Bayesian Bell Regression Model for Fitting of Overdispersed Count Data with Application
Abstract
1. Introduction
2. Material and Methods
2.1. Bell Regression Model
2.2. Bayesian Inference
2.2.1. Specification of Priors
2.2.2. MCMC Algorithm
- Start with any point and stage indicator .
- Generate according to the transitional kernel , where is a known symmetric positive defined matrix.
- Accept as with the following probability:
- By increasing the stage indicator, repeat steps (1) to (3) until the process reaches a stationary distribution.
2.3. Model Selection Criteria
3. Results
3.1. Simulation Study
3.2. Application
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montesinos-López, O.A.; Montesinos-López, A.; Pérez-Rodríguez, P. Genomic Prediction Models for Count Data. J. Agric. Biol. Environ. Stat. 2015, 20, 533–554. [Google Scholar] [CrossRef]
- Du, J.; Park, Y.T.; Theera-Ampornpunt, N.; McCullough, J.S.; Speedie, S.M. The use of count data models in biomedical informatics evaluation research. J. Am. Med. Inform. Assoc. 2015, 19, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data, 2nd ed.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Frees, E.W. Regression Modeling with Actuarial and Financial Applications; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Lee, D.; Neocleous, T. Bayesian quantile regression for count data with application to environmental epidemiology. J. R. Stat. Soc. C Appl. Stat. 2010, 59, 905–920. [Google Scholar] [CrossRef]
- Castellares, F.; Ferrari, S.L.P.; Lemonte, A.J. On the Bell distribution and its associated regression model for count data. Appl. Math. Model. 2018, 56, 172–185. [Google Scholar] [CrossRef]
- Abduljabbar, L.A.; Algamal, Z.Y. Jackknifed K–L estimator in Bell regression model. Math. Stat. Eng. Appl. 2022, 71, 267–278. [Google Scholar]
- Algamal, Z.Y.; Lukman, A.; Golam, B.M.K.; Taofik, A. Modified Jackknifed Ridge Estimator in Bell Regression Model: Theory, Simulation and Applications. Iraqi J. Comput. Sci. Math. 2023, 4, 146–154. [Google Scholar] [CrossRef]
- Amin, M.; Akram, M.N.; Majid, A. On the estimation of Bell regression model using ridge estimator. Commun. Stat. Simul. Comput. 2021, 52, 854–867. [Google Scholar] [CrossRef]
- Bulut, Y.M.; Lukman, A.F.; Işilar, M.; Adewuyi, E.T.; Algamal, Z.Y. Modified ridge estimator in the Bell regression model. J. Inverse Ill-Posed Probl. 2024, 32, 1081–1091. [Google Scholar] [CrossRef]
- Ertan, E.; Algamal, Z.Y.; Erkoç, A.; Ulaş Akay, K. A new improvement Liu-type estimator for the Bell regression model. Commun. Stat. B Simul. Comput. 2023, 54, 603–614. [Google Scholar] [CrossRef]
- Majid, A.; Amin, M.; Akram, M.N. On the Liu estimation of Bell regression model in the presence of multicollinearity. J. Stat. Comput. Simul. 2021, 92, 262–282. [Google Scholar] [CrossRef]
