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Abstract: The present research deals with the linear static behavior of soft-core sandwich plates and 

shells. The external skins are reinforced by curvilinear fibers. Their curved paths are described by a 

general mathematical law that allows the definition of arbitrary placements. The mechanical 

behavior of these structures is modeled through several Higher-order Shear Deformation Theories 

(HSDTs) including the zig-zag effect, based on an Equivalent Single Layer (ESL) approach. The 

solution of the governing equations is achieved numerically by means of the Generalized 

Differential Quadrature (GDQ) method. A huge number of parametric investigations is proposed 

in graphical and tabular forms to highlight the influence of the fiber orientation on the static 

response. The results prove that the structural behavior is affected by such parameters. Thus, the 

desired structural behavior can be modified by means of a proper choice of the fiber orientation. 

Keywords: curvilinear reinforcing fibers; parametric investigations; Higher-order Shear 

Deformation Theories 

 

1. Introduction 

Advanced composite materials are mainly developed to design stiffer and lighter structures, 

characterized by an improved and more efficient mechanical behavior. Among them, 

fiber-reinforced media [1–4], laminated and sandwich composites [5–24], Functionally Graded 

Materials (FGMs) [25–41], nanocomposites [42–46] and metamaterials [47–53] should be mentioned. 

Thus, many scientists and researchers focused their efforts on the design of optimal and optimized 

configurations of these innovative constituents. One of the most recurring approaches is the 

redistribution of the stiffness within the structural body without a weight growth, to improve or, at 

least, modify its static and dynamic responses. Structures characterized by variable mechanical 

properties arose precisely for this purpose. The present paper can be placed in this context, since it 

deals with variable stiffness sandwich plates and shells made of fiber-reinforced layers. The 

variation of the mechanical properties of these structural elements is accomplished by defining a 

curvilinear path of the reinforcing fibers [54,55]. To this aim, an innovative and general 

mathematical formulation is developed by the authors [56]. Differently from the previous paper by 

Tornabene et al. [56], in which the same general approach is employed for the natural frequency 

analysis of variable stiffness shells, the current research is focused on the linear static behavior of 

soft-core sandwich plates and shells. 

A brief literature review is presented below to introduce this topic. For this purpose, the 

authors would like to apologize for the possible omissions of those contributions that could be 

considered as important steps in the development of this subject. A more complete literature review 

can be found in the PhD Thesis by Groh [57]. A pioneering application of curvilinear fibers in 

composite structures was presented by Hyer and Charette [58] to deal with a rectangular plate with 
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centrally located circular hole. Hyer et al. [59] continued the same topic by studying also the 

manufacturing problem. A plane elasticity problem of a symmetrically laminated composite with 

curvilinear fibers was investigated by Gürdal and Olmedo [60] to evaluate the stiffness variation 

effect on the elastic response of the structure. In their work, the orientation of the fibers was defined 

by two parameters, which consisted of the fiber angle at the center of the laminate and the fiber angle 

at a specified distance from the center. The manufacturing process of the proposed approach was 

progressively studied by Waldarth et al. [61], Setoodeh and Gürdal [62], and Setoodeh et al. [63,64]. 

Jegley et al. [65] proved that the load carrying capability of panels reinforced by curvilinear fibers 

was superior to the one that characterized panels with straight fibers. Analogously, the stress 

concentrations around the hole were reduced due to the curvilinear paths of the fibers. Abdalla et al. 

[66] developed a maximization procedure for the natural frequency of composite panels reinforced 

by curved fibers. The post-buckling progressive damage behavior and the structural failure of 

variable-stiffness composite panels were studied by Lopes et al. [67] taking into account the residual 

thermal stresses caused by the curing process. Gürdal et al. [68] investigated the in-plane and 

buckling responses of flat rectangular composite laminates with variable stiffness. Their research 

proved that it was possible to vary either the buckling load or the in-plane stiffness of the structure. 

