Negative Temperature Coefficient of Resistance (NTCR) of Bismuth Manganite Nanoparticles: Polypyrrole Conductivity Enhancement
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Bismuth Manganite (BCM) Nanoparticle
2.3. Synthesis of Polypyrrole (PPy)
2.4. Synthesis of PPy/BCM Nanocomposites
2.5. Characterizations
3. Results and Discussion
3.1. Structural Characteristics
3.1.1. FESEM, EDX and TEM Analysis
3.1.2. XRD and FTIR Analysis
3.2. Electrical Studies
- Disorder-Induced Variations in AC Conductivity of Materials:
3.2.1. DC Conductivity
3.2.2. AC Conductivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goudar, J.A.; Thrinethra, S.N.; Chapi, S.; Murugendrappa, M.V.; Saeb, M.R.; Salami-Kalajahi, M. Cobalt-Based Materials in Supercapacitors and Batteries: A Review. Adv. Energy Sustain. Res. 2024, 6, 2400271. [Google Scholar] [CrossRef]
- Bharti, M.; Singh, A.; Muthe, K.; Aswal, D. Conducting Polymers and Their Composites Adding New Dimensions to Advanced Thermoelectric Materials. In Recent Advances in Thin Films; Springer: Berlin/Heidelberg, Germany, 2020; pp. 413–453. [Google Scholar]
- Wang, Y.; Du, Y.; Xu, P.; Qiang, R.; Han, X. Recent advances in conjugated polymer-based microwave absorbing materials. Polymers 2017, 9, 29. [Google Scholar] [CrossRef]
- Soares, B.G.; Barra, G.M.O.; Indrusiak, T. Conducting Polymeric Composites Based on Intrinsically Conducting Polymers as Electromagnetic Interference Shielding/Microwave Absorbing Materials—A Review. J. Compos. Sci. 2021, 5, 7. [Google Scholar] [CrossRef]
- Megha, R.; Kotresh, S.; Ravikiran, Y.T.; Ramana, C.H.V.V.; Vijaya Kumari, S.C.; Thomas, S. Study of alternating current conduction mechanism in polypyrrole-magnesium ferrite hybrid nanocomposite through correlated barrier hopping model. Compos. Interfaces 2017, 24, 55–68. [Google Scholar] [CrossRef]
- Tundwal, A.; Kumar, H.; Binoj, B.J.; Sharma, R.; Kumar, G.; Kumari, R.; Dhayal, A.; Yadav, A.; Singh, D.; Kumar, P. Developments in conducting polymer- metal oxide- and carbon nanotube-based composite electrode materials for supercapacitors: A review. RSC advances 2024, 14, 9406–9439. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Yu, D. Progress of conductive polypyrrole nanocomposites. Synthetic Metals. 2022, 290, 117138. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Y.; Liu, X.; Zhao, X.; Li, T.; Zhao, Y.; Liu, P. Polypyrrole-Based Composite Materials for Electromagnetic Wave Absorption. Polym. Rev. 2021, 61, 646–687. [Google Scholar] [CrossRef]
- Kumar, A.; Bérardan, D.; Dragoe, D.; Riviere, E.; Takayama, T.; Takagi, H.; Dragoe, N. Magnetic and electrical properties of high-entropy rare-earth manganites. Mater. Today Phys. 2023, 32, 101026. [Google Scholar] [CrossRef]
- Danmo, F.H.; Westermoen, A.; Marshall, K.; Stoian, D.; Grande, T.; Glaum, J.; Selbach, S.M. High-Entropy Hexagonal Manganites for Fast Oxygen Absorption and Release. Chem. Mater. 2024, 36, 2711–2720. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Viret, M.; Von Molnár, S. Mixed-valence manganites. Adv. Phys. 1999, 48, 167–293. [Google Scholar] [CrossRef]
- Zhang, R.R.; Kuang, G.L.; Yin, L.H.; Sun, Y.P. Effect of progressive substitution of Bi3+ by La3+ on the structural, magnetic, and transport properties of Bi0.6Ca0.4MnO3. J. Appl. Phys. 2010, 108, 103903. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Park, J.; Jung, R.-J.; Noh, H.-J.; Oh, S.-J. Structure, magnetic and transport properties of La1−xBixMnO3. J. Magn. Magn. Mater. 2004, 280, 404–411. [Google Scholar] [CrossRef]
