Physico-Mechanical Property Evaluation and Morphology Study of Moisture-Treated Hemp–Banana Natural-Fiber-Reinforced Green Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polyester Resin Matrix
2.3. Hybrid Composite Preparation
2.4. Water Immerssion Procedure
2.5. Mechanical Properties of prepared Composite
2.5.1. Tensile Test
2.5.2. Flexural (Three-point Bending) Test
2.6. Water Absorption Test on Dimensional Stability and Weight
3. Results and Discussions
3.1. Analysis of Results of Water Absorption on Dimension Stability and Weight
3.2. Analysis of Results of Tensile Test
3.3. Analysis of Results of Flexural Test
3.4. Fracture Surface Analysis of Composite Samples
4. Conclusions
- The effect of the moisture absorption on the hybrid composites immersed in distilled water was studied at room temperature. There was no significant change in the dimensions of the specimens. The weight of the hybrid composites increased due to the water particles absorbed by the fibers due to their higher cellulose content. A higher level of water absorption decreased the fiber strength as a result of the formation of micro-voids on the surfaces;
- The moisture absorption resulted in fiber swelling, resulting in reduced mechanical strengths. The increased degradation rate of the fibers due to the water absorption (after the prolonged immersion of the composites for two weeks) resulted in a reduced tensile strength;
- The hybrid (hemp and banana)-fiber-reinforced polymer composites resulted in a higher tensile strength than the other composite specimens. The tensile strength of the hybrid composite was 11% greater than that of the hemp and banana raw specimens. The tensile strength decreased to 2% in the second week due to moisture absorption;
- The flexural strength of the hemp–banana hybrid composite increased to 2.7% within one week (i.e., from 1126 MPa–1152 MPa);
- The SEM morphology study revealed fiber breakage and matrix fracturing due to the decreased matrix strength as a result of the absorbed moisture in the composite samples. Voids and fiber dislocations were also observed in the fractured samples;
- Overall, it can be concluded that the hemp fiber alone produced better properties than the banana fiber. The hybrid (hemp and banana) composites resulted in enhanced properties that are best suitable for exterior-engineered parts.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Azevedo, A.R.G.; Cruz, A.S.A.; Marvila, M.T.; de Oliveira, L.B.; Monteiro, S.N.; Vieira, C.M.F.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymers 2021, 13, 2493. [Google Scholar] [CrossRef]
- Dhaliwal, J.S. Generation, Development and Modifications of Natural Fibers; Abbas, M., Jeon, H.-Y., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-78984-672-0. [Google Scholar]
- Patel, M.; Sahu, R.; Rajak, R. Handbook of Solid Waste Management through Circular Economy; Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R., Eds.; Springer: Singapore, 2020; ISBN 978-981-15-7525-9. [Google Scholar]
- Zwawi, M. A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications. Molecules 2021, 26, 404. [Google Scholar] [CrossRef] [PubMed]
- Sapuan, S.M.; Tamrin, K.F.; Nukman, Y.; El-Shekeil, Y.A.; Hussin, M.S.A.; Aziz, S.N.A. Manufacturing of Natural Fibre Reinforced Polymer Composites; Salit, M.S., Jawaid, M., Yusoff, N.B., Hoque, M.E., Eds.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-07943-1. [Google Scholar]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Balakrishnan, P.; John, M.J.; Pothen, L.; Sreekala, M.S.; Thomas, S. Natural Fibre and Polymer Matrix Composites and Their Applications in Aerospace Engineering. In Advanced Composite Materials for Aerospace Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 365–383. [Google Scholar]
- Olhan, S.; Khatkar, V.; Behera, B.K. Review: Textile-Based Natural Fibre-Reinforced Polymeric Composites in Automotive Lightweighting. J. Mater. Sci. 2021, 56, 18867–18910. [Google Scholar] [CrossRef]