The variable-stiffness concept and the two-parameter law for the fiber orientation were extended 

also to conical and cylindrical shells by Blom et al. [69–71]. Akhavan and Ribeiro [72] investigated 

the natural frequencies and vibrational modes of variable-stiffness laminated composite plates 

reinforced by curvilinear fibers by means of a p-version finite element approach. The same topic was 

analyzed also by Honda and Narita [73], who proposed an analytical method for this purpose. Díaz 

et al. [74] presented a numerical method for obtaining the interlaminar stresses in variable stiffness 

composite panels. Coburn et al. [75] highlighted the improved buckling performances of 

variable-stiffness laminates compared to the ones reinforced by straight fibers. They employed the 

Rayleigh-Ritz procedure in the theoretical framework of the First-order Shear Deformation Theory 

(FSDT). Raju et al. [76] performed a geometrically nonlinear analysis of symmetric laminated 

composite plates with curvilinear fibers subjected to in-plane shear loads. In particular, the effect of 

fiber orientation on the buckling and post-buckling behavior was investigated. The same kind of 

analysis was performed by White et al. [77], who extended the research to variable-stiffness 

cylinders under axial compression forces. Yazdani and Ribeiro [78] developed a layer-wise p-version 

finite element approach able to capture accurately the free vibrations of thick composite laminates 

reinforced by curvilinear fibers. Ribeiro and Stoykov [79] and Ribeiro [80,81] investigated 

respectively the free and forced geometrically nonlinear vibrations of variable-stiffness cylindrical 

shells. Analogously, Akhavan and Ribeiro [82] developed a third-order shear deformation theory to 

study the geometrically nonlinear periodic forced vibrations of imperfect laminates reinforced by 

curvilinear fibers. To this aim, a p-version finite element method was used. An accurate 

variable-kinematic approach was developed instead by Vescovini and Dozio [83] for the vibration 

and buckling analysis of moderately thick variable-stiffness laminated and sandwich plates. Groh 

and Weaver [84] proposed a pseudo-spectral differential quadrature method to analyze the 

mechanical behavior of sandwich panels with variable-stiffness face sheets, whose governing 

equations are derived by using the Hellinger-Reissner model. On the other hand, the Koiter’s 

approach and the finite element method were employed in the paper by Madeo et al. [85] to analyze 

the post-buckling behavior of variable-stiffness composite plates. Khani et al. [86] investigated 

failure loads, failure modes and weights of variable-stiffness panels with cut-out by means of several 

experimental tests. Their work proved that variable-stiffness laminates could sustain larger loads 

before failure. Demasi et al. [87] proposed a multi-theory approach based on the Generalized Unified 

Formulation (GUF), including Equivalent Single Layer, zig-zag, and Layer-Wise models, for the 

static analysis of variable-stiffness composites. The Rayleigh-Ritz method was employed by Oliveri 

et al. [88] to investigate the thermo-mechanical post-buckling behavior of variable-stiffness 

multilayered plates, taking into account geometrical nonlinearities through the Von Kármán’s 

hypotheses. A theoretical framework based on higher-order theories was developed by Tornabene et 

al. [89,90] for the free vibration and static analyses of doubly-curved laminated composite shells 
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reinforced by curvilinear fibers placed according to classical schemes. A numerical solution was 

proposed in these circumstances. Finally, it should be mentioned that the presence of defects or 

imperfections, such as gaps and overlaps, characterizes laminated composites reinforced by 

curvilinear fibers, due to the peculiar manufacturing process, as highlighted in the papers [91–94]. 

This aspect could be even more evident in shell structures due to their curvature. For this purpose, 

an innovative fiber placement method named as Continuous Tow Shearing (CTS) was recently 

developed by Kim et al. [95] to minimize such defects in the manufacture of variable-stiffness 

composites. 

A structural model based on an ESL approach is developed in this paper to investigate the 

linear static behavior of doubly-curved shells reinforced by curvilinear fibers placed according to a 

general scheme. In particular, several Higher-order Shear Deformation Theories (HSDTs) are 

developed to this aim [96,97]. Since soft-core sandwich structures are analyzed, the Murakami’s 

function is embedded in the model to capture the effective zig-zag effect that occurs in this peculiar 

circumstance [98–100]. This ESL approach can reach the same accuracy of a layer-wise theory 

without increasing the degrees of freedom of the problem and the computational cost, consequently. 

Further details concerning layer-wise theories could be found in the paper by Tornabene [12] and by 

Naumenko and Eremeyev [101]. In addition, as highlighted in the papers [102–114], lower-order 

theories such as the well-known FSDT could be inadequate in these cases. Once the theoretical 

framework is introduced, a massive set of parametric investigations is presented to show the effect 

of the fiber orientation on the static response of these structural elements. The Generalized 

Differential Quadrature (GDQ) method is employed to get the numerical solution of the governing 

equations [115–118]. 

