The Precipitation of Calcium Carbonate in the Presence of Macromolecules Isolated from Corals
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. CaCO3 Precipitation Experiments
2.3. Characterization of CaCO3 Precipitate
3. Results and Discussion
3.1. Polymorphic Composition and Morphology of CaCO3 in the Model System and System with Addition of Mg2+
3.2. Effect of SOMs on Calcium Carbonate Precipitation
3.3. Effect of SOMs on the Morphology of Precipitated Calcium Carbonate
3.4. Combined Effect of SOMs and Mg2+ on Calcium Carbonate Precipitation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press: New York, NY, USA, 2001; ISBN 0198508824. [Google Scholar]
- Brečević, L.; Kralj, D. Kinetics and Mechanisms of Crystal Growth in Aqueous Systems. In Interfacial Dynamics; Kallay, N., Ed.; Surfactant Science Series; Marcel Dekker: New York, NY, USA, 2000; Volume 88, pp. 435–474. ISBN 0-8247-0006-6. [Google Scholar]
- Njegić-Džakula, B.; Brečević, L.; Falini, G.; Kralj, D. Calcite Crystal Growth Kinetics in the Presence of Charged Synthetic Polypeptides. Cryst. Growth Des. 2009, 9, 2425–2434. [Google Scholar] [CrossRef]
- Brečević, L.; Nöthig-Laslo, V.; Kralj, D.; Popović, S. Effect of divalent cations on the formation and structure of calcium carbonate polymorphs. J. Chem. Soc. Faraday Trans. 1996, 92, 1017–1022. [Google Scholar] [CrossRef]
- Njegić-Džakula, B.; Reggi, M.; Falini, G.; Weber, I.; Brečević, L.; Kralj, D. The Influence of a Protein Fragment Extracted from Abalone Shell Green Layer on the Precipitation of Calcium Carbonate Polymorphs in Aqueous Media. Croat. Chem. Acta 2013, 86, 39–47. [Google Scholar] [CrossRef]
- Njegić Džakula, B.; Fermani, S.; Dubinsky, Z.; Goffredo, S.; Falini, G.; Kralj, D. In Vitro Coral Biomineralization under Relevant Aragonite Supersaturation Conditions. Chem.-A Eur. J. 2019, 25, 10616–10624. [Google Scholar] [CrossRef]
- Gower, L.; Tirrell, D. Calcium carbonate films and helices grown in solutions of poly (aspartate). J. Cryst. Growth 1998, 191, 153–160. [Google Scholar] [CrossRef]
- Jie, P.; Zhiming, L. Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS ONE 2019, 14, e0218396. [Google Scholar]
- Ruiz-Agudo, E.; Putnis, C.V.; Rodriguez-Navarro, C.; Putnis, A. Effect of pH on calcite growth at constant aCa2+/aCO32− ratio and supersaturation. Geochim. Cosmochim. Acta 2011, 75, 284–296. [Google Scholar] [CrossRef]
- Kontrec, J.; Tomašić, N.; Matijaković Mlinarić, N.; Kralj, D.; Njegić Džakula, B. Effect of pH and type of stirring on the spontaneous precipitation of CaCO3 at identical initial supersaturation, ionic strength and a(Ca2+)/a(CO32−) ratio. Crystals 2021, 11, 1075–1087. [Google Scholar] [CrossRef]
- Zuddas, P.; Mucci, A. Kinetics of Calcite Precipitation from Seawater: II. The Influence of the Ionic Strength. Geochim. Cosmochim. Acta 1998, 62, 757–766. [Google Scholar] [CrossRef]
- Kralj, D.; Brečević, L.; Nielsen, A.E. Vaterite growth and dissolution in aqueous solution I. Kinetics of crystal growth. J. Cryst. Growth 1990, 104, 793–800. [Google Scholar] [CrossRef]
- Davis, K.J.; Dove, P.M.; De Yoreo, J.J. The Role of Mg2+ as an Impurity in Calcite Growth. Science 2000, 290, 1134–1137. [Google Scholar] [CrossRef]
- Berner, R.A. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta 1975, 39, 489–504. [Google Scholar] [CrossRef]