- Romão, S.; Bettencourt, A.; Ribeiro, I.A.C. Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers 2022, 14, 4968. [Google Scholar] [CrossRef]
- Lau, K.; Hung, P.; Zhu, M.-H.; Hui, D. Properties of Natural Fibre Composites for Structural Engineering Applications. Compos. B Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Syamsir, A.; Zahari, N.M.; Supian, A.B.M.; Ishak, M.R.; Sapuan, S.M.; Sharma, S.; Rashedi, A.; Razman, M.R.; Zakaria, S.Z.S.; et al. Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability. Polymers 2022, 14, 920. [Google Scholar] [CrossRef] [PubMed]
- Bazan, P.; Salasińska, K.; Kuciel, S. Flame Retardant Polypropylene Reinforced with Natural Additives. Ind. Crop. Prod. 2021, 164, 113356. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Seshadri, S.A.; Ramakrishnan, S.; Sanjay, M.R.; Siengchin, S.; Nagaraja, K.C. A Comprehensive Review on Natural Fiber/nano-clay Reinforced Hybrid Polymeric Composites: Materials and Technologies. Polym. Compos. 2021, 42, 3687–3701. [Google Scholar] [CrossRef]
- Ghabezi, P.; Harrison, N.M. Indentation Characterization of Glass/Epoxy and Carbon/Epoxy Composite Samples Aged in Artificial Salt Water at Elevated Temperature. Polym. Test. 2022, 110, 107588. [Google Scholar] [CrossRef]
- Liu, X.; Su, Q.; Zhu, J.; Song, X. The Aging Behavior and Life Prediction of CFRP Rods under a Hygrothermal Environment. Polymers 2023, 15, 2490. [Google Scholar] [CrossRef]
- Neto, J.; Queiroz, H.; Aguiar, R.; Lima, R.; Cavalcanti, D.; Doina Banea, M. A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites. J. Renew. Mater. 2022, 10, 561–589. [Google Scholar] [CrossRef]
- Mohit, H.; Mavinkere Rangappa, S.; Siengchin, S.; Gorbatyuk, S.; Manimaran, P.; Alka Kumari, C.; Khan, A.; Doddamani, M. A Comprehensive Review on Performance and Machinability of Plant Fiber Polymer Composites. Polym. Compos. 2022, 43, 608–623. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Puttegowda, M.; Mavinkere Rangappa, S.; Siengchin, S. A Review on Extraction, Chemical Treatment, Characterization of Natural Fibers and Its Composites for Potential Applications. Polym. Compos. 2021, 42, 6239–6264. [Google Scholar] [CrossRef]
- Chandgude, S.; Salunkhe, S. In State of Art: Mechanical Behavior of Natural Fiber-based Hybrid Polymeric Composites for Application of Automobile Components. Polym. Compos. 2021, 42, 2678–2703. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Ismadi; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A Review on Natural Fibers for Development of Eco-Friendly Bio-Composite: Characteristics, and Utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Cicala, G.; Cristaldi, G.; Recca, G.; Latteri, A. Composites Based on Natural Fibre Fabrics. In Woven Fabric Engineering; Sciyo: Rijeka, Croatia, 2010. [Google Scholar]
- Ding, L.; Han, X.; Cao, L.; Chen, Y.; Ling, Z.; Han, J.; He, S.; Jiang, S. Characterization of Natural Fiber from Manau Rattan (Calamus manan) as a Potential Reinforcement for Polymer-Based Composites. J. Bioresour. Bioprod. 2022, 7, 190–200. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Wang, J.; Ding, L.; Zhang, K.; Han, J.; Jiang, S. Micro- and Nano-Fibrils of Manau Rattan and Solvent-Exchange-Induced High-Haze Transparent Holocellulose Nanofibril Film. Carbohydr. Polym. 2022, 298, 120075. [Google Scholar] [CrossRef] [PubMed]
- Müssig, J.; Schmehl, M.; von Buttlar, H.-B.; Schönfeld, U.; Arndt, K. Exterior Components Based on Renewable Resources Produced with SMC Technology—Considering a Bus Component as Example. Ind. Crop. Prod. 2006, 24, 132–145. [Google Scholar] [CrossRef]
- Puglia, D.; Biagiotti, J.; Kenny, J.M. A Review on Natural Fibre-Based Composites—Part II. J. Nat. Fibers 2005, 1, 23–65. [Google Scholar] [CrossRef]
- Bharath, K.N.; Basavarajappa, S. Applications of Biocomposite Materials Based on Natural Fibers from Renewable Resources: A Review. Sci. Eng. Compos. Mater. 2016, 23, 123–133. [Google Scholar] [CrossRef]
