Nanocomposites of Terbium Sulfide Nanoparticles with a Chitosan Capping Agent for Antibacterial Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Modified Tb2S3 Nanoparticles with Chitosan as Capping Agent
2.3. Preparation of Tb2S3 Nanoparticle Composites for Antimicrobial Testing onto the Contact Lens System
2.4. Characterization of CS-Tb2S3 Nanocomposites
2.5. Performance Test of CS-Tb2S3 Nanocomposites as Antibacterial Agent
3. Results and Discussion
3.1. Synthesis of CS-Tb2S3 Nanoparticles
3.2. Characterization of the CS-Tb2S3 Nanocomposites
3.2.1. FTIR, Raman, and XPS Structural Characterization
3.2.2. TGA Analysis
3.2.3. XRD Analysis
3.2.4. Particle Size and Zeta-Potential Characterization
3.2.5. FESEM-EDX Studies
3.3. Antimicrobial Testing of the CS-Tb2S3 Nanocomposites
3.3.1. Loading Content of CS-Tb2S3 Nanocomposites onto the Contact Lens
3.3.2. Antibacterial Testing of the CS-Tb2S3 Nanoparticles in the Absence and Presence of Contact Lens
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janumala, H.; Sehgal, P.K.; Mandal, A.B. Bacterial Keratitis-Causes, Symptoms, and Treatment; InTech: London, UK, 2012; ISBN 978-953-51-0568-8. Available online: https://cdn.intechopen.com/pdfs/35748/InTech-Bacterial_keratitis_causes_symptoms_and_treatment.pdf (accessed on 6 October 2022).
- Eltis, M. Contact Lens-related microbial keratitis: Case report and review. J. Optom. 2011, 4, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Rahayu, T.; Menaldi, S.L.; Irawati, Y.; Adriono, G.A.; Presialia, A.; Harini, M.; Friska, D. Validity and reliability of the NEI VFQ-25 questionnaire in Indonesia leprosy patients. Clin. Epidemiol. Glob. Health 2022, 15, 101039. [Google Scholar] [CrossRef]
- Wu, Y.T.-Y.; Willcox, M.; Zhu, H.; Stapleton, F. Contact lenses hygiene compliance and lens case contamination: A review. Contact Lens Anterior Eye 2015, 38, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Lee, H.O.; Santiago, K.C.; Pelzer, M.; Kuti, A.; Jenrette, E.; Bahoura, M. Rapid Microwave Synthesis of Tunable Cadmium Selenide (CdSe) Quantum Dots for Optoelectronic Applications. J. Nanomater. 2020, 2020, 5056875. [Google Scholar] [CrossRef] [Green Version]
- Bharali, D.J.; Mousa, S.A. Emerging Nanomedicines for Early Cancer Detection and Improve Treatment. Pharmacol. Ther. 2010, 128, 324–335. [Google Scholar] [CrossRef]
- Sajja, H.K.; East, M.P.; Mao, H.; Wang, A.Y.; Nie, S.; Yang, L. Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Noninvasive Imaging of Theurapeutic Effect. Curr. Drug Discov. Technol. 2009, 6, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Rajendiran, K.; Zhao, Z.; Pei, D.; Fu, A. Antimicrobial Activity and Mechanism of Functionalized Quantum Dots. Polymers 2019, 11, 1670. [Google Scholar] [CrossRef] [Green Version]
- Ames, J.R.; Ryan, M.D.; Kovacic, P. Mechanism of antibacterial action: Electron transfer and oxy radicals. J. Free Radic. Biol. Med. 1986, 2, 377–391. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Q.; Jiang, J.; Gao, L. Nanozybiotics: Nanozyme-Based Antibacterials against Bacterial Resistance. Antibiotics 2022, 11, 390. [Google Scholar] [CrossRef]