- Morse, J.W.; Arvidson, R.S.; Lüttge, A. Calcium Carbonate Formation and Dissolution. Chem. Rev. 2007, 107, 342–381. [Google Scholar] [CrossRef] [PubMed]
- Lowenstam, H.A. Minerals formed by organisms. Science 1981, 211, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Addadi, L.; Raz, S.; Weiner, S. Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization. Adv. Mater. 2003, 15, 959–970. [Google Scholar] [CrossRef]
- Cartwright, J.H.E.; Checa, A.G.; Gale, J.D.; Gebauer, D.; Sainz-Díaz, C.I. Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there? Angew. Chem. Int. Ed. 2012, 51, 11960–11970. [Google Scholar] [CrossRef]
- Politi, Y.; Arad, T.; Klein, E.; Weiner, S.; Addadi, L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 2004, 306, 1161–1164. [Google Scholar] [CrossRef]
- Weiss, I.M.; Tuross, N.; Addadi, L.; Weiner, S. Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite. J. Exp. Zool. 2002, 293, 478–491. [Google Scholar] [CrossRef]
- Beniash, E.; Aizenberg, J.; Addadi, L.; Weiner, S. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1997, 264, 461–465. [Google Scholar] [CrossRef]
- Dillaman, R.; Hequembourg, S.; Gay, M. Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J. Morphol. 2005, 263, 356–374. [Google Scholar] [CrossRef]
- Gebauer, D.; Volkel, A.; Colfen, H. Stable Prenucleation Calcium Carbonate Clusters. Science 2008, 322, 1819–1822. [Google Scholar] [CrossRef] [PubMed]
- Kanakis, J.; Malkaj, P.; Petroheilos, J.; Dalas, E. Crystallization of calcium carbonate on porcine and human cardiac valves and the antimineralization effect of sodium alginate. J. Cryst. Growth 2001, 223, 557–564. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Farina, M.; Ludka, I.P.; Kachar, B. Vaterite, calcite, and aragonite in the otoliths of three species of piranha. Naturwissenschaften 1996, 83, 133–135. [Google Scholar] [CrossRef]
- Ariani, A.P.; Wittmann, K.J.; Franco, E. A Comparative Study of Static Bodies in Mysid Crustaceans: Evolutionary Implications of Crystallographic Characteristics. Biol. Bull. 1993, 185, 393–404. [Google Scholar] [CrossRef]
- Lambert, G.; Lambert, C.C. Spicule Formation in the New Zealand Ascidian Pyura pachydermatina (Chordata, Ascidiacea). Connect. Tissue Res. 1996, 34, 263–269. [Google Scholar] [CrossRef]
- Qiao, L.; Feng, Q.L.; Liu, Y. A novel bio-vaterite in freshwater pearls with high thermal stability and low dissolubility. Mater. Lett. 2008, 62, 1793–1796. [Google Scholar] [CrossRef]
- Njegić Džakula, B.; Falini, G.; Kralj, D. Crystal growth mechanism of vaterite in the systems containing charged synthetic Poly (Amino Acids). Croat. Chem. Acta 2017, 90, 689–698. [Google Scholar] [CrossRef]
- Andreassen, J.-P. Formation mechanism and morphology in precipitation of vaterite—Nano-aggregation or crystal growth? J. Cryst. Growth 2005, 274, 256–264. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Astilleros, J.M.; Fernández-Díaz, L.; Putnis, A. The role of magnesium in the growth of calcite: An AFM study. Chem. Geol. 2010, 271, 52–58. [Google Scholar] [CrossRef]
- Balthasar, U.; Cusack, M. Aragonite-calcite seas—Quantifying the gray area. Geology 2015, 43, 99–102. [Google Scholar] [CrossRef]
- Wang, D.; Hamm, L.M.; Giuffre, A.J.; Echigo, T.; Rimstidt, J.D.; De Yoreo, J.J.; Grotzinger, J.; Dove, P.M. Revisiting geochemical controls on patterns of carbonate deposition through the lens of multiple pathways to mineralization. Faraday Discuss. 2012, 159, 371–386. [Google Scholar] [CrossRef]