- Shen, J.; Li, X.; Yan, X. Mechanical and Acoustic Properties of Jute Fiber-Reinforced Polypropylene Composites. ACS Omega 2021, 6, 31154–31160. [Google Scholar] [CrossRef] [PubMed]
- Manaia, J.P.; Manaia, A.T.; Rodriges, L. Industrial Hemp Fibers: An Overview. Fibers 2019, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, A.; Pesce, J.-J.; Ferreira, P.; Régnier, G. Fiber Orientation and Concentration in an Injection-Molded Ethylene-Propylene Copolymer Reinforced by Hemp. Polymers 2020, 12, 2771. [Google Scholar] [CrossRef]
- Hui, Z.; Fan, X. Sound Absorption Properties of Hemp Fibrous Assembly Absorbers. Sen’i Gakkaishi 2009, 65, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Marcuello, C.; Chabbert, B.; Berzin, F.; Bercu, N.B.; Molinari, M.; Aguié-Béghin, V. Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale. Materials 2023, 16, 2440. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Wang, L. Properties of Hemp Fibre Reinforced Concrete Composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Jamshaid, H.; Mishra, R.K.; Raza, A.; Hussain, U.; Rahman, M.L.; Nazari, S.; Chandan, V.; Muller, M.; Choteborsky, R. Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials 2022, 15, 874. [Google Scholar] [CrossRef]
- Kobayashi, S.; Takada, K.; Nakamura, R. Processing and Characterization of Hemp Fiber Textile Composites with Micro-Braiding Technique. Compos. Part A Appl. Sci. Manuf. 2014, 59, 1–8. [Google Scholar] [CrossRef]
- Gedik, G.; Avinc, O. Hemp Fiber as a Sustainable Raw Material Source for Textile Industry: Can We Use Its Potential for More Eco-Friendly Production? In Sustainability in the Textile and Apparel Industries; Springer: Berlin/Heidelberg, Germany, 2020; pp. 87–109. [Google Scholar]
- Deo, C.; Acharya, S.K. Effect of Moisture Absorption on Mechanical Properties of Chopped Natural Fiber Reinforced Epoxy Composite. J. Reinf. Plast. Compos. 2010, 29, 2513–2521. [Google Scholar] [CrossRef]
- Sankari, H.S. Comparison of Bast Fibre Yield and Mechanical Fibre Properties of Hemp (Cannabis sativa L.) Cultivars. Ind. Crop. Prod. 2000, 11, 73–84. [Google Scholar] [CrossRef]
- Suardana, N.P.G.; Piao, Y.; Lim, J.K. Mechanical Properties of Hemp Fibers and Hemp/Pp Composites: Effects of Chemical Surface Treatment. Mater. Phys. Mech. 2011, 11, 1–8. [Google Scholar]
- Mukhopadhyay, S.; Fangueiro, R.; Arpaç, Y.; Şentürk, Ü. Banana Fibers—Variability and Fracture Behaviour. J. Eng. Fiber. Fabr. 2008, 3, 155892500800300. [Google Scholar] [CrossRef] [Green Version]
- Characterisation of Banana Fiber—A Review. J. Environ. Nanotechnol. 2015, 4, 23–26. [CrossRef]
- Al Rashid, A.; Khalid, M.Y.; Imran, R.; Ali, U.; Koc, M. Utilization of Banana Fiber-Reinforced Hybrid Composites in the Sports Industry. Materials 2020, 13, 3167. [Google Scholar] [CrossRef]
- Herrera-Franco, P.J.; Valadez-González, A. A Study of the Mechanical Properties of Short Natural-Fiber Reinforced Composites. Compos. B Eng. 2005, 36, 597–608. [Google Scholar] [CrossRef]
- Bhoopathi, R.; Ramesh, M.; Deepa, C. Fabrication and Property Evaluation of Banana-Hemp-Glass Fiber Reinforced Composites. Procedia Eng. 2014, 97, 2032–2041. [Google Scholar] [CrossRef] [Green Version]
- Bourgogne, Q.C.P.; Bouchart, V.; Chevrier, P.; Dattoli, E. Numerical Investigation of the Fiber/Matrix Inter-Phase Damage of a PPS Composite Considering Temperature and Cooling Liquid Ageing. SN Appl. Sci. 2021, 3, 132. [Google Scholar] [CrossRef]
- Bourgogne, Q.C.P.; Bouchart, V.; Chevrier, P.; Dattoli, E. Influence of Temperature and Cooling Liquid Immersion on the Mechanical Behavior of a PPS Composite: Experimental Study and Constitutive Equations. SN Appl. Sci. 2020, 2, 368. [Google Scholar] [CrossRef] [Green Version]
- Faostat Food and Agriculture Data. Retrieved from Food and Agriculture Organisation of the United Nations. 2022. Available online: http://www.fao.org/faostat/en/# (accessed on 20 November 2022).