2. Shell Geometry 

Let us introduce a global reference coordinate system 1 2 3Ox x x  in the three-dimensional space, 

as shown in Figure 1. Each direction ix  is clearly identified by the corresponding unit vector 1e . A 

generic shell element is defined in such space. Its shape can be described through the position vector 

of the middle surface  1 2, r , where 1 2,   are the principal and orthogonal curvilinear 

coordinates of the surface in hand (Figure 1), for 0 1

1 1 1,      and 0 1

2 2 2,     . 

 

Figure 1. Laminated composite doubly-curved shell element. 
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The coordinate   denotes the thickness direction. Thus, 1 2O     stands for the local reference 

system of the shell middle surface. The shell volume is identified by its constant thickness h . It 

should be recalled that the structure is made of l  layers, therefore the overall thickness is given by 

1

l

k

k

h h


  (1) 

where kh  stands for the thickness of the k -th layer, which can be computed as follows 

1k k kh     (2) 

Since only sandwich structures are analyzed in the present paper, the shells are made of three 

layers: two external thinner plies of equal thickness sh , and a thicker core of thickness ch . Thus, the 

total thickness is given by 

2c sh h h   (3) 

Each point of this three-dimensional structure is analytically described through the following 

position vector  1 2, ,  R  

     1 2 1 2 1 2, , , ,        R r n  (4) 

where  1 2, n  represents the outward unit normal vector. This quantity can be computed by 

means of the cross product (denoted by “ ”) as follows 

,1 ,2

,1 ,2






r r
n

r r
 (5) 

in which 
,i i  r r . Once the position vector  1 2, r  of the middle surface is given, the Lamè 

parameters 
1 2,A A  of the doubly-curved surface which define the shape of the shell can be easily 

evaluated by means of the dot product (denoted by “  ”) as shown below 

   1 1 2 ,1 ,1 2 1 2 ,2 ,2, , ,A A      r r r r  (6) 

Analogously, the radii of curvature 
1 2,R R  of the shell middle surface can be calculated through 

the following relations 

,1 ,1 ,2 ,2

1 2

,11 ,22

,R R
 

   
 

r r r r

r n r n
 (7) 

3. Higher-Order ESL Model 

The present higher-order structural model allows the study of several displacement fields by 

varying the maximum order of kinematic expansion N . The three-dimensional displacements 

 1 1 2, ,U    ,  2 1 2, ,U    ,  3 1 2, ,U     can be written as follows 

             

             

             

1
0 1 2 1 1

1 1 0 1 1 1 2 1 1 1 1 1 1

0

1
0 1 2 1 1

2 2 0 2 1 2 2 2 1 2 2 1 2

0

1
0 1 2 1 1

3 3 0 3 1 3 2 3 1 3 3 1 3

0

N
N N N

N N N

N
N N N

N N N

N
N N N

N N N

U F u F u F u F u F u F u F u

U F u F u F u F u F u F u F u

U F u F u F u F u F u F u F u

















 

 




 

 




 

 



       

       

       







 (8) 

in which  F   are the thickness-functions that define the kinematic expansion. The generalized 

displacements    1 1 2,u


  ,    2 1 2,u


  ,    3 1 2,u


  , which are defined on the shell middle surface, 
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are the degrees of freedom. The thickness functions are assumed as power law functions. In other 

words, one gets 

 F 

    (9) 

for 0,1,2,..., N  . The  1N  -th function, instead, denotes the Murakami’s function  Z   

defined below 

  1

1

1 1

2
Z 1

k k k

N

k k k k

F
 


   





 

 
    

  
 (10) 

This peculiar function must be inserted in the structural model to capture the effective behavior 

of soft-core sandwich structures. Otherwise, the so-called zig-zag effect cannot be properly modeled 

[90]. The notation EDZN  is used to identify the shear-deformation theory including the Murakami’s 

function. 

For the sake of conciseness, the three-dimensional displacements can be collected in the 

corresponding vector  1 2, ,  U  

 1 2 3

T
U U UU  (11) 

Analogously, the vector 
   1 2,

 u  can be introduced to collect the degrees of freedom of the 

model for 0,1,2,..., , 1N N   . 

