝑡, 𝐿𝑜𝑛𝑔, 𝐿𝑎𝑡, 𝛿, 𝐷௟௘௡௚௧௛ FFBP (12 × 2 × 1) 0.426 0.489 

Ta
ng

ie
r 

𝐾௧ FFBP (1 × 2 × 1) 0.467 0.5119 𝐾௧, 𝑇𝑂𝐴 FFBP (2 × 2 × 1) 0.453 0.5045 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫ FFBP (3 × 2 × 1) 0.448 0.5002 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢ FFBP (4 × 2 × 1) 0.442 0.5002 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇 FFBP (5 × 2 × 1) 0.434 0.4975 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘ FFBP (6 × 2 × 1) 0.426 0.4966 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡ FFBP (7 × 2 × 1) 0.426 0.4957 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐿𝑜𝑛𝑔 FFBP (8 × 2 × 1) 0.419 0.4935 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐿𝑜𝑛𝑔, 𝐴𝑙𝑡 FFBP (9 × 2 × 1) 0.410 0.4928 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐿𝑜𝑛𝑔, 𝐴𝑙𝑡, 𝐿𝑎𝑡 FFBP (10 × 2 × 1) 0.409 0.4895 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐿𝑜𝑛𝑔, 𝐴𝑙𝑡, 𝐿𝑎𝑡, 𝛿 FFBP (11 × 2 × 1) 0.399 0.4395 𝐾௧, 𝑇𝑂𝐴, 𝑇௠௔௫, 𝑇௥௔௧௜௢, ∆𝑇, 𝑇஺௩௘௥௔௚௘, 𝑇௠௜௡, 𝐴𝑙𝑡, 𝐿𝑜𝑛𝑔, 𝐿𝑎𝑡, 𝛿, 𝐷௟௘௡௚௧௛ FFBP (12 × 2 × 1) 0.382 0.406 

The training and validation set along with the change in the number of neurons in 
the hidden layer are essential factors in selecting the appropriate architecture of the FFBP 
model. Specifically, the root means square error (RMSE) has functioned as a comparison 
tool to measure the accuracy of different selected models. Moreover, the low value of 
RMSE (%) and coefficient of variation indicate the efficiency of the FFBP model. According 
to the results, the appropriate architecture for models was chosen as twelve input param-
eters, two neurons in hidden layers, and one output (DGSR) for the two cities. The value 
of RMSE (%) and the coefficient of variation in Tetouan city are 0.489% and 0.426%, and 
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the RMSE value (%) and the coefficient of variation for Tangier city are 0.406% and 0. 
382%. 

2.6. Performance Criterion 
In this study, the important statistical error metric indexes mentioned in the literature 

were considered to evaluate the precision of the forecasting methods [7,46,47]. The per-
formance of ARIMA and ANN models are validated in terms of root mean square error 
(RMSE), mean bias error (MBE), standard deviation (σ), and correlation coefficient (R²). 

The root means square error (RMSE) is a commonly employed calculation of the var-
iations between the forecasted values by a model or an equation and the experimental 
values. Further, the RMSE is widely used to compare the actual deviation between the 
predicted and the measured value, modeling, and regression analysis (Equation (11)): 

( ) ( ) 2

1

N

x
t x a x

RMSE
N

=
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=


 (11) 

The mean bias error measures the model’s average bias and determines further 
measures to fix the model. The average bias in forecasting is represented by Equation (12): 

Equation (13) expresses the standard deviation, which is a function of the amount of 
attenuation in a set of values: 

In Equation (14), the R² defines the appropriate sequential match among measured 
and forecasted values and the writing: 

The slope of the best-fit line (SBF) defines the appropriate sequential match among 
measured and forecasted values and can be expressed by Equation (15): 

The Willmott’s index of agreement (WIA) defines the appropriate sequential match 
among measured and forecasted values and can be expressed by Equation (16): 

The Legate’s coefficient of efficiency (LCE) defines the appropriate sequential match 
among measured and forecasted values and can be expressed by Equation (17): 
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where t(x) and a(x) are the i-th forecasted and measured values of daily GSR, (a(x)) ̅ pre-
sents the average of measured values of daily GSR, and N is a number of experimental 
data. 