- Ravi, I.; Vaganan, M.M. Abiotic Stress Tolerance in Banana. In Abiotic Stress Physiology of Horticultural Crops; Springer India: New Delhi, India, 2016; pp. 207–222. [Google Scholar]
- Mishra, S.; Naik, J.B.; Patil, Y.P. The Compatibilising Effect of Maleic Anhydride on Swelling and Mechanical Properties of Plant-Fiber-Reinforced Novolac Composites. Compos. Sci. Technol. 2000, 60, 1729–1735. [Google Scholar] [CrossRef]
- Ramesh, M.; Atreya, T.S.A.; Aswin, U.S.; Eashwar, H.; Deepa, C. Processing and Mechanical Property Evaluation of Banana Fiber Reinforced Polymer Composites. Procedia Eng. 2014, 97, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Bongarde, U.S.; Shinde, V.D. Review on Natural Fiber Reinforcement Polymer Composites. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 431–436. [Google Scholar]
- Dahlke, B.; Larbig, H.; Scherzer, H.D.; Poltrock, R. Natural Fiber Reinforced Foams Based on Renewable Resources for Automotive Interior Applications. J. Cell. Plast. 1998, 34, 361–379. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.; Hassan, A. Recent Advances in Epoxy Resin, Natural Fiber-Reinforced Epoxy Composites and Their Applications. J. Reinf. Plast. Compos. 2016, 35, 447–470. [Google Scholar] [CrossRef]
- Kim, Y.K.; Chalivendra, V. Natural Fibre Composites (NFCs) for Construction and Automotive Industries. In Handbook of Natural Fibres; Elsevier: Amsterdam, The Netherlands, 2020; pp. 469–498. [Google Scholar]
- Flores Ramirez, N.; Sanchez Hernandez, Y.; Cruz de Leon, J.; Vasquez Garcia, S.R.; Domratcheva Lvova, L.; Garcia Gonzalez, L. Composites from Water Hyacinth (Eichhornea crassipe) and Polyester Resin. Fibers Polym. 2015, 16, 196–200. [Google Scholar] [CrossRef]
- Prasad, L.; Kumain, A.; Patel, R.V.; Yadav, A.; Winczek, J. Physical and Mechanical Behavior of Hemp and Nettle Fiber-Reinforced Polyester Resin-Based Hybrid Composites. J. Nat. Fibers 2022, 19, 2632–2647. [Google Scholar] [CrossRef]
- Anand, P.B.; Lakshmikanthan, A.; Gowdru Chandrashekarappa, M.P.; Selvan, C.P.; Pimenov, D.Y.; Giasin, K. Experimental Investigation of Effect of Fiber Length on Mechanical, Wear, and Morphological Behavior of Silane-Treated Pineapple Leaf Fiber Reinforced Polymer Composites. Fibers 2022, 10, 56. [Google Scholar] [CrossRef]
- Dholakiya, B. Unsaturated Polyester Resin for Specialty Applications. In Polyester; InTech: Singapore, 2012. [Google Scholar]
- Ali, M.F.; Hossain, M.S.; Ahmed, S.; Sarwaruddin Chowdhury, A.M. Fabrication and Characterization of Eco-Friendly Composite Materials from Natural Animal Fibers. Heliyon 2021, 7, e06954. [Google Scholar] [CrossRef] [PubMed]
- Amir, N.; Abidin, K.A.Z.; Shiri, F.B.M. Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Eng. 2017, 184, 573–580. [Google Scholar] [CrossRef]
- Hall, W.; Javanbakht, Z. How to Make a Composite—Wet Layup. In Design and Manufacture of Fibre-Reinforced Composites; Springer: Berlin/Heidelberg, Germany, 2021; pp. 33–53. [Google Scholar]
