The Comparative Effectiveness of Mepolizumab and Benralizumab in the Treatment of Eosinophilic Asthma
Abstract
:Highlights
- A statistically significant decrease in eosinophil count, decrease in exacerbation rate, decrease in ACQ and increase in miniAQLQ were observed for both drugs. However, a statistically significant decrease in daily OCS dose and increase in FEV1/FVC were observed for mepolizumab, whereas no statistical significance was found for the above parameters for benralizumab. The latter two observations should be interpreted with caution due to the small study group.
- In general, there was no statistically significant difference in the level of improvement obtained between mepolizumab and benralizumab.
- Comorbidities, mainly CRwNS, and the drug regimen are the primary factors to consider when selecting a biologic drug.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
- Blood eosinophil count ≥ 350/µL in the last 12 months or ≥150 cells/μL; if systemic, glucocorticosteroids at a dose ≥ 5 mg per day had to be taken systematically in the 6 months prior to the qualification and the cumulative annual dose of oral glucocorticosteroids was ≥1.0 g (calculated as prednisone) due to a lack of asthma control.
- The need for high doses of inhaled glucocorticosteroids (>1000 mcg of beclomethasone dipropionate per day or another inhaled glucocorticosteroid at an equivalent dose determined according to the current guidelines from The Global Initiative for Asthma (GINA)) in combination with another asthma control medication.
- Two or more exacerbations in the past year that required systemic glucocorticosteroids or an increase in their dose for more than three days in people who use them chronically.
- Meeting at least 2 of the following criteria:
- (a)
- Symptoms of uncontrolled asthma (lack of asthma control in the ACQ asthma control questionnaire > 1.5 points);
- (b)
- Hospitalization in the last 12 months due to asthma exacerbation;
- (c)
- A life-threatening asthma attack incident in the past;
- (d)
- Persistent airway obstruction (first-second expiratory volume FEV1 < 80% of normal value or diurnal variation in peak expiratory flow PEF > 30%);
- (e)
- Impaired quality of life due to asthma (mean score on the asthma quality of life test mini-AQLQ < 5.0 points).
- Exclusion of other hypereosinophilic syndromes.
- Non-smoking.
- Exclusion of other clinically relevant pulmonary diseases [16].
2.2. Exclusion Criteria
2.3. Assessment of Clinical Efficacy
2.4. Laboratory Tests
2.5. Spirometry
2.6. Evaluation
2.6.1. Laboratory Parameters
2.6.2. Spirometry Results
2.6.3. Questionnaires
2.6.4. Oral Glucocorticosteroid Dose
2.6.5. Body Mass Index
2.6.6. Exacerbation Rate
2.7. Ethics
2.8. Statistical Analysis
3. Results
3.1. Clinical and Demographic Characteristics
3.2. Mepolizumab
3.3. Benralizumab
3.4. Comparison Between Mepolizumab and Benralizumab
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castillo, J.R.; Peters, S.P.; Busse, W.W. Asthma Exacerbations: Pathogenesis, Prevention, and Treatment. J. Allergy Clin. Immunol. Pract. 2017, 5, 918–927. [Google Scholar] [CrossRef] [PubMed]
- Ghassemian, A.; Park, J.J.; Tsoulis, M.W.; Kim, H. Targeting the IL-5 Pathway in Eosinophilic Asthma: A Comparison of Mepolizumab to Benralizumab in the Reduction of Peripheral Eosinophil Counts. Allergy Asthma Clin. Immunol. 2021, 17, 3. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Arron, J.R.; Koth, L.L.; Fahy, J.V. T-Helper Type 2–Driven Inflammation Defines Major Subphenotypes of Asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 388–395. [Google Scholar] [CrossRef]