- Kitano, Y.; Hood, D.W. Calcium Carbonate Crystal Forms Formed from Sea Water by Inorganic Processes. J. Oceanogr. Soc. Japan 1962, 18, 141–145. [Google Scholar] [CrossRef]
- Fermani, S.; Njegić Džakula, B.; Reggi, M.; Falini, G.; Kralj, D. Effects of magnesium and temperature control on aragonite crystal aggregation and morphology. CrystEngComm 2017, 19, 2451–2455. [Google Scholar] [CrossRef]
- Kimura, T.; Koga, N. Monohydrocalcite in comparison with hydrated amorphous calcium carbonate: Precipitation condition and thermal behavior. Cryst. Growth Des. 2011, 11, 3877–3884. [Google Scholar] [CrossRef]
- Purgstaller, B.; Konrad, F.; Dietzel, M.; Immenhauser, A.; Mavromatis, V. Control of Mg2+/Ca2+ Activity Ratio on the Formation of Crystalline Carbonate Minerals via an Amorphous Precursor. Cryst. Growth Des. 2017, 17, 1069–1078. [Google Scholar] [CrossRef]
- Vereshchagin, O.S.; Frank-Kamenetskaya, O.V.; Kuz’mina, M.A.; Chernyshova, I.A.; Shilovskikh, V.V. Effect of magnesium on monohydrocalcite formation and unit-cell parameters. Am. Mineral. 2021, 106, 1294–1305. [Google Scholar] [CrossRef]
- Bots, P.; Benning, L.G.; Rickaby, R.E.M.; Shaw, S. The role of SO4 in the switch from calcite to aragonite seas. Geology 2011, 39, 331–334. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Zhao, Y.; Huang, Y.; Wang, D.; Jiang, L.; Wu, J.; Xu, D. Morphology and crystalline characterization of abalone shell and mimetic mineralization. J. Cryst. Growth 2003, 252, 367–371. [Google Scholar] [CrossRef]
- Politi, Y.; Batchelor, D.R.; Zaslansky, P.; Chmelka, B.F.; Weaver, J.C.; Sagi, I.; Weiner, S.; Addadi, L. Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: A structure-function investigation. Chem. Mater. 2010, 22, 161–166. [Google Scholar] [CrossRef]
- Mann, S. Molecular recognition in biomineralization. Nature 1988, 332, 119–124. [Google Scholar] [CrossRef]
- Addadi, L.; Moradian, J.; Shay, E.; Maroudas, N.G.; Weiner, S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. Proc. Natl. Acad. Sci. USA 1987, 84, 2732–2736. [Google Scholar] [CrossRef]
- Cölfen, H. Precipitation of carbonates: Recent progress in controlled production of complex shapes. Curr. Opin. Colloid Interface Sci. 2003, 8, 23–31. [Google Scholar] [CrossRef]
- Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes. Chem.–A Eur. J. 2006, 12, 980–987. [Google Scholar] [CrossRef]
- Albeck, S.; Aizenberg, J.; Addadi, L.; Weiner, S. Interactions of Various Skeletal Intracrystalline Components with Calcite Crystals. J. Am. Chem. Soc. 1993, 115, 11691–11697. [Google Scholar] [CrossRef]
- Gotliv, B.-A.; Kessler, N.; Sumerel, J.L.; Morse, D.E.; Tuross, N.; Addadi, L.; Weiner, S. Asprich: A novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. ChemBioChem 2005, 6, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Sarashina, I.; Iijima, M.; Endo, K. In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS Lett. 2008, 582, 591–596. [Google Scholar] [CrossRef]
- Belcher, A.M.; Wu, X.H.; Christensen, R.J.; Hansma, P.K.; Stucky, G.D.; Morse, D.E. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 1996, 381, 56–58. [Google Scholar] [CrossRef]
- Feng, Q.L.; Pu, G.; Pei, Y.; Cui, F.Z.; Li, H.D.; Kim, T.N. Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell. J. Cryst. Growth 2000, 216, 459–465. [Google Scholar] [CrossRef]