- ASTM. Committee D-30 on Composite Materials. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM international: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Alves Fidelis, M.E.; Pereira, T.V.C.; Gomes, O.d.F.M.; de Andrade Silva, F.; Toledo Filho, R.D. The Effect of Fiber Morphology on the Tensile Strength of Natural Fibers. J. Mater. Res. Technol. 2013, 2, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Bachchan, A.A.; Das, P.P.; Chaudhary, V. Effect of Moisture Absorption on the Properties of Natural Fiber Reinforced Polymer Composites: A Review. Mater. Today Proc. 2022, 49, 3403–3408. [Google Scholar] [CrossRef]
- Lancaster, J.K. A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication and Wear. Tribol. Int. 1990, 23, 371–389. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Di, Q.; Adekunle, K.; Skrifvars, M. Effect of Water Absorption on Mechanical Properties of Soybean Oil Thermosets Reinforced with Natural Fibers. J. Reinf. Plast. Compos. 2012, 31, 1191–1200. [Google Scholar] [CrossRef]
- Muñoz, E.; García-Manrique, J.A. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites. Int. J. Polym. Sci. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zamri, M.H.; Akil, H.M.; Bakar, A.A.; Ishak, Z.A.M.; Cheng, L.W. Effect of Water Absorption on Pultruded Jute/Glass Fiber-Reinforced Unsaturated Polyester Hybrid Composites. J. Compos. Mater. 2012, 46, 51–61. [Google Scholar] [CrossRef]
- Milanese, A.C.; Cioffi, M.O.H.; Voorwald, H.J.C. Mechanical Behavior of Natural Fiber Composites. Procedia Eng. 2011, 10, 2022–2027. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Deepak, D.; Aggarwal, L.; Gupta, V.K. Tensile and Flexural Behavior of Hemp Fiber Reinforced Virgin-Recycled HDPE Matrix Composites. Procedia Mater. Sci. 2014, 6, 1696–1702. [Google Scholar] [CrossRef] [Green Version]
- Bismarck, A.; Aranberri-Askargorta, I.; Springer, J.; Lampke, T.; Wielage, B.; Stamboulis, A.; Shenderovich, I.; Limbach, H.-H. Surface Characterization of Flax, Hemp and Cellulose Fibers; Surface Properties and the Water Uptake Behavior. Polym. Compos. 2002, 23, 872–894. [Google Scholar] [CrossRef]
- Aklilu, G.; Adali, S.; Bright, G. Tensile Behaviour of Hybrid and Non-Hybrid Polymer Composite Specimens at Elevated Temperatures. Eng. Sci. Technol. Int. J. 2020, 23, 732–743. [Google Scholar] [CrossRef]
- Buehler, F.U.; Seferis, J.C. Effect of Reinforcement and Solvent Content on Moisture Absorption in Epoxy Composite Materials. Compos. Part A Appl. Sci. Manuf. 2000, 31, 741–748. [Google Scholar] [CrossRef]
- Wang, L.; Wang, K.; Chen, L.; He, C.; Zhang, Y. Hydrothermal Effects on the Thermomechanical Properties of High Performance Epoxy/Clay Nanocomposites. Polym. Eng. Sci. 2006, 46, 215–221. [Google Scholar] [CrossRef]
- Huang, G.; Sun, H. Effect of Water Absorption on the Mechanical Properties of Glass/Polyester Composites. Mater. Des. 2007, 28, 1647–1650. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Tripathy, P.C.; Misra, M.; Parija, S.; Sahoo, S. Chemical Modification of Pineapple Leaf Fiber: Graft Copolymerization of Acrylonitrile onto Defatted Pineapple Leaf Fibers. J. Appl. Polym. Sci. 2000, 77, 3035–3043. [Google Scholar] [CrossRef]
- Girisha, C.; Sanjeevamurthy, G.; Srinivas, G.R. Sisal/Coconut Coir Natural Fibers—Epoxy Composites: Water Absorption and Mechanical Properties. Int. J. Eng. Innov. Technol. 2012, 2, 166–170. [Google Scholar]