- Shewaa, G.A.; Ugwuowo, F.I. Combating the Multicollinearity in Bell Regression Model: Simulation and Application. J. Niger. Soc. Phys. Sci. 2022, 4, 713. [Google Scholar] [CrossRef]
- Algamal, Z.Y.; Lukman, A.F.; Abonazel, M.R.; Awwad, F.A. Performance of the Ridge and Liu Estimators in the zero-inflated Bell Regression Model. J. Math. 2022, 2022, 9503460. [Google Scholar] [CrossRef]
- Lemonte, A.J.; Moreno-Arenas, G.; Castellares, F. Zero-inflated Bell regression models for count data. J. Appl. Stat. 2020, 47, 265–286. [Google Scholar] [CrossRef]
- Seifollahi, S.; Bevrani, H.; Algamal, Z.Y. Improved estimators in Bell regression model with application. J. Stat. Comput. Simul. 2024, 94, 2710–2726. [Google Scholar] [CrossRef]
- Seifollahi, S.; Bevrani, H.; Algamal, Z.Y. Shrinkage estimators in zero-inflated Bell regression model with application. J. Stat. Theory Pract. 2025, 19, 1. [Google Scholar] [CrossRef]
- Imran Alhaseeni, A.M.; Bevrani, H. Bayesian Bell regression model for fitting of overdispersed count data with application. arXiv 2024, arXiv:2403.07067. [Google Scholar] [CrossRef]
- Bell, E.T. Exponential numbers. Am. Math. Mon. 1934, 41, 419. [Google Scholar] [CrossRef]
- Bell, E.T. Exponential polynomials. Ann. Math. 1934, 35, 258. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, X. Bayesian beta regression for bounded responses with unknown supports. Comput. Stat. Data Anal. 2022, 167, 107345. [Google Scholar] [CrossRef]
- Zellner, A. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti; North-Holland/Elsevier: Amsterdam, The Netherlands, 1986; pp. 233–243. [Google Scholar]
- Hanson, T.E.; Branscum, A.J.; Johnson, W.O. Informative g-priors for logistic regression. Bayesian Anal. 2014, 9, 597–612. [Google Scholar] [CrossRef]
- Gamerman, D.; Lopes, H.F. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Geisser, S.; Eddy, W. A predictive approach to model selection. J. Am. Stat. Assoc. 1979, 74, 153–160. [Google Scholar] [CrossRef]
- Gelfand, A.; Dey, D.; Chang, H. Model Determination Using Predictive Distributions with Implementation via Sampling Based Methods (with Discussion); Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M., Eds.; Oxford University Press: Oxford, UK, 1992; Volume 1, pp. 7–167. [Google Scholar] [CrossRef]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. B Stat. Methodol. 2002, 64, 583–639. Available online: http://www.jstor.org/stable/3088806 (accessed on 23 October 2002). [CrossRef]
- Brooks, S.P.; Smith, J.; Vehtari, A.; Plummer, M.; Stone, M.; Robert, C.P.; Titterington, D.M.; Nelder, J.A.; Atkinson, A.; Dawid, A.P.; et al. Discussion on the paper by Spiegelhalter, Best, Carlin, and van der Linde. J. R. Stat. Soc. B Stat. Methodol. 2002, 64, 616–639. [Google Scholar]