Another criterion named the X2 Information Criterion (AIC of order two) and the X2 
information criteria (BIC) are explained in Equations (18) and (19), which are computed 
for both ANN and ARIMA models: 

( ) ( )2.* 1
ln 2

1
npar npar

AIC m RMSE npar
m npar

+ 
= + + − − 

 (18)

( ) ( )ln *lnBIC m RMSE npar m= +  (19)

where m is the number of input–output models and npar is the number of parameters to 
identify. Moreover, if the RMSE statistics should gradually improve with the more added 
parameters, the AIC and BIC statistics penalize the model with more parameters and 
therefore tend to give rise to more parsimonious models. In this case, the ratio of (m/npar) 
is less than 60, and the second-order AIC has been evaluated to measure the performance 
of the model. 

3. Results and Discussion 
This section deals with forecast ability via five techniques of the daily GSR in two 

different cities in Morocco. The first and second methods are purely autoregressive 
(ARMA and ARIMA), and the third approach is called FFBP, which has utilized a back-
propagation algorithm and the combined methods. In order to assess the success of these 
techniques, numerous statistical metrics which are commonly used in the literature are 
discussed. The proposed methodologies are widely operated to forecast the daily global 
solar radiation (GSR) using the MATLAB environment. In Tables 3–5, the selected models 
could be defined as ARMA (10, 0, 0), ARMA (16, 0, 0), ARIMA (2, 1, 1), ARIMA (2, 2, 1), 
and FFBP (12, 2, 1), respectively, for Tetouan and Tangier cities. 

Figure 9A–D show the comparisons of the daily GSR forecasted by the proposed 
ARIMA, ARMA, FFBP, hybrid ARMA-FFBP, hybrid ARIMA-FFBP, and measured data of 
the Tetouan site. The Figures present the error forecasting (EF) of each model, which 
shows the agreement relationship between the forecasted methodologies and measured 
data. Considering Figure 4A and Table 6 together, it appears clearly that the R², WIA, SBF, 
and LCE of the selected ARMA (10.0.0) present a significant accuracy and vary between 
0.8074 and 0.9939. In terms of BIC and AIC, the selected model presents the worst values 
forecasting after the ARIMA (2.1.0) model. The average value of the daily GSR forecasted 
by the ARMA (10.0.0) model is lower than the average daily GSR measured. In terms of 
error forecasting, it is seen that the selected model presents various observations with 
multiple error forecastings, like observation number 63 (EF = 1.878 kW.h/m²), 87 (EF = 
2.378 kW.h/m²) 102 (EF = 2.818 kW.h/m²), and 263 (EF = 2.994 kW.h/m²), respectively. 
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Figure 9. (A–E) Comparison between predicted and measured values of daily global solar radiation 
from ARMA, FFBP, ARIMA, and hybrid models. 

Table 6. Statistical results of the FFBP, ARMA, ARIMA, and hybrid network models. 

Cities Models MBE MBE (%) RMSE RMSE (%) Sd Sd (%) R² SBF LCE WIA BIC AIC 

Tetouan 

ARIMA (2, 1, 0) 0.0817 0.0839 0.80540 16.6421 0.7554 12.6704 0.9628 0.8998 0.9253 0.9491 1038.213 991.7475 
ARMA (10, 0, 0) 0.1665 0.1098 1.0671 20.1083 0.9642 15.6709 0.9472 0.8915 0.9169 0.9689 1298.657 1051.867 
FFBP (12, 2, 1) 0.0529 0.0364 0.5119 10.0253 0.5098 9.98521 0.9878 0.9098 0.9498 0.9887 991.3442 890.6528 

Hybrid ARMA–FFBP 0.0376 0.0301 0.4871 9.98512 0.5001 9.10862 0.9890 0.9148 0.9580 0.9910 862.0175 810.6171 
 Hybrid ARIMA–FFBP 0.0298 0.0297 0.4091 9.6917 0.4678 8.67911 0.9931 0.9163 0.9641 0.9945 792.8625 756.3418 

Tangier 

ARIMA (2, 2, 0) 0.0042 0.06301 0.606335 17.41963 0.90689 12.42982 0.9744 0.8435 0.8954 0.9686 857.8941 788.5028 
ARMA (16, 0, 0) 0.0709 0.10072 0.89561 23.0964 0.99875 16.6418 0.9601 0.8074 0.8638 0.9487 1096.819 976.183 
FFBP (12, 2, 1) 0.0517 0.03092 0.47834 10.3863 0.79265 7.40331 0.9834 0.8671 0.9145 0.9891 835.265 645.765 