       
1 2 3

T

u u u
    

 
u  (12) 

The generalized strain components, which are defined on the shell middle surface as well, can 

be included in the corresponding vector 
   1 2,

   shown below 

                   
1 2 1 2 13 23 13 23 3

T
         

         
 

  (13) 

for 0,1,2,..., , 1N N   . These quantities can be evaluated as a function of the generalized 

displacements as follows 

    

 D u  (14) 

in which D  is the kinematic differential operator defined below 

2 1

1 1 1 2 1 1 2 2 2 2 1

1 2

1 2 2 2 2 1 1 1 2 1 2

1 2 1 1 2 2

1 1 1 1 1
0 1 0 0

1 1 1 1 1
0 0 1 0

1 1 1 1
0 0 0 0 1

T
A A

A A A A A A R

A A

A A A A A A R

R R A A

   

   

 



  
  

    
   
   
    
 

  
   

D  (15) 

The three-dimensional strain components can be included in the vector  1 2, ,   , which 

assumes the aspect below 

 1 2 12 1 2

T

n n n        (16) 

These quantities can be computed once the generalized strains are evaluated. The following 

definition can be used for this purpose 

   
1

0

N
 







Z   (17) 
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where the matrix 
   1 2, ,

  Z  has the meaning shown below for each order   of kinematic 

expansion  

 

1

2

1 2

1

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

F

H

F

H

F F

H H

F F

H

F F

H

F





 



 

 









 
 
 
 
 
 
 
 
 

  
 

 
 
 
 

 
 
 

  

Z  (18) 

The geometric parameters 1 2,H H  can be evaluated as a function of the principal radii of 

curvature 

1 2

1 2

1 , 1H H
R R

 
     (19) 

Consequentially, the three-dimensional stress components can be evaluated as a function of the 

strain components by using the elastic constitutive laws, assuming a linear behavior of the 

composite materials. The stress components at issue can be collected in the vector  1 2, ,  σ  

defined below 

 1 2 12 1 2

T

n n n     σ  (20) 

The following relation written in compact matrix form allows a definition of such quantities as a 

function of the corresponding stress components 

 k
σ C   (21) 

where  k
C  is the constitutive operator for the k -th orthotropic layer defined in the local reference 

system of the structure. It assumes the following aspect 

 

       

       

       

   

   

       

11 12 16 13

12 22 26 23

16 26 66 36

44 45

45 55

13 23 36 33

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

k k k k

k k k k

k k k k

k

k k

k k

k k k k

C C C C

C C C C

C C C C

C C

C C

C C C C

 
 
 
 
 

  
 
 
 
 
 

C  (22) 

Quantities included in  k
C  take into account the orientation of the reinforcing fibers 

 k
  for 

the k -th ply. The following relations can be used to evaluate them 

          4 2 2 4

11 11 12 66 222 2
k k k k k

C C c C C c s C s     (23) 

            4 2 2 4

12 12 11 22 66 124
k k k k k k

C C c C C C c s C s      (24) 

     2 2

13 13 23

k k k
C C c C s   (25) 



J. Compos. Sci. 2018, 2, 14 7 of 43 

 

               3 3

16 11 12 66 12 22 662 2
k k k k k k k

C C C C c s C C C cs       (26) 

          4 2 2 4

22 22 12 66 112 2
k k k k k

C C c C C c s C s     (27) 

     2 2

23 23 13

k k k
C C c C s   (28) 

               3 3

26 12 22 66 11 12 662 2
k k k k k k k

C C C C c s C C C cs       (29) 

   
33 33

k k
C C  (30) 

      36 13 23

k k k
C C C cs   (31) 

            
2

2 2 2 2

66 11 22 12 662
k k k k k

C C C C c s C c s      (32) 

     2 2

44 44 55

k k k
C C c C s   (33) 

      45 44 55

k k k
C C C cs   (34) 

     2 2

55 55 44

k k k
C C c C s   (35) 

where 
 

cos
k

c   and 
 

sin
k

s  . The elastic constants in (23)–(35) can be computed as a function of 

the engineering constants of the materials of the k -th layer as shown below 

 
   

     

 
     

     

 
     

     

 
   

     

 
     

     

 
   

     

           

23 32 21 31 23 31 21 32

11 12 13

2 3 2 3 2 3

13 31 32 12 31 12 21

22 23 33

1 3 1 3 1 2

44 13 55 23 66 12

1
, ,

1 1
, ,

, ,

k k k k k k k k

k k k

k k k k k k k k k

k k k k k k k

k k k

k k k k k k k k k

k k k k k k

C C C
E E E E E E

C C C
E E E E E E

C G C G C G

       

      

  
  

  

  
  

  

  