- Maspero, J.; Adir, Y.; Al-Ahmad, M.; Celis-Preciado, C.A.; Colodenco, F.D.; Giavina-Bianchi, P.; Lababidi, H.; Ledanois, O.; Mahoub, B.; Perng, D.W.; et al. Type 2 Inflammation in Asthma and Other Airway Diseases. ERJ Open Res. 2022, 8, 00576-2021. [Google Scholar] [CrossRef]
- Doroudchi, A.; Pathria, M.; Modena, B.D. Asthma Biologics: Comparing Trial Designs, Patient Cohorts and Study Results. Ann. Allergy Asthma Immunol. 2020, 124, 44–56. [Google Scholar] [CrossRef]
- Carr, T.F.; Kraft, M. Use of Biomarkers to Identify Phenotypes and Endotypes of Severe Asthma. Ann. Allergy Asthma Immunol. 2018, 121, 414–420. [Google Scholar] [CrossRef]
- Siddiqui, S.; Bachert, C.; Bjermer, L.; Buchheit, K.M.; Castro, M.; Qin, Y.; Rupani, H.; Sagara, H.; Howarth, P.; Taillé, C. Eosinophils and Tissue Remodeling: Relevance to Airway Disease. J. Allergy Clin. Immunol. 2023, 152, 841–857. [Google Scholar] [CrossRef] [PubMed]
- Yancey, S.W.; Keene, O.N.; Albers, F.C.; Ortega, H.; Bates, S.; Bleecker, E.R.; Pavord, I. Biomarkers of Severe Eosinophilic Asthma. J. Allergy Clin. Immunol. 2017, 140, 1509–1518. [Google Scholar] [CrossRef]
- Bochner, B.S. Novel Therapies for Eosinophilic Disorders. Immunol. Allergy Clin. N. Am. 2015, 35, 577–598. [Google Scholar] [CrossRef]
- Scioscia, G.; Nolasco, S.; Campisi, R.; Maria, C.; Quarato, I.; Caruso, C.; Pelaia, C.; Portacci, A.; Crimi, C. Switching Biological Therapies in Severe Asthma. Int. J. Mol. Sci. 2023, 24, 9563. [Google Scholar] [CrossRef]
- McGregor, M.C.; Krings, J.G.; Nair, P.; Castro, M. Role of Biologics in Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Howell, I.; Howell, A.; Pavord, I.D. Th2 Responses Type 2 Inflammation and Biological Therapies in Asthma: Targeted Medicine Taking Flight. J. Exp. Med. 2023, 220, e20221212. [Google Scholar] [CrossRef] [PubMed]
- Constantine, G.M.; Klion, A.D. Recent Advances in Understanding the Role of Eosinophils. Fac. Rev. 2022, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Mareque, M.; Climente, M.; Martinez-Moragon, E.; Padilla, A.; Oyagüez, I.; Touron, C.; Torres, C.; Martinez, A. Cost-Effectiveness of Benralizumab versus Mepolizumab and Dupilumab in Patients with Severe Uncontrolled Eosinophilic Asthma in Spain. J. Asthma 2023, 60, 1210–1220. [Google Scholar] [CrossRef]
- Xu, X.; Schaefer, C.; Szende, A.; Genofre, E.; Katial, R.; Chung, Y. A Cost Comparison of Benralizumab, Mepolizumab, and Dupilumab in Patients with Severe Asthma: A US Third-Party Payer Perspective. J. Manag. Care Spec. Pharm. 2023, 29, 1193–1204. [Google Scholar] [CrossRef]
- Ministerstwo Zdrowia. Programy Lekowe. 2019. Available online: https://archiwum.mz.gov.pl/leki/refundacja/programy-lekowe/ (accessed on 23 July 2024).
- European Medicines Agency. Annex I Summary of Product Characteristics. European Medicines Agency, Nucala European Public. Assessment Report. 2021. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/nucala (accessed on 6 November 2024).
- European Medicines Agency. Annex I Summary of Product Characteristics. European Medicines Agency, Fasenra European Public Assessment Report. 2019. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/fasenra (accessed on 6 November 2024).