Hybrid ARMA–FFBP 0.0401 0.02564 0.39876 9.68745 0.71563 7.01577 0.9888 0.9188 0.9615 0.9981 803.465 598.615 
 Hybrid ARIMA–FFBP 0.0222 0.02101 0.30762 9.06742 0.69426 6.87613 0.9901 0.9296 0.9696 0.9939 765.091 504.816 

Figure 9B shows the daily GSR forecasted by the ARIMA (2.1.0) model and error 
forecasting. In addition, the forecasted ARIMA (2.1.0) is compared with the measured 
daily GSR for the Tetouan site. Considering the performance accuracy result presented in 
Table 6, it can be seen that the all-statistical metric indicates that the ARIMA (2.1.0) model 
forecast well through the lowest value of the MBE (0.0839%), RMSE (16.6421%), and Sd 
(12.6704%). In term of R², the ARIMA (2.1.0) is 0.9628, which presents successful forecast-
ing accuracy compared with the ARMA (10.0.0) model. The considering error forecasting 
of the ARIMA (2.1.0) model was seen in observation number 161 (3.542 kW.h/m²). 

Figure 9C shows the daily GSR and EF of both forecasted FFBP (12.2.1) and measured 
data. By comparing the two previous models and the FFBP (12.2.1) model in terms of R², 
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the shown model gives the highest accuracy, which is estimated at 0.9890. The lowest 
value of the FFBP (12.2.1) in terms of the MBE, RMSE, BIC, and AIC is 0.817 kW.h/m², 
0.5119 kW.h/m², 991.3442, and 890.6528, respectively. Unlike the ARMA (10.0.0) and 
ARIMA (2.1.0) models, the error forecasting of the significant FFBP (12.2.1) model is less 
in observation number 161(3.542 kW.h/m²) compared with ARIMA (2.1.0) and ARMA 
(10.0.0). It can be concluded that the FFBP (12.2.1) model performed better than the ARMA 
(10.0.0) and ARIMA (2.1.0) models. 

Figure 9D shows the forecasted hybrid ARMA-FFBP model for the daily GSR, meas-
ured data, and error forecasting of the Tetouan site. Taking into account the advantage of 
a hybrid model, which can minimize the shortcomings of a single model, the shown hy-
brid ARMA-FFNB model is close to the measured data. In terms of R², SBF, LCE, and WIA, 
the presented value of the hybrid model is 0.9890, 0.9148, 0.9580, and 0.9910, respectively. 
The R² value is close to one, which indicates the good agreement between forecasted hy-
brid ARMA-FFBP and measured data. The other statistical metric of the hybrid ARMA-
FFBP shows the lowest values compared with the three previous models. The error fore-
casting of the proposed hybrid ARMA-FFBP model shows significant and lower values 
than other models. Among the three previous models, it was seen that the hybrid ARMA-
FFBP is the most suitable model to forecast the daily GSR compared with ARMA (10.0.0), 
ARIMA (2.1.0), and FFBP (12.2.1) models. 

Figure 9E shows the forecasted daily GSR generated by the hybrid ARIMA-FFBP 
model, the measured data, and the error forecasting of the Tetouan site. Among all mod-
els, the hybrid ARIMA-FFBP is the most successful model, which is very close to the meas-
ured daily GSR. In terms of R², the shown hybrid ARIMA-FFBP is approximately higher 
by about 0.41% on the hybrid ARMA- FFBP model, 0. 53% on the FFBP (12.2.1) model, 
4.59% on the ARMA (10.0.0) model and around 3.03% on ARIMA (2.1.0) model. The com-
puted MBE (%), RMSE (%) Sd (%), SBF, LCE, WIA, BIC, and AIC showed a very close 
forecasting success compared with FFBP (12.2.1) and hybrid ARMA-FFBP models. The 
Hybrid ARMA-FFBP model is close to the hybrid ARIMA-FFBP model, particularly in R² 
(%). In term of error forecasting, the proposed hybrid ARIMA-FFBP can be recognized as 
“the very most suitable model forecasting”, which present the lowest value of statistical 
performance and the highest values of R², SPE, LCE, and WIA. Likewise, particularly in 
the previous observation number 161, the presented error forecasting of the hybrid 
ARIMA-FFBP was seen to be very low. 