- Carlin, B.; Louis, T. Bayes and Empirical Bayes Methods for Data Analysis, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Chen, M.; Shao, Q.; Ibrahim, J. Monte Carlo Methods in Bayesian Computation; Springer: New York, NY, USA, 2000. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Vining, G.G.; Robinson, T.J. Generalized Linear Models: With Applications in Engineering and the Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Lukman, A.F.; Arashi, M.; Prokaj, V. Robust biased estimators for Poisson regression model: Simulation and applications. Concurr. Comput. Pract. Exp. 2023, 35, e7594. [Google Scholar] [CrossRef]
G-Prior | Flat Normal | ||||||||
---|---|---|---|---|---|---|---|---|---|
95% HPD | 95% HPD | ||||||||
True Value | Estimate | PSD | Lower | Upper | Estimate | PSD | Lower | Upper | |
0 | −0.0984 | 0.2022 | −0.4795 | 0.3073 | −0.1088 | 0.2135 | −0.5245 | 0.3017 | |
−0.5 | −0.4743 | 0.1830 | −0.8319 | −0.0946 | −0.4990 | 0.1874 | −0.8604 | −0.1053 | |
1 | 1.0369 | 0.1440 | 0.7547 | 1.3125 | 1.0629 | 0.1482 | 0.7726 | 1.3460 | |
0 | −0.1609 | 0.1430 | −0.4254 | 0.1273 | −0.1636 | 0.1465 | −0.4449 | 0.1175 | |
−0.5 | −0.5825 | 0.1168 | −0.8042 | −0.3377 | −0.5903 | 0.1172 | −0.8164 | −0.3505 | |
1 | 1.0240 | 0.0876 | 0.8479 | 1.1900 | 1.0329 | 0.0891 | 0.8569 | 1.2067 | |
0 | −0.1171 | 0.1051 | −0.3133 | 0.0911 | −0.1202 | 0.1081 | −0.3203 | 0.0926 | |
−0.5 | −0.4977 | 0.0817 | −0.6432 | −0.3273 | −0.5007 | 0.0822 | −0.6459 | −0.3300 | |
1 | 1.0404 | 0.1067 | 0.8329 | 1.2342 | 1.0527 | 0.1091 | 0.8369 | 1.2478 |
G-Prior | Flat Normal | ||||||||
---|---|---|---|---|---|---|---|---|---|
95% HPD | 95% HPD | ||||||||
True Value | Estimate | PSD | Lower | Upper | Estimate | PSD | Lower | Upper | |
0 | 0.0045 | 0.2046 | −0.4025 | 0.3899 | −0.0801 | 0.2286 | −0.5406 | 0.3511 | |
−0.5 | −0.5517 | 0.1238 | −0.8012 | −0.3143 | −0.5742 | 0.1282 | −0.8326 | −0.3259 | |
1 | 0.9397 | 0.1027 | 0.7257 | 1.1282 | 0.9798 | 0.1089 | 0.7535 | 1.1779 | |
1 | 0.8249 | 0.1167 | 0.5838 | 1.0548 | 0.8750 | 0.1202 | 0.6326 | 1.1170 | |
1 | 0.9214 | 0.1046 | 0.7168 | 1.1318 | 0.9283 | 0.1087 | 0.7099 | 1.1381 | |
1 | 1.0821 | 0.1615 | 0.7607 | 1.3963 | 1.1515 | 0.1770 | 0.8025 | 1.4978 | |
0 | −0.1425 | 0.1471 | −0.4346 | 0.1352 | −0.2118 | 0.1588 | −0.5130 | 0.0938 | |
−0.5 | −0.4448 | 0.0803 | −0.6019 | −0.2862 | −0.4491 | 0.0810 | −0.6077 | −0.2882 | |
1 | 1.0378 | 0.0571 | 0.9199 | 1.1507 | 1.0550 | 0.0585 | 0.9329 | 1.1725 | |
1 | 0.8337 | 0.1112 | 0.6046 | 1.0405 | 0.8784 | 0.1147 | 0.6420 | 1.0970 | |
1 | 0.8680 | 0.0866 | 0.7029 | 1.0404 | 0.9007 | 0.0889 | 0.7356 | 1.0770 | |
1 | 1.0771 | 0.1061 | 0.8626 | 1.2812 | 1.1223 | 0.1132 | 0.8899 | 1.3387 | |
0 | −0.0152 | 0.0981 | −0.2078 | 0.1788 | −0.0406 | 0.1016 | −0.2321 | 0.1737 | |
−0.5 | −0.4573 | 0.0542 | −0.5611 | −0.3551 | −0.4670 | 0.0546 | −0.5710 | −0.3645 | |
1 | 0.8729 | 0.0674 | 0.7455 | 1.0197 | 0.8881 | 0.0684 | 0.7556 | 1.0359 | |
1 | 0.9738 | 0.0577 | 0.8647 | 1.0938 | 0.9837 | 0.0596 | 0.8677 | 1.1038 | |