- Juniper, E.F.; O’Byrne, P.M.; Guyatt, G.H.; Ferrie, P.J.; King, D.R. Development and Validation of a Questionnaire to Measure Asthma Control. Eur. Respir. J. 1999, 14, 902–907. [Google Scholar] [CrossRef]
- Juniper, E.F.; Guyatt, G.H.; Cox, F.M.; Ferrie, P.J.; King, D.R. Development and Validation of the Mini Asthma Quality of Life Questionnaire. Eur. Respir. J. 1999, 14, 32–38. [Google Scholar] [CrossRef]
- Menzella, F.; Ballarin, A.; Sartor, M.; Floriani, A.F.; Corsi, L.; Dartora, C.; Tonin, S.; Romagnoli, M. Comparison between Clinical Trials and Real-World Evidence Studies on Biologics for Severe Asthma. J. Int. Med. Res. 2022, 50, 03000605221133689. [Google Scholar] [CrossRef]
- Kayser, M.Z.; Suhling, H.; Fuge, J.; Hinze, C.A.; Drick, N.; Kneidinger, N.; Behr, J.; Taube, C.; Welte, T.; Haasler, I.; et al. Long-Term Multicenter Comparison Shows Equivalent Efficacy of Monoclonal Antibodies in Severe Asthma Therapy. BMC Pulm. Med. 2024, 24, 149. [Google Scholar] [CrossRef]
- Bolk, K.G.; Wise, S.K. Biologic Therapies across Nasal Polyp Subtypes. J. Pers. Med. 2024, 14, 432. [Google Scholar] [CrossRef]
- Cai, S.; Xu, S.; Lou, H.; Zhang, L. Comparison of Different Biologics for Treating Chronic Rhinosinusitis with Nasal Polyps: A Network Analysis. J. Allergy Clin. Immunol. Pract. 2022, 10, 1876–1886.e7. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Han, J.K.; Desrosiers, M.Y.; Gevaert, P.; Heffler, E.; Hopkins, C.; Tversky, J.R.; Barker, P.; Cohen, D.; Emson, C.; et al. Efficacy and Safety of Benralizumab in Chronic Rhinosinusitis with Nasal Polyps: A Randomized, Placebo-Controlled Trial. J. Allergy Clin. Immunol. 2022, 149, 1309–1317.e12. [Google Scholar] [CrossRef] [PubMed]
- Chiner, E.; Murcia, M.; Boira, I.; Bernabeu, M.Á.; Esteban, V.; Martínez-Moragón, E. Real-Life Clinical Outcomes of Benralizumab Treatment in Patients with Uncontrolled Severe Asthma and Coexisting Chronic Rhinosinusitis with Nasal Polyposis. J. Clin. Med. 2024, 13, 4247. [Google Scholar] [CrossRef]
- Han, J.K.; Bachert, C.; Fokkens, W.; Desrosiers, M.; Wagenmann, M.; Lee, S.E.; Smith, S.G.; Martin, N.; Mayer, B.; Yancey, S.W.; et al. Mepolizumab for Chronic Rhinosinusitis with Nasal Polyps (SYNAPSE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Respir. Med. 2021, 9, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.B.; White, A.G.; Scarpati, L.M.; Wan, G.; Nelson, W.W. Long-Term Systemic Corticosteroid Exposure: A Systematic Literature Review. Clin. Ther. 2017, 39, 2216–2229. [Google Scholar] [CrossRef]
- Aljubran, S.A.; Whelan, G.J.; Glaum, M.C.; Lockey, R.F. Osteoporosis in the At-Risk Asthmatic. Allergy Eur. J. Allergy Clin. Immunol. 2014, 69, 1429–1439. [Google Scholar] [CrossRef]