- Kusrini, E.; Hashim, F.; Azmi, W.N.N.W.N.; Amin, N.M.; Estuningtyas, A. A novel anti-amoebic agent against Acanthamoeba sp.—A causative agent for eye keratitis infection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 714–721. [Google Scholar] [CrossRef]
- Kusrini, E.; Hashim, F.; Gunawan, C.; Mann, R.; Azmi, W.N.N.W.N.; Amin, N.M. Anti-amoebic activity of acyclic and cyclic-samarium complexes on Acanthamoeba. Parasitol. Res. 2018, 117, 1409–1417. [Google Scholar] [CrossRef]
- Kusrini, E.; Hashim, F.; Saleh, M.I.; Adnan, R.; Usman, A.; Zakaria, I.N.; Prihandini, W.W.; Putra, N.; Prasetyanto, E.A. Monoclinic cerium(III) picrate tetraethylene glycol complex: Design, synthesis and biological evaluation as anti-amoebic activity against Acanthamoeba sp. J. Mater. Sci. 2020, 55, 9795–9811. [Google Scholar] [CrossRef]
- Kusrini, E.; Sabira, K.; Hashim, F.; Abdullah, N.A.; Usman, A.; Putra, N.; Prasetyanto, E.A. Design, synthesis and anti-amoebic activity of dysprosium-based nanoparticles using contact lenses as carriers against Acanthamoeba sp. Acta Ophthalmol. 2021, 99, e178–e188. [Google Scholar] [CrossRef]
- Kumar, D.S.; Kumar, B.J.; Mahesh, H.M. Chapter 3-Quantum Nanostructures (NPs): An Overview. In Synthesis of Inorganic Nanomaterials: Advances and Key Technologies Micro and Nano Technologies; Woodhead Publishing: Sawston, UK, 2018; pp. 59–88. [Google Scholar] [CrossRef]
- Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L.R.; Gu, Z.; Zhao, Y. Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano 2016, 10, 11000–11011. [Google Scholar] [CrossRef]
- Green, M. The nature of quantum dot capping ligands. J. Mater. Chem. 2010, 20, 5797–5809. [Google Scholar] [CrossRef]
- Lim, M.J.; Shahri, N.N.M.; Taha, H.; Mahadi, A.H.; Kusrini, E.; Lim, J.W.; Usman, A. Biocompatible chitin-encapsulated CdS quantum dots: Fabrication and antibacterial screening. Carbohydr. Polym. 2021, 260, 117806. [Google Scholar] [CrossRef]
- Kusrini, E.; Shiong, N.S.; Harahap, Y.; Yulizar, Y.; Dianursanti; Arbianti, R.; Pudjiastuti, A.R. Effects of Monocarboxylic Acids and Potassium Persulfate on Preparation of Chitosan Nanoparticles. Int. J. Technol. 2015, 6, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Usman, A.; Kusrini, E.; Widiantoro, A.B.; Hardiya, E.; Abdullah, N.A.; Yulizar, Y. Fabrication of Chitosan Nanoparticles Containing Samarium Ion Potentially Applicable for Fluorescence Detection and Energy Transfer. Int. J. Technol. 2018, 9, 1112–1120. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021, 26, 7136. [Google Scholar] [CrossRef]
- Kusrini, E.; Wu, S.; Susanto, B.H.; Lukita, M.; Gozan, M.; Hans, M.D.; Rahman, A.; Degirmenci, V.; Usman, A. Simultaneous Absorption and Adsorption Processes for Biogas Purification using Ca(OH)2 Solution and Activated Clinoptilolite Zeolite/Chitosan Composites. Int. J. Technol. 2019, 10, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Kusrini, E.; Ayuningtyas, K.; Mawarni, D.P.; Wilson, L.D.; Sufyan, M.; Rahman, A.; Prasetyanto, Y.E.A.; Usman, A. Micro-structured Materials for the Removal of Heavy Metals using a Natural Polymer Composite. Int. J. Technol. 2021, 12, 275–286. [Google Scholar] [CrossRef]