1 | 1.0507 | 0.0552 | 0.9496 | 1.1600 | 1.0565 | 0.0562 | 0.9520 | 1.1654 | |
1 | 0.9395 | 0.0658 | 0.8172 | 1.0727 | 0.9539 | 0.0669 | 0.8329 | 1.0912 |
MSE | MAE | |||||||
---|---|---|---|---|---|---|---|---|
G-Prior | Flat Normal | G-Prior | Flat Normal | |||||
n | p = 3 | p = 6 | p = 3 | p = 6 | p = 3 | p = 6 | p = 3 | p = 6 |
50 | 0.0036 | 0.0087 | 0.0052 | 0.0093 | 0.0537 | 0.0754 | 0.0576 | 0.0871 |
100 | 0.0111 | 0.0126 | 0.0120 | 0.0150 | 0.0891 | 0.1018 | 0.0956 | 0.1102 |
200 | 0.0051 | 0.0042 | 0.0057 | 0.0035 | 0.0533 | 0.0537 | 0.0579 | 0.0507 |
Count | Observed | Bell | Poisson | Negative Binomial |
---|---|---|---|---|
0 | 10 | 10.149 | 4.744 | 6.640 |
1 | 7 | 9.164 | 10.567 | 10.752 |
2 | 8 | 8.274 | 11.767 | 10.173 |
3 | 8 | 6.226 | 8.736 | 7.342 |
4 | 4 | 4.216 | 4.864 | 4.475 |
≥5 | 7 | 5.970 | 3.321 | 4.618 |
1.216 | 12.523 | 4.813 | ||
p-value | 0.943 | 0.028 | 0.439 |
95% HPD | ||||||
---|---|---|---|---|---|---|
Model | Parameter | Mean | Median | PSD | Lower | Upper |
Bell | −3.5991 | −3.5864 | 1.0666 | −5.6350 | −1.6295 | |
−0.0015 | −0.0015 | 0.0009 | −0.0032 | 0.0002 | ||
0.06310 | 0.0634 | 0.0127 | 0.0380 | 0.0879 | ||
−0.0032 | −0.0031 | 0.0055 | −0.0148 | 0.0069 | ||
−0.0323 | −0.0316 | 0.0164 | −0.0666 | −0.0032 | ||
Poisson | −4.1262 | −4.0515 | 1.4028 | −7.0078 | −1.7307 | |
−0.0015 | −0.0014 | 0.0011 | −0.0035 | 0.0006 | ||
0.0695 | 0.0689 | 0.0168 | 0.0386 | 0.1031 | ||
−0.0031 | −0.0027 | 0.0074 | −0.0174 | 0.0116 | ||
−0.0314 | −0.0304 | 0.0227 | −0.0764 | 0.0117 | ||
Negative Binomial | −3.9884 | −3.9600 | 1.2110 | −6.6541 | −1.8616 | |
−0.0014 | −0.0014 | 0.0010 | −0.0032 | 0.0005 | ||
0.0675 | 0.0674 | 0.0148 | 0.0414 | 0.0987 | ||
−0.0027 | −0.0024 | 0.0060 | −0.0139 | 0.0095 | ||
−0.0314 | −0.0315 | 0.0186 | −0.0665 | 0.0059 |
Model | LMPL | DIC | EAIC | EBIC |
---|---|---|---|---|
Bell | −72.4172 | 144.4801 | 149.3860 | 158.3070 |
Poisson | −78.1424 | 156.8615 | 161.5732 | 170.4942 |
Negative Binomial | −75.7465 | 149.3917 | 154.5123 | 163.4332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran Alhseeni, A.M.; Bevrani, H. Bayesian Bell Regression Model for Fitting of Overdispersed Count Data with Application. Stats 2025, 8, 95. https://doi.org/10.3390/stats8040095
Imran Alhseeni AM, Bevrani H. Bayesian Bell Regression Model for Fitting of Overdispersed Count Data with Application. Stats. 2025; 8(4):95. https://doi.org/10.3390/stats8040095
Chicago/Turabian StyleImran Alhseeni, Ameer Musa, and Hossein Bevrani. 2025. "Bayesian Bell Regression Model for Fitting of Overdispersed Count Data with Application" Stats 8, no. 4: 95. https://doi.org/10.3390/stats8040095
APA StyleImran Alhseeni, A. M., & Bevrani, H. (2025). Bayesian Bell Regression Model for Fitting of Overdispersed Count Data with Application. Stats, 8(4), 95. https://doi.org/10.3390/stats8040095