- Pelaia, C.; Vatrella, A.; Bruni, A.; Terracciano, R.; Pelaia, G. Benralizumab in the Treatment of Severe Asthma: Design, Development and Potential Place in Therapy. Drug Des. Dev. Ther. 2018, 12, 619–628. [Google Scholar] [CrossRef]
- Akenroye, A.; Lassiter, G.; Jackson, J.W.; Keet, C.; Segal, J.; Alexander, G.C.; Hong, H. Comparative Efficacy of Mepolizumab, Benralizumab, and Dupilumab in Eosinophilic Asthma: A Bayesian Network Meta-Analysis. J. Allergy Clin. Immunol. 2022, 150, 1097–1105.e12. [Google Scholar] [CrossRef]
- Menzella, F.; Biava, M.; Bagnasco, D.; Galeone, C.; Simonazzi, A.; Ruggiero, P.; Facciolongo, N. Efficacy and Steroid-Sparing Effect of Benralizumab: Has It an Advantage over Its Competitors? Drugs Context 2019, 8, 212580. [Google Scholar] [CrossRef]
- Busse, W.; Chupp, G.; Nagase, H.; Albers, F.C.; Doyle, S.; Shen, Q.; Bratton, D.J.; Gunsoy, N.B. Anti-IL-5 Treatments in Patients with Severe Asthma by Blood Eosinophil Thresholds: Indirect Treatment Comparison. J. Allergy Clin. Immunol. 2019, 143, 190–200.e20. [Google Scholar] [CrossRef]
- Kayser, M.Z.; Drick, N.; Milger, K.; Fuge, J.; Kneidinger, N.; Korn, S.; Buhl, R.; Behr, J.; Welte, T.; Suhling, H. Real-World Multicenter Experience with Mepolizumab and Benralizumab in the Treatment of Uncontrolled Severe Eosinophilic Asthma Over 12 Months. J. Asthma Allergy 2021, 14, 863–871. [Google Scholar] [CrossRef]
- Cabon, Y.; Molinari, N.; Marin, G.; Vachier, I.; Gamez, A.S.; Chanez, P.; Bourdin, A. Comparison of Anti-Interleukin-5 Therapies in Patients with Severe Asthma: Global and Indirect Meta-Analyses of Randomized Placebo-Controlled Trials. Clin. Exp. Allergy 2017, 47, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Bourdin, A.; Husereau, D.; Molinari, N.; Golam, S.; Siddiqui, M.K.; Lindner, L.; Xu, X. Matching-Adjusted Indirect Comparison of Benralizumab versus Interleukin-5 Inhibitors for the Treatment of Severe Asthma: A Systematic Review. Eur. Respir. J. 2018, 52, 1801393. [Google Scholar] [CrossRef] [PubMed]
- Vitale, C.; Maglio, A.; Pelaia, C.; D’Amato, M.; Ciampo, L.; Pelaia, G.; Molino, A.; Vatrella, A. Effectiveness of Benralizumab in OCS-Dependent Severe Asthma: The Impact of 2 Years of Therapy in a Real-Life Setting. J. Clin. Med. 2023, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Branicka, O.; Gawlik, R.; Glück, J. Eosinophil to Lymphocyte Ratio May Predict OCS Reduction and Change in Quality of Life (AQLQ) Resulting from Asthma Biological Treatment. Immunopharmacol. Immunotoxicol. 2024, 46, 212–217. [Google Scholar] [CrossRef]
- Branicka, O.; Rogala, B.; Glück, J. Eosinophil/Neutrophil/Platelet-to-Lymphocyte Ratios in Various Types of Immediate Hypersensitivity to NSAIDs: A Preliminary Study. Int. Arch. Allergy Immunol. 2020, 181, 774–782. [Google Scholar] [CrossRef]