Figure 10A to D shows the comparisons of the daily GSR forecasted by the proposed 
ARIMA, ARMA, FFBP, hybrid ARMA-FFBP, hybrid ARIMA-FFBP, and measured data of 
the Tangier site. The Figures present the error forecasting (EF) of each model, which shows 
the agreement relationship between the forecasted methodologies and measured data. 
The study location presents satisfactory results in terms of statistical metrics in the same 
way as the previous one. The Tangier site is among the Mediterranean regions with good 
prediction results selected in this study. In this regard, it has been seen from the forecasted 
results and error depicted in Figure 5A. Various observation numbers seen from the fore-
casted daily GSR have maximal and minimal error forecasting. The presented result led 
to increasing and decreasing the total forecast error of the selected study location. The 
reason why the Tangier site is less expected than the Tetouan site. The ARMA (16.0.0) has 
been the worst forecasted model in terms of R², SPE, LCE, and WIA for the Tangier site. 
The range value of the selected model is between 0.8074 and 0.9601. Compared with the 
Tetouan site, the ARMA (16.0.0) model performed better than the ARMA (10.0.0) model. 
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Figure 10. (A–E) Comparison between predicted and measured values of daily global solar radiation 
from ARMA, FFBP, ARIMA, and hybrid models. 

Figure 10B shows the daily GSR forecasted by ARIMA (2.2.0) model compared with 
the measured data. In terms of MBE (%), RMSE (%), Sd (%), AIC, and BIC, the proposed 
model increases the forecast accuracy compared with ARMA (16.0.0) model. The error 
forecasting in this model is less than ARMA (16.0.0) model. Particularly, in observation 
numbers 73 (1.98 kW.h/m²), 88 (3.638 kW.h/m²), 89 (2.95 kW.h/m²) 128 (5.368 kW.h/m²), 
131 (3.882 kW.h/m²), and 360 (0.6491 kW.h/m²). In terms of MBE, the selected model is the 
only one that has the lowest value (0.0042 kW.h/m²) compared to the other models. It can 
be concluded that the ARIMA (2.2.0) exceeds the ARMA (16.0.0) model and present a sig-
nificant agreement between the forecasted daily GSR and measured data. 

Figure 10C shows the comparisons of the forecasted daily GSR generated by the FFBP 
(12.2.1) method and measured data for the Tangier site. The error forecast is depicted in 
the same figure, which presents the forecast improvement FFBP (12.2.1), and the perfor-
mance accuracy between measured data. As seen from Table 6, in term of R², the selected 
model rank third after the combined models. The lowest value of the FFBP (12.2.1) is by 
about 0.03092 kW.h/m² for MBE, 0.0517% for MBE (%), and 0.79265 (%) for Sd (%) respec-
tively. The highest value of WIA is about 0.9891 and is nearly close to 1. As a result, the 
selected FFBP (12.2.1) exceeds the ARIMA (2.2.0) and ARMA (16.0.0) models and illus-
trates a successful forecast of the daily GSR. 

Figure 10D shows the daily GSR forecasted by the hybrid ARMA-FFBP model and 
error forecasting. In addition, the forecasted combined model is compared with the meas-
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ured daily GSR for the Tangier site. Considering the depicted Figure 5D and Table 6 to-
gether, it appears clearly that the hybrid ARMA-FFBP presents the highest statistical met-
ric indicator compared with the previous model for the selected study location. In addi-
tion, the combined ARMA-FFPB is close to FFBP (12.2.1) in terms of R², Sd (%), and Sd. 
Unlike the ARMA (16.0.0) and ARIMA (2.2.0) models, the error forecasting of the signifi-
cant hybrid ARMA-FFBP model is less in observation numbers 73 (1.98 kW.h/m²), 88 
(3.638 kW.h/m²), 89 (2.95 kW.h/m²) 128 (5.368 kW.h/m²), 131 (3.882 kW.h/m²), and 360 
(0.6491 kW.h/m²). 