- Troyanchuk, I.O.; Mantytskaja, O.S.; Szymczak, H.; Shvedun, Y.M. Magnetic phase transitions in the system La1−xBixMnO3+λ. Low Temp. Phys. 2002, 28, 569–573. [Google Scholar] [CrossRef]
- Barnabé, A.; Maignan, A.; Hervieu, M.; Damay, F.; Martin, C.; Raveau, B. Extension of colossal magnetoresistance properties to small A site cations by chromium doping in Ln0.5Ca0.5MnO3 manganites. Appl. Phys. Lett. 1997, 71, 3907–3909. [Google Scholar] [CrossRef]
- Vijayan, D.; Kurian, J.; Singh, R. The effect of Bi doping on ESR of La0.7-xBixCa0.3MnO3. AIP Conf. Proc. 2012, 1447, 1191–1192. [Google Scholar] [CrossRef]
- Okimoto, Y.; Tomioka, Y.; Onose, Y.; Otsuka, Y.; Tokura, Y. Optical study of Pr1−xCaxMnO3 (x = 0.4) in a magnetic field: Variation of electronic structure with charge ordering and disordering phase transitions. Phys. Rev. B 1999, 59, 7401. [Google Scholar] [CrossRef]
- Petrukhin, D.; Salnikov, V.; Nikitin, A.; Sidane, I.; Slimani, S.; Alberti, S.; Peddis, D.; Omelyanchik, A.; Rodionova, V. Effect of Bismuth Ferrite Nanoparticles on Physicochemical Properties of Polyvinylidene Fluoride-Based Nanocomposites. J. Compos. Sci. 2020, 8, 329. [Google Scholar] [CrossRef]
- Rafiq, F.; Govindsamy, P.; Periyasamy, S. Synthesis of a Novel Nanoparticle BaCoO2.6 through Sol-Gel Method and Elucidation of Its Structure and Electrical Properties. J. Nanomater. 2022, 2022, 3877879. [Google Scholar] [CrossRef]
- Tarani, E.; Arvanitidis, I.; Christofilos, D.; Dimitrios, N.B.; Konstantinos, C.; George, V. Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: A comparative study. J. Mater. Sci. 2023, 58, 1621–1639. [Google Scholar] [CrossRef]
- MacDonald, M.; Zhitomirsky, I. Capacitive Properties of Ferrimagnetic NiFe2O4-Conductive Polypyrrole Nanocomposites. J. Compos. Sci. 2024, 8, 51. [Google Scholar] [CrossRef]
- Koshy, J.; Kurian, J.; Jose, R.; Asha, M.J.; Sajith, P.K.; James, J.; Pal, S.P.; Pinto, R. Novel ceramic substrates for high Tc superconductors. Bull. Mater. Sci. 1999, 22, 243–249. [Google Scholar] [CrossRef]
- Park, D.E.; Chae, H.S.; Choi, H.J.; Maity, A. Magnetite–polypyrrole core–shell structured microspheres and their dual stimuli-response under electric and magnetic fields. J. Mater. Chem. C Mater. 2015, 3, 3150–3158. [Google Scholar] [CrossRef]
- Vijayan, D.; Kurian, J.; Singh, R. Electron spin resonance and magnetization studies on Bi0.5Ca0.5Mn0.95TM0.05O3 (TM = Cr, Fe, Co and Ni). J. Appl. Phys. 2012, 111, 07D716. [Google Scholar] [CrossRef]
- Pugazhvadivu, K.S.; Balakrishnan, L.; Tamilarasan, K. Structural, magnetic and electrical properties of calcium modified bismuth manganite thin films. Mater. Chem. Phys. 2015, 155, 147–154. [Google Scholar] [CrossRef]
- Punith Kumar, V.; Dayal, V.; Hadimani, R.L.; Bhowmik, R.N.; Jiles, D.C. Magnetic and electrical properties of Ti-substituted lanthanum bismuth manganites. J. Mater. Sci. 2015, 50, 3562–3575. [Google Scholar] [CrossRef]
- Khalil, K.D.; Riyadh, S.M.; Alkayal, N.S.; Bashal, A.H.; Alharbi, K.H.; Alharbi, W. Chitosan-Strontium Oxide Nanocomposite: Preparation, Characterization, and Catalytic Potency in Thiadiazoles Synthesis. Polymers 2022, 14, 2827. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Padalia, D.; Kumar, P.; Bhandari, P. Estimation of lattice strain and structural study of BaTiO3/PS polymer composite using X-ray peak profile analysis. J. Nanoparticle Res. 2023, 25, 124. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Y.; Wen, Z.; Huang, L.; Wang, X.; Zhang, H. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J. Power Sources 2011, 196, 6951–6955. [Google Scholar] [CrossRef]
