Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = bismuth manganite nanocomposites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6178 KB  
Article
Negative Temperature Coefficient of Resistance (NTCR) of Bismuth Manganite Nanoparticles: Polypyrrole Conductivity Enhancement
by Meti Bharathi, Sharanappa Chapi, Nagaraj Nandihalli and M. V. Murugendrappa
J. Compos. Sci. 2025, 9(5), 224; https://doi.org/10.3390/jcs9050224 - 30 Apr 2025
Viewed by 625
Abstract
Polypyrrole (PPy)-doped bismuth calcium manganite (BCM) nanocomposites were synthesized by chemical polymerization. The amorphous nature of the polypyrrole and the monoclinic crystal structure of the BCM particles (35–65 nm) were confirmed by various microstructural, X-ray powder, and spectroscopy techniques. The DC conductivity analysis [...] Read more.
Polypyrrole (PPy)-doped bismuth calcium manganite (BCM) nanocomposites were synthesized by chemical polymerization. The amorphous nature of the polypyrrole and the monoclinic crystal structure of the BCM particles (35–65 nm) were confirmed by various microstructural, X-ray powder, and spectroscopy techniques. The DC conductivity analysis via the correlated barrier-hopping (CBH) model and Mott’s variable-range hopping (MVRH) model showed that the nanocomposites exhibited ionic conduction. Activation energies, evaluated from the Arrhenius plots, showed that PPy/BCM-30 (30 wt.% of BCM) had the minimum value of 0.09 eV, indicating maximum conductivity and normal NTCR behavior, with resistance decreasing with temperature. The CBH model described the conduction process, and the AC conductivity measurements indicated that the conductivity was frequency-independent at lower frequencies but became dispersive and frequency-dependent at higher frequencies, conforming to Jonscher’s power law. The study revealed that the transport of electrical charge in the material followed the correlated barrier-hopping (CBH) model. These results demonstrate how promising PPy/BCM nanocomposites are for energy storage, sensors, and electronic materials. Full article
(This article belongs to the Special Issue Composite Materials Containing Conjugated and Conductive Polymers)
Show Figures

Figure 1

Back to TopTop