Figure 10E shows the forecasted daily GSR implemented by combined ARIMA-FFBP 
and compared with those measured data for the Tangier site. Among the four previous 
models, the hybrid ARIMA-FFBP is the most successful model, which presents the lowest 
values of MBE (%), RMSE (%), Sd (%), AIC, and BIC, and the highest value of R², SPE, 
LCE, and WIA. In terms of R², the shown hybrid ARIMA-FFBP is approximately higher 
by about 1. 57% on the ARMA (16.0.0) model, 3% on the ARIMA (2.2.0) model, 0.67% on 
the FFBP (12.2.1) model, and around 0.13% on the hybrid ARMA-FFBP (2.1.0) model. All 
computed statistical performance metrics showed a very close forecasting success com-
pared with the FFBP (12.2.1) and hybrid ARMA-FFBP models. In terms of error forecast-
ing, the proposed hybrid ARIMA-FFBP can be recognized as “the very most suitable 
model forecasting”. Likewise, in the previous observation number, the presented error 
forecasting of the hybrid ARIMA-FFBP was seen to be very low. 

The Taylor diagram has been utilized as a comparison tool revealing the accuracies 
of different selected models (forecasted and measured data). Moreover, this diagram com-
bines the correlation coefficient (R²), the root means square error (RMSE), and the stand-
ard deviation (Sd) in a polar (two-dimensional) diagram. The main objective of this illus-
tration is to closely inspect the forecasted results and the measured data on a particular 
day. Figures 11 and 12 compare the performance of the most appropriate inputs, and 
graphs based on the statistical error metric. The figures illustrate the accuracies of the 16 
relevant models, which have relatively lower errors in terms of standard deviation (Sd) 
and RMSE (value between 0.1 and 0.8 kWh/m²). In addition, the, highest value of R² 
(99.31%) presents the accuracy relationship between the measured and predicted values. 

 
Figure 11. Taylor diagram of several (A) ARMA, (B) ARIMA, (C) FFBP, and (D,E) hybrid models of 
Tetouan city. 
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Figure 12. Taylor diagram of several (A) ARMA, (B) ARIMA, (C) FFBP, and (D,E) hybrid models of 
Tangier city. 

Figure 11 illustrates the Taylor diagram for the Tetouan site, in which statistics for 
the forecasted ARMA (10.0.0), ARIMA (2.1.0), FFBP (12.2.1), hybrid ARMA-FFBP, and hy-
brid ARIMA-FFBP models (each model contains 16 appropriate models to select the per-
formed one) were computed. Each appropriate model appearing in the diagram quantifies 
how the forecasted models matched measured daily GSR. It is seen from the figure that 
the centered RMSE is related to the distance from the reference point (the horizontal axis 
is considered as observed data). As a result, the forecasted ARMA (10.0.0) and ARIMA 
(2.1.0) revealed the highest RMSE and the lowest value of R², which is varying between 
16.6421~15.6709 and 0.9472~0.9628, respectively. This model is less than the forecasted 
FFBP (12.2.1) model and revealed the optimum RMSE (0.5119%) and Sd (9.9852%). The 
forecasted combined hybrid ARMA-FFBP and hybrid-FFBP models resulted in the lowest 
value of RMSE than the simple models. 

The Taylor diagram for the Tangier site shown in Figure 12 is generated by five mod-
els, which contain 16 appropriate models. It appears from the figure that the forecasted 
FFBP (12.2.1), hybrid ARMA-FFBP, and ARIMA-FFBP models proved the appropriate 
match with the measured daily GSR. The hybrid ARIMA-FFBP model had the highest 
values in terms of R² and the lowest value in terms of RMSE compared with previous 
models. In this case study, the Taylor correlation increased by about 10% to 15% compared 
with the Tetouan site. 

The regression plot of the forecasted daily GSR generated by the most five appropri-
ate models for the Tetouan and Tangier sites is given in Figure 13A,B. As seen from the 
figures, the error estimated between the forecasted daily GSR and measured data have a 
wide dispersion of the ARMA (10.0.0), ARIMA (2.1.0), ARMA (16.0.0), and ARIMA (2.2.0) 
models for Tetouan and Tangier site, respectively. The dispersion of the FFBP (12.2.1) 
model is smaller than the other two previous models. The dispersion of the combined 
models is smaller and less than the FFBP (12.2.1) model. The accuracy between the fore-
casted and measured data in the hybrid ARIMA-FFBP method is improved. It is observed 
that all data sets are correctly fitted to the corresponding line, which verifies the hybrid 
ARIMA-FFBP is more accurate compared to other methods. In addition, the correlation 
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coefficient (R²) values of the best model for the Tetouan and Tangier sites is close to 1, 
which explains the good relationship between the forecasted and measured data. 

 

Figure 13. (A,B) Correlation coefficient (R²) of daily GSR vs. measured data of best five models (re-
gression plot).  