- Politi, Y.; Mahamid, J.; Goldberg, H.; Weiner, S.; Addadi, L. Asprich mollusk shell protein: In vitro experiments aimed at elucidating function in CaCO3 crystallization. CrystEngComm 2007, 9, 1171–1177. [Google Scholar] [CrossRef]
- Song, R.-Q.; Cölfen, H. Additive controlled crystallization. CrystEngComm 2011, 13, 1249–1276. [Google Scholar] [CrossRef]
- Jiang, W.; Pacella, M.S.; Athanasiadou, D.; Nelea, V.; Vali, H.; Hazen, R.M.; Gray, J.J.; McKee, M.D. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat. Commun. 2017, 8, 15066. [Google Scholar] [CrossRef]
- Green, D.C.; Ihli, J.; Kim, Y.-Y.; Chong, S.Y.; Lee, P.A.; Empson, C.J.; Meldrum, F.C. Rapid Screening of Calcium Carbonate Precipitation in the Presence of Amino Acids: Kinetics, Structure, and Composition. Cryst. Growth Des. 2016, 16, 5174–5183. [Google Scholar] [CrossRef]
- Orme, C.A.; Noy, A.; Wierzbicki, A.; McBride, M.T.; Grantham, M.; Teng, H.H.; Dove, P.M.; DeYoreo, J.J. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 2001, 411, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Gower, L.B. Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization. Chem. Rev. 2008, 108, 4551–4627. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Freeman, C.L.; Gong, X.; Levenstein, M.A.; Wang, Y.; Kulak, A.; Anduix-Canto, C.; Lee, P.A.; Li, S.; Chen, L.; et al. The Effect of Additives on the Early Stages of Growth of Calcite Single Crystals. Angew. Chem. Int. Ed. 2017, 56, 11885–11890. [Google Scholar] [CrossRef] [PubMed]
- Njegić-Džakula, B.; Falini, G.; Brečević, L.; Skoko, Ž.; Kralj, D. Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-l-amino acids. J. Colloid Interface Sci. 2010, 343, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Bertinetti, L.; Politi, Y.; Fratzl, P.; Habraken, W.J.E.M. Control of Polymorph Selection in Amorphous Calcium Carbonate Crystallization by Poly (Aspartic Acid): Two Different Mechanisms. Small 2017, 13, 1603100. [Google Scholar] [CrossRef]
- Zou, Z.; Polishchuk, I.; Bertinetti, L.; Pokroy, B.; Politi, Y.; Fratzl, P.; Habraken, W.J.E.M. Additives influence the phase behavior of calcium carbonate solution by a cooperative ion-association process. J. Mater. Chem. B 2018, 6, 449–457. [Google Scholar] [CrossRef]
- Yu, S.-H.; Cölfen, H. Bio-inspired crystal morphogenesis by hydrophilic polymers. J. Mater. Chem. 2004, 14, 2124–2147. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Fielding, L.A.; Kulak, A.N.; Nahi, O.; Mercer, W.; Jones, E.R.; Armes, S.P.; Meldrum, F.C. Influence of the Structure of Block Copolymer Nanoparticles on the Growth of Calcium Carbonate. Chem. Mater. 2018, 30, 7091–7099. [Google Scholar] [CrossRef]
- Cölfen, H.; Qi, L. A Systematic Examination of the Morphogenesis of Calcium Carbonate in the Presence of a Double-Hydrophilic Block Copolymer. Chem.–A Eur. J. 2001, 7, 106–116. [Google Scholar] [CrossRef]
- Li, M.; Cölfen, H.; Mann, S. Morphological control of BaSO4 microstructures by double hydrophilic block copolymer mixtures. J. Mater. Chem. 2004, 14, 2269–2276. [Google Scholar] [CrossRef]
- Bawazer, L.A.; Ihli, J.; Comyn, T.P.; Critchley, K.; Empson, C.J.; Meldrum, F.C. Genetic Algorithm-Guided Discovery of Additive Combinations That Direct Quantum Dot Assembly. Adv. Mater. 2015, 27, 223–227. [Google Scholar] [CrossRef]
- Wolf, S.L.P.; Jähme, K.; Gebauer, D. Synergy of Mg2+ and poly (aspartic acid) in additive-controlled calcium carbonate precipitation. CrystEngComm 2015, 17, 6857–6862. [Google Scholar] [CrossRef]