- Şenel, S.; McClure, S.J. Potential applications of chitosan in veterinary medicine. Adv. Drug Deliv. Rev. 2004, 56, 1467–1480. [Google Scholar] [CrossRef]
- Zhang, J.; Gerile, N.; Davaasambuu, J.; Bolag, A.; Hua, E.; Zhang, Y. Synthesis and Optical Performance of terbium complexes with octanoyl amino acids. Arab. J. Chem. 2021, 14, 103033. [Google Scholar] [CrossRef]
- Dehabadi, L.; Karoyo, A.H.; Soleimani, M.; Alabi, W.O.; Simonson, C.J.; Wilson, L.D. Flax Biomass Conversion via Controlled Oxidation: Facile Tuning of Physicochemical Properties. Bioengineering. 2020, 7, 38. [Google Scholar] [CrossRef]
- Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Ganjali, M.R.; Norouzi, P. Nanosized terbium carbonate and oxide particles: Optimized synthesis, and application as photodegradation catalyst. J. Mater. Sci. Mater. Electron. 2018, 29, 2988–2998. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy, 2nd ed.; Chastain, J., Ed.; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Mohtasebi, A.; Chowdhury, T.; Hsu, L.H.H.; Biesinger, M.C.; Kruse, P. Interfacial Charge Transfer between Phenyl-Capped Aniline Tetramer Films and Iron Oxide Surfaces. J. Phys. Chem. C 2016, 120, 29248–29263. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Scaini, M.; Höchst, H.; Bancroft, G.M.; Schaufuss, A.G.; Szargan, R. Synchrotron XPS Evidence for Fe2+-S and Fe3+-S Surface Species on Pyrite Fracture-Surfaces, and Their 3D Electronic States. Am. Mineral. 2000, 85, 850–857. [Google Scholar] [CrossRef]
- Pratt, A.; Muir, I.; Nesbitt, H. X-Ray Photoelectron and Auger Electron Spectroscopic Studies of Pyrrhotite and Mechanism of Air Oxidation. Geochim. Cosmochim. Acta 1994, 58, 827–841. [Google Scholar] [CrossRef]
- Pettifer, Z.E.; Quinton, J.S.; Skinner, W.M.; Harmer, S.L. New Interpretation and Approach to Curve Fitting Synchrotron X-Ray Photoelectron Spectra of (Fe,Ni)9S8 Fracture Surfaces. Appl. Surf. Sci. 2020, 504, 144458. [Google Scholar] [CrossRef]
- Anwander, R. Lanthanides: Chemistry and Use in Organic Synthesis, 2nd ed.; Kobayashi, S., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; ISBN 9783540698012. [Google Scholar]
- Narudin, N.A.H.; Rosman, N.A.; Shahrin, E.W.E.S.; Sofyan, N.; Mahadi, A.H.; Kusrini, E.; Hobley, J.; Usman, A. Extraction, characterization, and kinetics of N-deacetylation of chitin obtained from mud crab shells. Polym. Polym. Compos. 2022, 30, 1–11. [Google Scholar] [CrossRef]
- Kaul, S.; Jain, N.; Pandey, J.; Nagaich, U. Investigating the Retention Potential of Chitosan Nanoparticulate Gel: Design, Development, In-Vitro & Ex-Vivo Characterization. Recent Pat. Anti-Infect. Drug Discov. 2020, 15, 41–67. [Google Scholar] [CrossRef]
- Kurniawan, C.; Waluyo, T.B.; Sebayang, P. Particle size analysis using free-software ImageJ. Seminar Nasional Fisika 2011, Tangerang City, Indonesia, 13–14 July 2011. Available online: https://www.researchgate.net/publication/215445823_Particle_Size_Analysis_Using_Free-Software_ImageJ (accessed on 6 October 2022).