- Nguyen, T.A.; Nguyen, T.H. Study on Mechanical Properties of Banana Fiber-Reinforced Materials Poly (Lactic Acid) Composites. Int. J. Chem. Eng. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V.; Molinari, M. Atomic Force Microscopy Reveals How Relative Humidity Impacts the Young’s Modulus of Lignocellulosic Polymers and Their Adhesion with Cellulose Nanocrystals at the Nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
- Praveena, B.A.; Balachandra, P.S.; Vinayaka, N.; Srikanth, H.V.; Shiv Pratap, S.Y.; Avinash, L. Mechanical Properties and Water Absorption Behaviour of Pineapple Leaf Fibre Reinforced Polymer Composites. Adv. Mater. Process. Technol. 2022, 8, 1336–1351. [Google Scholar] [CrossRef]
- Praveena, B.A.; Balachandra, P.S.; Shiv Pratap, S.Y. Physical and Mechanical Properties, Morphological Behaviour of Pineapple Leaf Fibre Reinforced Polyester Resin Composites. Adv. Mater. Process. Technol. 2022, 8, 1147–1159. [Google Scholar] [CrossRef]
- Chandramohan, D.; Bharanichandar, J. Natural Fiber Reinforced Polymer Composites for Automobile Accessories. Am. J. Env. Sci. 2013, 9, 494–504. [Google Scholar] [CrossRef]
Physical Properties | Banana Fiber | Hemp Fiber |
---|---|---|
Density, kg/m3 | 1350 | 300–1300 |
Tensile strength, MPa | 54 | 90 |
Modulus of elasticity, MPa | 3.48 | 4.4 |
Moisture absorption, % | 10–11 | 10–12 |
Sl. No | Sample | Composition |
---|---|---|
1 | Sample A | 60 wt.% hemp fiber + 40 wt.% of resin |
2 | Sample B | 60 wt.% banana fiber + 40 wt.% of resin |
3 | Sample C | 30 wt.% hemp fiber + 30 wt.% banana fiber + 40 wt.% of resin |
Details of Properties | Value |
---|---|
Specific gravity | 1.13–1.21 g/cm3 |
Viscosity | 250–750 µ(cP) |
Tensile strength | 22 MPa |
Flexural strength | 40 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkataravanappa, R.Y.; Lakshmikanthan, A.; Kapilan, N.; Chandrashekarappa, M.P.G.; Der, O.; Ercetin, A. Physico-Mechanical Property Evaluation and Morphology Study of Moisture-Treated Hemp–Banana Natural-Fiber-Reinforced Green Composites. J. Compos. Sci. 2023, 7, 266. https://doi.org/10.3390/jcs7070266
Venkataravanappa RY, Lakshmikanthan A, Kapilan N, Chandrashekarappa MPG, Der O, Ercetin A. Physico-Mechanical Property Evaluation and Morphology Study of Moisture-Treated Hemp–Banana Natural-Fiber-Reinforced Green Composites. Journal of Composites Science. 2023; 7(7):266. https://doi.org/10.3390/jcs7070266
Chicago/Turabian StyleVenkataravanappa, Ravi Yerraiahgarahalli, Avinash Lakshmikanthan, Natesan Kapilan, Manjunath Patel Gowdru Chandrashekarappa, Oguzhan Der, and Ali Ercetin. 2023. "Physico-Mechanical Property Evaluation and Morphology Study of Moisture-Treated Hemp–Banana Natural-Fiber-Reinforced Green Composites" Journal of Composites Science 7, no. 7: 266. https://doi.org/10.3390/jcs7070266
APA StyleVenkataravanappa, R. Y., Lakshmikanthan, A., Kapilan, N., Chandrashekarappa, M. P. G., Der, O., & Ercetin, A. (2023). Physico-Mechanical Property Evaluation and Morphology Study of Moisture-Treated Hemp–Banana Natural-Fiber-Reinforced Green Composites. Journal of Composites Science, 7(7), 266. https://doi.org/10.3390/jcs7070266