- Marzec, B.; Green, D.C.; Holden, M.A.; Coté, A.S.; Ihli, J.; Khalid, S.; Kulak, A.; Walker, D.; Tang, C.; Duffy, D.M.; et al. Amino Acid Assisted Incorporation of Dye Molecules within Calcite Crystals. Angew. Chem. Int. Ed. 2018, 57, 8623–8628. [Google Scholar] [CrossRef] [PubMed]
- Laipnik, R.; Bissi, V.; Sun, C.Y.; Falini, G.; Gilbert, P.U.P.A.; Mass, T. Coral acid rich protein selects vaterite polymorph in vitro. J. Struct. Biol. 2020, 209, 107431. [Google Scholar] [CrossRef] [PubMed]
- Tracy, S.L.; François, C.J.P.; Jennings, H.M. The growth of calcite spherulites from solution I. Experimental design techniques. J. Cryst. Growth 1998, 193, 374–381. [Google Scholar] [CrossRef]
- Goffredo, S.; Vergni, P.; Reggi, M.; Caroselli, E.; Sparla, F.; Levy, O.; Dubinsky, Z.; Falini, G. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation. PLoS ONE 2011, 6, e22338. [Google Scholar] [CrossRef]
- Reggi, M.; Fermani, S.; Landi, V.; Sparla, F.; Caroselli, E.; Gizzi, F.; Dubinsky, Z.; Levy, O.; Cuif, J.-P.; Dauphin, Y.; et al. Biomineralization in Mediterranean Corals: The Role of the Intraskeletal Organic Matrix. Cryst. Growth Des. 2014, 14, 4310–4320. [Google Scholar] [CrossRef]
- Davis, C.W. Ion Association; Butterworths: London, UK, 1962. [Google Scholar]
- Sani, T.; Prada, F.; Radi, G.; Caroselli, E.; Falini, G.; Dubinsky, Z.; Goffredo, S. Ocean warming and acidification detrimentally affect coral tissue regeneration at a Mediterranean CO2 vent. Sci. Total Environ. 2024, 906, 167789. [Google Scholar] [CrossRef] [PubMed]
- García-Monteiro, S.; Sobrino, J.A.; Julien, Y.; Sòria, G.; Skokovic, D. Surface Temperature trends in the Mediterranean Sea from MODIS data during years 2003–2019. Reg. Stud. Mar. Sci. 2022, 49, 102086. [Google Scholar] [CrossRef]
- Vojtkuf, I.; Andrašić, M.; Kralj, D.; Kontrec, J.; Njegić Džakula, B. Synergistic Effect of Additives in CaCO3 Precipitation System at Different Initial pH. Croat. Chem. Acta 2024, 97, 175–187. [Google Scholar] [CrossRef]
ADDITIVE | tind/s |
---|---|
model system | 75 |
0.5 ppm SOM-CCA | 75 |
0.5 ppm SOM-ACL | 75 |
Mg2+ | 2500 |
0.5 ppm SOM-CCA + Mg2+ | 13,000 |
0.5 ppm SOM-ACL + Mg2+ | 24,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontrec, J.; Matijaković Mlinarić, N.; Kralj, D.; Falini, G.; Selmani, A.; Goffredo, S.; Njegić Džakula, B. The Precipitation of Calcium Carbonate in the Presence of Macromolecules Isolated from Corals. Colloids Interfaces 2025, 9, 50. https://doi.org/10.3390/colloids9040050
Kontrec J, Matijaković Mlinarić N, Kralj D, Falini G, Selmani A, Goffredo S, Njegić Džakula B. The Precipitation of Calcium Carbonate in the Presence of Macromolecules Isolated from Corals. Colloids and Interfaces. 2025; 9(4):50. https://doi.org/10.3390/colloids9040050
Chicago/Turabian StyleKontrec, Jasminka, Nives Matijaković Mlinarić, Damir Kralj, Giuseppe Falini, Atiđa Selmani, Stefano Goffredo, and Branka Njegić Džakula. 2025. "The Precipitation of Calcium Carbonate in the Presence of Macromolecules Isolated from Corals" Colloids and Interfaces 9, no. 4: 50. https://doi.org/10.3390/colloids9040050
APA StyleKontrec, J., Matijaković Mlinarić, N., Kralj, D., Falini, G., Selmani, A., Goffredo, S., & Njegić Džakula, B. (2025). The Precipitation of Calcium Carbonate in the Presence of Macromolecules Isolated from Corals. Colloids and Interfaces, 9(4), 50. https://doi.org/10.3390/colloids9040050