- Ramalingam, R.J.; Arunachalam, P.; Amer, M.S.; AlOthman, Z.A.; Alanazi, A.G.; Al-Anazy, M.M.; AL-Lohedan, A.A.; Dahan, W.M. Facile sonochemical synthesis of silver nanoparticle and graphene oxide deposition on bismuth doped manganese oxide nanotube composites for electro-catalytic sensor and oxygen reduction reaction (ORR) applications. Intermetallics 2021, 131, 107101. [Google Scholar] [CrossRef]
- Patil, S.S.; Lokhande, A.C.; Lokhande, C.D. Room temperature synthesis of polypyrrole/Bi2CaMn2O8 nanocomposite thin films: Structural and optical properties. Mater. Sci. Semicond. Process. 2015, 29, 234–240. [Google Scholar]
- Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; OUP: Oxford, UK, 2012. [Google Scholar]
- Nandihalli, N.; Pai, Y.-H.; Liu, C.-J. Fabrication and thermoelectric properties of Pb1-y (Zn0. 85Al0. 15)yTe-Te (y = 0, 0.04, 0.06, 0.08, and 0.11) nanocomposites. Ceram. Int. 2020, 46, 6443–6453. [Google Scholar] [CrossRef]
- Jonscher, A.K. The ‘universal’ dielectric response. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Jonscher, A.K. Dielectric relaxation in solids. J. Phys. D Appl. Phys. 1999, 32, R57–R70. [Google Scholar] [CrossRef]
- Kotalgi, K.; Kanojiya, A.; Tisekar, A.; Salame, P.H. Electronic transport and electrochemical performance of MnCo2O4 synthesized using the microwave-assisted sonochemical method for potential supercapacitor application. Chem. Phys. Lett. 2022, 800, 139660. [Google Scholar] [CrossRef]
- Raj, K.G.; Joy, P.A. Cross over from 3D variable range hopping to the 2D weak localization conduction mechanism in disordered carbon with the extent of graphitization. Phys. Chem. Chem. Phys. 2015, 17, 16178–16185. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, S.; Zhang, L.; Mao, Y.; Ryu, J.; Mavinakuli, P.; Karki, A.B.; Young, D.P.; Guo, Z. Conductive Polypyrrole/Tungsten Oxide Metacomposites with Negative Permittivity. J. Phys. Chem. C 2010, 114, 16335–16342. [Google Scholar] [CrossRef]
- Joung, D.; Khondaker, S.I. Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon sp2 fraction. Phys. Rev. B 2012, 86, 235423. [Google Scholar] [CrossRef]
- Yuanshuai, L.; Yuting, W.; Haijun, L.; Xiaoli, L. Preparation of CoFe2O4–P4VP@Ag NPs as effective and recyclable catalysts for the degradation of organic pollutants with NaBH4 in water. Int. J. Hydrog. Energy. 2020, 45, 16080–16093. [Google Scholar] [CrossRef]
- Sutar, R.A.; Kumari, L.; Murugendrappa, M.V. Room temperature ac conductivity, dielectric properties and impedance analysis of polypyrrole-zinc cobalt oxide (PPy/ZCO) composites. Phys. B Condens. Matter 2019, 573, 36–44. [Google Scholar] [CrossRef]
- Javadi, A.; Pan, S.; Cao, C.; Li, X. High Strength and High Electrical Conductivity Al Nanocomposites for DC Transmission Cable Applications. J. Compos. Sci. 2021, 5, 172. [Google Scholar] [CrossRef]
- Bharathi, M.; Anuradha, K.N.; Murugendrappa, M.V. Structural, DC Conductivity and Electric Modulus Studies of Polypyrrole Praseodymium Manganite Nanocomposites. Indian J. Pure Appl. Phys. 2023, 61, 165–174. [Google Scholar] [CrossRef]
- Sachdev, V.; Panwar, V.; Singh, H.; Mehra, N.; Mehra, R. Study of prelocalized graphite/styrene acrylonitrile conducting composites for device applications. Phys. Status Solidi (a) 2006, 203, 386–396. [Google Scholar] [CrossRef]