 
(36) 

where the quantity 
 k

  has the following meaning 

 
                 

     
12 21 23 32 31 13 21 32 13

1 2 3

1 2
k k k k k k k k k

k

k k k
E E E

           
   (37) 

in which 
     
1 2 3, ,

k k k
E E E  are the Young’s moduli, 

     
12 13 23, ,

k k k
G G G  are the shear moduli, and 

     
12 13 23, ,

k k k
    

are the Poisson’s ratios. The following relations are required for a complete mechanical 

characterization of the orthotropic layer, for , 1,2,3i j   

 

 

 

 

   
,

k k

ij ji k k

ij jik k

i j

G G
E E

 
   (38) 

The evaluation of the elastic coefficients is simplified if an isotropic layer is considered, since 
       

1 2 3

k k k k
E E E E   , 

       
12 13 23

k k k k
      , and the mechanical properties are not affected by the 

orientation of the lamina. In this circumstance, the shear modulus is given by 

 
 

  2 1

k
k

k

E
G





 (39) 

In this paper, the core is always assumed as isotropic; therefore, its orientation is meaningless. 

On the other hand, the two external skins are orthotropic and characterized by a variable orientation 

of the fibers 
 k

 . In other words, the reinforcing fibers are placed according to curvilinear paths. The 

value of 
 k

  can be defined through the following general law 
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                     
                   

1 2 1 1 1 2 2 2 3 3 1

4 4 2 5 5 1 2 6 6 1 2

,

, ,

k k k k k k k

k k k k k k k

           

           

   

   
 (40) 

in which the constants 
 k

i , for 1, 2,..., 6i  , represent the maximum values of the corresponding 

fiber variations denoted by the functions  k

i . On the other hand, 
 k

  is the constant orientation 

that define the initial straight placement of the reinforcing fibers. The meaning of the six general 

functions  k

i  is given below in terms of the following dimensionless coordinates, for 1, 2i   

0 1

1 0 1 0
,i i i i

i i

i i i i

   
 

   

 
 

 
 (41) 

The functions    
1 3,
k k

   denote a variation along the principal direction 1  and can assume 

different meanings (power law, sine-wave, or exponential), as shown below 

               

1 3

1 3

1 3
1 1

1 3

1 1

1 1 1 1 1 3 1 3 1 3sin , sin

p p

m m

p p

p p
k k

m mn n

e e

 

 

 

         

   
       
   

 
 
 
 

    
 
 
  

 (42) 

where 
1 3 0,n n  , 1 3,p p   and  1 3, 0,1m m   . On the other hand, the functions    

2 4,
k k

   define a 

variation along the principal direction 2  and have the same meaning of the previous ones 

               

2 4

2 4

2 4
2 2

2 4

2 2

2 2 2 2 2 4 2 4 2 4sin , sin

p p

m m

p p

p p
k k

m mn n

e e

 

 

 

         

   
       
   

 
 
 
 

    
 
 
  

 (43) 

where 
2 4 0,n n  , 2 4,p p   and  2 4, 0,1m m   . Finally, the functions    

5 6,
k k

   involve both the 

principal directions 1 2,   and can be expressed in the following form 

   1 2, ik

i e   
  (44) 

for 5,6i  . The Gaussian distribution can be used for this purpose and one gets 

 

2 2

1 5 2 6 1 5 2 6

5 122
1 2 1 212

1
2

2 1

m m m m       




       
       
         

 (45) 

where  12 1,1    and 1 2, 0   . This function is clearly centered in the point  5 6,m m   of the 

domain, with 0 1

5 1 1,m      and 0 1

6 2 2,m     . Analogously, an ellipse-shaped function could be 

chosen and one gets 

         
2 2

1 7 2 8 1 7 2 8

6 2 2

cos sin sin cosm m m m

a b

                 
    (46) 

in which ,a b  define the semi-axes of the ellipse, which could be also rotated by a constant angle 

measured counter-clockwise from the direction 1 . This function is centered instead in the point 

 7 8,m m   within the reference domain, with 0 1

7 1 1,m      and 0 1

8 2 2,m     . The variations  k

i  
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are activated by setting the corresponding value 
 k

i  different from zero. It should be noted that 

several variations can be also combined to obtain a more complex path of the reinforcing fibers. 