- Langton, D.; Politis, J.; Collyer, T.; Khung, S.W.; Bardin, P. Benralizumab and Mepolizumab Treatment Outcomes in Two Severe Asthma Clinics. Respirology 2023, 28, 1117–1125. [Google Scholar] [CrossRef]
- Franceschi, E.; Drick, N.; Fuge, J.; Santus, P.; Fischer, B.; Kayser, M.; Welte, T.; Suhling, H. The Impact of Anti-Eosinophilic Therapy on Exercise Capacity and Inspiratory Muscle Strength in Patients with Severe Asthma. ERJ Open Res. 2023, 9, 00341–02022. [Google Scholar] [CrossRef]
- Kvarnström, K.; Westerholm, A.; Airaksinen, M.; Liira, H. Factors Contributing to Medication Adherence in Patients with a Chronic Condition: A Scoping Review of Qualitative Research. Pharmaceutics 2021, 13, 1100. [Google Scholar] [CrossRef]
- Gueyffier, F.; Cucherat, M. The Limitations of Observation Studies for Decision Making Regarding Drugs Efficacy and Safety. Therapies 2019, 74, 181–185. [Google Scholar] [CrossRef]
- Talari, K.; Goyal, M. Retrospective Studies—Utility and Caveats. J. R. Coll. Physicians Edinb. 2020, 50, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Fuseini, H.; Newcomb, D.C. Mechanisms Driving Gender Differences in Asthma. Curr. Allergy Asthma Rep. 2017, 17, 19. [Google Scholar] [CrossRef] [PubMed]
Total | Mepolizumab | Benralizumab | p-Value | |
---|---|---|---|---|
Patients, n (%) | 59 | 38 (64.4) | 21 (35.6) | 0.36 |
Gender (Female), n (%) | 46 (78) (78) | 32 (84.2) | 14 (66.7) | 0.12 |
Age, years (mean ± SD) | 54.1 ± 13.1 | 52.8 ± 11.4 | 55.8 ± 15.4 | 0.83 |
Obesity, n (%) | 17 (28.8) | 8 (21.1) | 9 (42.9) | 0.08 |
Overweight, n (%) | 25 (42.4) | 17 (44.7) | 6 (28.6) | 0.11 |
Ex-smokers, n (%) | 11 (18.6) | 7 (18.4) | 4 (19.0) | 0.55 |
Inhalant allergies, n (%) | 28 (47.4) | 19 (50.0) | 7 (33.3) | 0.38 |
Nasal polyps, n (%) | 20 (33.9) | 15 (39.5) | 5 (23.1) | 0.22 |
GERD, n (%) | 7 (11.9) | 5 (13.2) | 2 (9.5) | 0.68 |
Diabetes, n (%) | 7 (11.9) | 3 (7.9) | 4 (19.0) | 0.20 |
Osteoporosis, n (%) | 6 (10.2) | 5 (13.2) | 1 (4.8) | 0.31 |
Arterial Hypertension, n (%) | 36 (61.0) | 14 (36.8) | 12 (57.1) | 0.32 |
ICS, n (%) | 59 (100) | 38 (100) | 21 (100) | 1.00 |
LABA, n (%) | 59 (100) | 38 (100) | 21 (100) | 1.00 |
SABA, n (%) | 35 (59.3) | 23 (60.5) | 12 (57.1) | 0.65 |
LAMA, n (%) | 6 (10.2) | 4 (10.5) | 2 (9.5) | 0.90 |
LTRA, n (%) | 30 (50.1) | 17 (44.7) | 13 (61.9) | 0.21 |
OCS maintenance > 6 months, n (%) | 18 (30.5) | 13 (34.2) | 5 (23.8) | 0.41 |
Mepolizumab (Point 0) | Benralizumab (Point 0) | p-Value (Point 0) | Mepolizumab (Point 1) | Benralizumab (Point 1) | p-Value (Point 1) | |
---|---|---|---|---|---|---|
Leukocytes, 103/µL | 7.80 (6.69–7.13) | 9.00 (7.13–9.01) | 0.17 | 6.64 (5.12–8.92) | 7.75 (5.71–6.85) | 0.58 |
Lymphocyte count, 103/µL | 2.12 (1.50–2.64) | 2.08 (1.52–3.38) | 0.71 | 2.04 (1.45–2.30) | 1.72 (1.43–2.35) | 0.56 |