- Li, X.-B.; Liu, S.; Cao, X.-J.; Zhou, B.-B.; Chen, L.; Yan, A.-R.; Yan, G.-L. Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd–Fe–B magnets. Chin. Phys. B 2016, 25, 077502. [Google Scholar] [CrossRef]
- Giridhar, M.; Naik, H.S.B.; Prabhakar, M.C.; Naik, M.M.; Ballesh, N.; Mahesh, M.C. Synthesis, characterization and antibacterial activity of water-soluble dye-capped zinc sulphide nanoparticles from waste Zn–C battery. Bull. Mater. Sci. 2021, 44, 6. [Google Scholar] [CrossRef]
- Xaba, T. Green synthesis of ZnS nanoparticles and fabrication of ZnS–chitosan nanocomposites for the removal of Cr(VI) ion from wastewater. Green Process. Synth. 2021, 10, 374–383. [Google Scholar] [CrossRef]
- Ribut, S.H.; Che Abdullah, C.A.; Mustafa, M.; Mohd Yusoff, M.Z.; Ahmad Azman, S.N. Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity. Mater. Res. Express 2018, 6, 025016. [Google Scholar] [CrossRef]
- Li, C.; Sun, Y.; Li, X.; Fan, S.; Liu, Y.; Jiang, X.; Yin, J.-J. Bactericidal effects and accelerated wound healing using Tb4O7 nanoparticles with intrinsic oxidase-like activity. J. Nanobiotechnol. 2019, 17, 54. [Google Scholar] [CrossRef]
- Dehabadi, L.; Karoyo, A.H.; Wilson, L.D. Spectroscopic and Thermodynamic Study of Biopolymer sorption Phenomena in Heterogeneous Solid−Liquid Systems. ACS Omega 2018, 3, 15370–15379. [Google Scholar] [CrossRef]
2θ | θ (rad) | K | λ | FWHM | B (rad) | Crystallite Size (nm) | |
---|---|---|---|---|---|---|---|
pH 9 | 28.4 | 0.248 | 0.9 | 0.154 | 1.137 | 0.0198 | 7.54 |
pH 10 | 28.3 | 0.247 | 0.9 | 0.154 | 1.145 | 0.0199 | 7.55 |
pH 11 | 29.8 | 0.260 | 0.9 | 0.154 | 0.836 | 0.0145 | 10.3 |
Sample | Particle Size Z-Average (μm) | PDI | Zeta-Potential (mV) |
---|---|---|---|
Chitosan (pH 3) | 0.792 | 0.461 | 5.11 |
Chitosan (pH 9) | 3.18 | 1 | −2.71 |
Chitosan (pH 10) | 1.82 | 0.929 | −0.614 |
Chitosan (pH 11) | 26.0 | 0.488 | −4.28 |
CS-Tb2S3 NPs (pH 10) | 3.64 | 0.442 | 12.6 |
CS-Tb2S3 NPs | Weight Composition (wt.%) | ||||
---|---|---|---|---|---|
C | N | O | S | Tb | |
pH 9 | 49.06 | 12.06 | 25.07 | 9.73 | 4.08 |
pH 10 | 52.09 | 9.80 | 28.61 | 6.45 | 3.05 |
pH 11 | 50.34 | 11.29 | 27.44 | 6.48 | 4.45 |
Initial Concentration (mg/mL) | Final Concentration (mg/mL) | Loading Efficiency (%) |
---|---|---|
0.20 | 0.14 | 30.00 |
0.30 | 0.17 | 43.33 |
0.50 | 0.26 | 48.00 |
Diameter of the Inhibition Zone (mm) | ||||
---|---|---|---|---|
pH 9 | pH 10 | pH 11 | Tetracycline (K) | |
CS- NPs prepared at pH 10 | 0.00 | 7.15 | 0.00 | 29.90 |
Concentration (mg/mL) | ||||
CS- NPs prepared at pH 10 | 0.20 | 0.30 | 0.50 | Tetracycline (K) |
Controls (water, tetracycline) | 0.00 | 0.00 | 0.00 | 18.00 |
CS- NPs prepared at pH 10 coated on the contact lens | − | − | − | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusrini, E.; Safira, A.I.; Usman, A.; Prasetyanto, E.A.; Nugrahaningtyas, K.D.; Santosa, S.J.; Wilson, L.D. Nanocomposites of Terbium Sulfide Nanoparticles with a Chitosan Capping Agent for Antibacterial Applications. J. Compos. Sci. 2023, 7, 39. https://doi.org/10.3390/jcs7010039
Kusrini E, Safira AI, Usman A, Prasetyanto EA, Nugrahaningtyas KD, Santosa SJ, Wilson LD. Nanocomposites of Terbium Sulfide Nanoparticles with a Chitosan Capping Agent for Antibacterial Applications. Journal of Composites Science. 2023; 7(1):39. https://doi.org/10.3390/jcs7010039
Chicago/Turabian StyleKusrini, Eny, Alya Irma Safira, Anwar Usman, Eko Adi Prasetyanto, Khoirina Dwi Nugrahaningtyas, Sri Juari Santosa, and Lee D. Wilson. 2023. "Nanocomposites of Terbium Sulfide Nanoparticles with a Chitosan Capping Agent for Antibacterial Applications" Journal of Composites Science 7, no. 1: 39. https://doi.org/10.3390/jcs7010039