- Achary, P.G.R.; Deo, S.S.; Munisha, B.; Choudhary, R.; Parida, S. Effect of temperature on electrical properties of PU/Fe (30%) nanocomposite. J. Polym. Res. 2020, 27, 244. [Google Scholar] [CrossRef]
- Shooshtary Veisi, S.; Yousefi, M.; Amini, M.M.; Shakeri, A.R.; Bagherzadeh, M.; Afghahi, S.S.S. Magnetic properties, structural studies and microwave absorption performance of Ba0.5Sr0.5CuxZrxFe12-2xO19/Poly Ortho-Toluidine (x = 0.2, 0.4, 0.6, 0.8) ceramic nanocomposites. Inorg. Chem. Commun. 2021, 132, 108802. [Google Scholar] [CrossRef]
- Liu, J.; Duan, C.-G.; Yin, W.-G.; Mei, W.N.; Smith, R.W.; Hardy, J.R. Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 2003, 119, 2812–2819. [Google Scholar] [CrossRef]
- Bhavani, S.; Ravi, M.; Pavani, Y.; Raja, V.; Karthikeya, R.S.; Rao, V.V.R.N. Studies on structural, electrical and dielectric properties of nickel ion conducting polyvinyl alcohol based polymer electrolyte films. J. Mater. Sci. Mater. Electron. 2017, 28, 13344–13349. [Google Scholar] [CrossRef]
- Sutar, R.A.; Kumari, L.; Murugendrappa, M.V. Three-Dimensional Variable Range Hopping and Thermally Activated Conduction Mechanism of Polypyrrole/Zinc Cobalt Oxide Nanocomposites. J. Phys. Chem. C 2020, 124, 21772–21781. [Google Scholar] [CrossRef]
Material | Average Crystallite Size (nm) | Crystallinity (%) | Microstrain (10−3) | FESEM Particle Size (nm) | |
---|---|---|---|---|---|
Scherrer’s formula | W–H plot | ||||
BCM | 18.34 | 19.02 | 77.02 | 7.45 | 39 |
PPy/BCM-10 | 24.56 | 22.67 | 57.49 | 5.48 | 112 |
PPy/BCM-20 | 26.12 | 27.34 | 63.61 | 4.86 | 185 |
PPy/BCM-30 | 26.56 | 27.78 | 66.85 | 5.34 | 186 |
PPy/BCM-40 | 25.67 | 28.77 | 69.45 | 5.77 | 150 |
PPy/BCM-50 | 27.89 | 26.73 | 71.44 | 6.02 | 143 |
Material | Characteristic Temperature in (K) | The Density of States N (EF) J−1 m−3 | Hopping Distance (R) at 303 K (m) | σdc (mS/cm) | s | Activation Energy Ea (eV) |
---|---|---|---|---|---|---|
Pure PPy | 7.37 × 107 | 2.33 × 10−4 | 8.49 × 10−9 | 0.0033474 | 0.367 | 0.114 |
PPy/BCM 10 | 9.12 × 107 | 5.25 × 10−4 | 8.34 × 10−9 | 0.076432 | 0.524 | 0.106 |
PPy/BCM 20 | 1.09 × 108 | 4.23 × 10−4 | 8.45 × 10−9 | 0.087283 | 0.519 | 0.099 |
PPy/BCM 30 | 1.19 × 108 | 6.37 × 10−4 | 7.05 × 10−9 | 0.095733 | 0.537 | 0.090 |
PPy/BCM 40 | 7.16 × 107 | 1.26 × 10−3 | 1.48 × 10−8 | 0.0054356 | 0.472 | 0.117 |
PPy/BCM 50 | 7.28 × 107 | 9.36 × 10−4 | 8.26 × 10−9 | 0.0040905 | 0.528 | 0.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharathi, M.; Chapi, S.; Nandihalli, N.; Murugendrappa, M.V. Negative Temperature Coefficient of Resistance (NTCR) of Bismuth Manganite Nanoparticles: Polypyrrole Conductivity Enhancement. J. Compos. Sci. 2025, 9, 224. https://doi.org/10.3390/jcs9050224
Bharathi M, Chapi S, Nandihalli N, Murugendrappa MV. Negative Temperature Coefficient of Resistance (NTCR) of Bismuth Manganite Nanoparticles: Polypyrrole Conductivity Enhancement. Journal of Composites Science. 2025; 9(5):224. https://doi.org/10.3390/jcs9050224
Chicago/Turabian StyleBharathi, Meti, Sharanappa Chapi, Nagaraj Nandihalli, and M. V. Murugendrappa. 2025. "Negative Temperature Coefficient of Resistance (NTCR) of Bismuth Manganite Nanoparticles: Polypyrrole Conductivity Enhancement" Journal of Composites Science 9, no. 5: 224. https://doi.org/10.3390/jcs9050224
APA StyleBharathi, M., Chapi, S., Nandihalli, N., & Murugendrappa, M. V. (2025). Negative Temperature Coefficient of Resistance (NTCR) of Bismuth Manganite Nanoparticles: Polypyrrole Conductivity Enhancement. Journal of Composites Science, 9(5), 224. https://doi.org/10.3390/jcs9050224