Eosinophil count, 103/µL | 0.51 (0.32–0.85) | 0.49 (0.22–0.65) | 0.63 | 0.08 (0.04–0.13) | 0.00 (0.00–0.00) | 0.00 |
Monocytes count, 103/µL | 0.64 (0.41–0.87) | 0.68 (0.51–0.79) | 0.61 | 0.56 (0.42–0.76) | 0.60 (0.49–0.68) | 0.70 |
Neutrophil count, 103/µL | 4.39 (3.00–5.69) | 5.49 (4.20–8.39) | 0.08 | 4.25 (2.86–5.64) | 4.40 (3.51–5.84) | 0.43 |
Platelet count, 103/µL | 276 (226–316) | 277 (244–336) | 0.42 | 266 (249–344) | 248 (225–278) | 0.14 |
CRP [mg/L] | 1.90 (0.90–6.90) | 1.40 (0.90–5.30) | 0.56 | 1.95 (0.70–6.00) | 1.70 (0.90–4.80) | 0.93 |
ESR [mm/h] | 11.00 (4.00–17.00) | 9.00 (5.00–17.00) | 0.97 | 9.00 (5.00–20.00) | 9.00 (5.00–12.00) | 0.59 |
FVC [L] | 2.47 (1.85–3.17) | 2.67 (1.95–3.46) | 0.60 | 2.47 (1.91–3.02) | 2.68 (1.73–3.58) | 0.82 |
FEV1 [L] | 1.43 (1.16–1.85) | 2.03 (1.30–1.57) | 0.04 | 1.50 (1.15–2.12) | 1.67 (1.10–2.58) | 0.46 |
FEV1 [%] | 49 (44.0–63.0) | 64 (50.0–74.0) | 0.04 | 55 (47.0–72.0) | 63 (43.0–82.0) | 0.72 |
FEV1/FVC [%] | 62.11 (55.22–71.13) | 70.43 (64.50–75.63) | 0.04 | 63.28 (56.13–76.06) | 70.52 (53.90–4.21) | 0.40 |
ACQ | 3.60 (3.20–4.14) | 3.66 (3.00–4.40) | 0.78 | 2.54 (1.30–3.30) | 2.40 (1.80–3.57) | 0.53 |
miniAQLQ | 3.17 (2.10–3.50) | 2.60 (2.47–3.17) | 0.12 | 4.08 (3.60–5.80) | 3.70 (3.33–4.20) | 0.11 |
OCS [mg] | 10 (5.0–20.0) | 0 (0.0–10.0) | 0.02 | 0 (0.0–0.0) | 0 (0.0–0.0) | 0.29 |
Exacerbation rate | 3 (3–5) | 3 (2–4) | 0.41 | 0 (0–1) | 0 (0–2) | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Polish Respiratory Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemiec-Górska, A.; Branicka, O.; Olszewska, P.; Mielcarska, S.; Glück, J.; Rymarczyk, B.; Gawlik, R. The Comparative Effectiveness of Mepolizumab and Benralizumab in the Treatment of Eosinophilic Asthma. Adv. Respir. Med. 2025, 93, 21. https://doi.org/10.3390/arm93040021
Niemiec-Górska A, Branicka O, Olszewska P, Mielcarska S, Glück J, Rymarczyk B, Gawlik R. The Comparative Effectiveness of Mepolizumab and Benralizumab in the Treatment of Eosinophilic Asthma. Advances in Respiratory Medicine. 2025; 93(4):21. https://doi.org/10.3390/arm93040021
Chicago/Turabian StyleNiemiec-Górska, Aleksandra, Olga Branicka, Paula Olszewska, Sylwia Mielcarska, Joanna Glück, Barbara Rymarczyk, and Radosław Gawlik. 2025. "The Comparative Effectiveness of Mepolizumab and Benralizumab in the Treatment of Eosinophilic Asthma" Advances in Respiratory Medicine 93, no. 4: 21. https://doi.org/10.3390/arm93040021
APA StyleNiemiec-Górska, A., Branicka, O., Olszewska, P., Mielcarska, S., Glück, J., Rymarczyk, B., & Gawlik, R. (2025). The Comparative Effectiveness of Mepolizumab and Benralizumab in the Treatment of Eosinophilic Asthma. Advances in Respiratory Medicine, 93(4), 21. https://doi.org/10.3390/arm93040021