The present formulation does not consider any defect or imperfection that could occur in the 

manufacturing process. Such defects are unavoidable when the fibers are placed according to 

curvilinear paths, as specified in the papers by Blom et al. [91,92], Nik et al. [93] and Akbarzadeh et 

al. [94]. Nevertheless, several production techniques are developed to reduce these imperfections 

[95]. Thus, in this research paper it is assumed by hypothesis that such defects that occur during the 

manufacturing process are negligible. Further assumptions that involve the present formulation can 

be found in the recent paper by Tornabene et al. [56]. 

Once the constitutive laws are introduced, it is more advantageous to define the internal actions 

in terms of generalized stress resultants    1 2,

 S  as shown below for 0,1,2,..., , 1N N    

     
1

0

N
  









S A D u  (47) 

The vector that collects the generalized stress resultants, which are defined on the shell middle 

surface, assumes the following aspect for each order of kinematic expansion   

                   
1 2 12 21 1 2 1 2 3

T

N N N N T T P P S
          

 
S  (48) 

On the other hand, the matrix 
 

A  in (47) represents the constitutive operator of the present 

higher-order approach which can be evaluated as follows 

        
1

1 2

1

k

k

l T
k

k

H H d



  








 A Z C Z  (49) 

for , 0,1,2,..., , 1N N    . In extended notation, the following matrix is accomplished 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

11 20 12 11 16 20 16 11 13 10

12 11 22 02 26 11 26 02 23 01

16 20 26 11 66 20 66 11 36 10

16 11 26 02 66 11 66 02 36 01

44 20 45 11 44 10 45 10

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0

A A A A A

A A A A A

A A A A A

A A A A A

A A A A

    

    

    

    

   
A

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

45 11 55 02 45 01 55 01

44 10 45 01 44 00 45 00

45 10 55 01 45 00 55 00

13 10 23 01 36 10 36 01 33 00

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

A A A A

A A A A

A A A A

A A A A A

   

   

   

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (50) 

where the following definitions are required to compute its elements for , 0,1,2,..., , 1N N    , 

, 1, 2,3,4,5,6n m   and , 0,1,2p q   
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 
   

 
   

 
   

 
   

1

1

1

1

1 2

1 1 2

1 2

1 1 2

1 2

1 1 2

1 2

1 1 2

k

k

k

k

k

k

k

k

l
k

nmnm pq p q
k

l
k

nmnm pq p q
k

l
k

nmnm pq p q
k

l
k

nmnm pq p q
k

H H
A C F F d

H H

F H H
A C F d

H H

F H H
A C F d

H H

F F H H
A C d

H H





 





 






 







  












 





























 


 

 

 

 

 

 (51) 

Finally, the static equilibrium of the shell can be expressed in terms of generalized displacement 

components by means of the following governing equation in vector form 

     
1

0

N
  







 L u q 0  (52) 

for 0,1,2,..., , 1N N   . This system of partial derivative equations defines three equilibrium 

relations for each order of kinematic expansion. The fundamental operator 
 

L  can be evaluated 

according to the definition shown below 

   * 

 L D A D  (53) 

for , 0,1,2,..., , 1N N    . The equilibrium operator *

D , instead, assumes the following aspect 

12

1 1 1 2 1 1 2 2 1

2 1

1 2 1 2 2 1 2 2 2

1 2

1 2 2 1 1 1 2 1

1 2
*

2 2 1 2 2 1 2 1

2

1 1 1 1 2 1

1

2 2 2 1 2 2

1 1 1 1

1 1 1 1

1 1 1
0

1 1 1
0

1 1 1
0

1 1 1
0

1 0 0

0 1 0

0 0 1

AA

A A A A A R

A A

A A A A A R

A A

A A A A A

A A

A A A A A

A

R A A A

A

R A A A

  

  

  

  

 

 



 
  

  
  
   

  

 


  

 


   




 




 







D

T







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 (54) 

On the other hand, the vector  
q  introduced for each order of kinematic equation in (52) 

collects three load components for 0,1,2,..., , 1N N    as shown below 

       
1 2

T

nq q q
    

 
q  (55) 

where      
1 2, , nq q q
  

 stand for the external load components applied within the shell middle surface 

along the principal directions 1 2, ,   , respectively. Their value is computed once the surface loads 

applied on the shell external surfaces      
1 2, , nq q q
  

 are defined. The superscript    specifies that the 

load component is acting on the upper surface, whereas    is used to characterize the force 

component applied on the lower surface. By means of the static equivalence principle, one gets 
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                 

                 

                 

1 1 1 2 1 1 2

2 2 1 2 2 1 2

1 2 1 2n n n

q q F H H q F H H

q q F H H q F H H

q q F H H q F H H



 



 



 

       

       

       

 

 

 

 (56) 

where the symbol  
F


 denotes the value that a generic thickness function assumes on the external 

surfaces of the shell. Analogously,    
1 2,H H
 

 are the values that the geometric parameters (19) 

assume on the same surfaces (for 2h   ). 