Table 6 gives the numerical values of the adopted methodologies by using the com-
puted statistical metric in order to select the best model, which is at present the optimal 
value. The correlation coefficient (R²) of the forecasted ARIMA, ARMA, FFBP, and hybrid 
models varies between 0.9472% and 0.9931% depending on the study location and the 
trained methods. The range value of the slope of the best-fit line (SPE) varies between 
0.8435 and 0.9296. The range value of the legate’s coefficient of efficiency (LCE) is 0.8954, 
0.9696 and the range value of Willmott’s index of agreement (WIA) is 0.9491 and 0.9945. 
These results show that the hybrid ARIMA-FFBP is more reliable in the forecasting of the 
daily GSR for the Tetouan and Tangier sites. In this context, the obtained performance will 
be compared and discussed by considering Table 6 as the reference. Further, the results 
obtained from the hybrid ARIMA-FFBP model compared with single and combined mod-
els have exposed the highest correlation coefficient of 0.9901% for Tetouan city and 
0.9831% for Tangier city. In addition, the values of MBE (%), RMSE (%), Sd (%), Akaike 
information criterion (AIC), and Bayesian information criterion (BIC) for both cities are 
0.0297 (%), 0.02101 (%), 9.6917 (%), 9.06742 (%), 8.67911 (%), 6.87613 (%), 792.8625, 765.091 
and 756.3418, 504.816, respectively. Eventually, the results have defined that the hybrid 
ARIMA-FFBP model is more accurate and suitable compared with the other methods to 
predict the daily global solar radiation for any location with the same weather conditions. 

In several investigations, the hybrid ARIMA-FFBP and hybrid ARMA-FFBP models 
were compared to deep learning models for solar radiation. A study, for example, com-
pared artificial intelligence (AI) methods for solar radiation forecast or estimation, includ-
ing empirical, statistical, physical, and machine learning models [25]. Another study in-
troduced a new hybrid strategy based on deep learning approaches for Global Solar Ra-
diation (GSR) prediction problems [48]. In addition, one study constructed and analyzed 
two innovative hybrid neural network models for solar irradiance forecasting [49], and 
another examined the effects of various classic long short-term memory (LSTM) models 
on hour-ahead solar irradiance forecasting [50]. Finally, a study demonstrated that using 
input parameters in this hybrid model for daily GSR forecast proves the performance ac-
curacy compared to the previous models. 

4. Conclusions 
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This paper has evaluated and compared the forecasting of the daily global solar ra-
diation in two cities by five approaches such as FFBP, ARIMA, ARMA, hybrid ARMA-
FFBP, and hybrid ARIMA-FFBP, which were modeled in the MATLAB simulation plat-
form. A different combination of input data was used to achieve our proposed methodol-
ogies in terms of statistical metrics. Further, the forecasting accuracy of the FFBP model 
in various applications and the analysis capability time series of the ARIMA and ARMA 
models were considered. Moreover, the solar radiation intensity, according to the climatic 
conditions and geographical coordinates in the two cities, was evaluated by their meas-
ured daily GSR dataset. 

The hybrid ARIMA-FFBP model obtained the highest correlation coefficient of 
0.9901% for Tetouan city and 0.9831% for Tangier city once compared to single and com-
bined models. MBE (%), RMSE (%), Sd (%), Akaike information criterion (AIC), and Bayes-
ian information criterion (BIC) values for both cities are 0.0297 (%), 0.02101 (%), 9.6917 
(%), 9.06742 (%), 8.67911 (%), 6.87613 (%), 792.8625, 765.091, and 756.3418, 504.816, respec-
tively. Furthermore, the results reveal that the hybrid ARIMA-FFBP model has been con-
sidered an appropriate forecasting tool to predict the daily global solar radiation, which 
exceeds the hybrid ARMA-FFBP and the other models. This method could be deployed 
further for modeling different areas in the country for long-term forecasting. Notably, the 
most appropriate model has corresponded to the lowest value of statistical performance 
indicators. For instance, the hybrid ARIMA-FFBP model reaches low values compared to 
the hybrid ARMA-FFBP and simple models. Ultimately, the results verify that the hybrid 
ARIMA-FFBP model is highly accurate in predicting the daily global solar radiation and 
could further be substituted for other locations under similar weather conditions in the 
future. 
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