The governing equations in (52) can be solved once the natural or essential boundary conditions 

are properly enforced. The compatibility requirement of the present formulation is 1C , since both 

the displacements and stress resultant components are involved in the boundary conditions. The 

essential boundary conditions involve the generalized displacements for each order of kinematic 

expansion  . The following relations are required for clamped edges 

     
1 2 3 0u u u
  
    (57) 

On the other hand, a free edge condition is expressed analytically through the natural boundary 

conditions. Thus, the stress resultants are involved. In particular, the following conditions are 

required for 
0

1 1   (or 
1

1 1  ) and 
0 1

2 2 2     

     
1 12 1 0N N T
  
    (58) 

On the other hand, the natural boundary conditions for 
0

2 2   (or 
1

2 2  ) and 
0 1

1 1 1     

become 

     
21 2 2 0N N T
  
    (59) 

With reference to the shell element depicted in Figure 1, it can be observed that the four external 

edges are identified by a cardinal direction: north (N), east (E), south (S), and west (W). To simplify 

the definition of external restraints, the boundary conditions are specified following the sequence 

WSEN. The letters “C” and “F” will replace the corresponding cardinal direction notation to define a 

clamped or free edge, respectively. For instance, CCCC stands for a completely clamped shell. On 

the other hand, when the notation CCCF is used, only the northern edge is free, whereas the others 

are clamped. 

When a structure with a closing meridian such as a complete shell of revolution is analyzed, the 

structural compatibility must be enforced along the two coincident edges. If the closing meridian is 

identified by 
0

1 1   and 
1

1 1  , the structural compatibility is given by 

               
               
               

0 1 0 1

1 1 2 1 1 2 1 1 2 1 1 2

0 1 0 1

12 1 2 12 1 2 2 1 2 2 1 2

0 1 0 1

1 1 2 1 1 2 3 1 2 3 1 2

, , , ,

, , , ,

, , , ,

N N u u

N N u u

T T u u

   

   

   

       

       

       

 

 

 

 (60) 

On the other hand, the following relations are required if the closing edge is characterized by 
0

2 2   and 
1

2 2   

               
               
               

0 1 0 1

21 1 2 21 1 2 1 1 2 1 1 2

0 1 0 1

2 1 2 2 1 2 2 1 2 2 1 2

0 1 0 1

2 1 2 2 1 2 3 1 2 3 1 2

, , , ,

, , , ,

, , , ,

N N u u

N N u u

T T u u

   

   

   

       

       

       

 

 

 

 (61) 
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4. Numerical Technique 

The governing equations are solved numerically by means of the GDQ method. In this section, 

only the main features of this numerical approach are presented, since a complete and accurate 

treatise is presented in the recent review paper by Tornabene et al. [117]. By definition, the GDQ 

method allows evaluation of the n -th order derivative of a smooth function  f x  at a generic 

discrete point ix  of the reference domain as a weighted linear sum of the values that the function 

assumes in each point of the domain 

     
1

i

n T
n

ij jn
j

x x

d f x
f x

dx





  (62) 

where T  stands for the overall number of discrete points defined within the domain, which are 

placed according to the Chebyshev-Gauss-Lobatto grid distribution 

1

1

1
1 cos

1 2

T

i

x xi
x x

T


   
    

  
 (63) 

Consequently, a set of T  discrete nodes is introduced as follows 

1 2 1, ,..., ,..., ,i T Ta x x x x x b   (64) 

where 1, Tx x  are the boundary points of the domain. The weighting coefficients  n

ij  are computed 

instead through the following recursive expressions provided by Shu [115], for , 1,2,...,i j T  and 

1,2,..., 1n T   

     
 

   

1

1 1

1,

for

for

n

ijn n

ij ij ii

i j

T
n n

ij ij

j j i

n i j
x x

i j


  

 





 

 
   
 
 

  

 (65) 

where  1

ij  stands for the weighting coefficients for the first-order derivatives defined below 

 

 

   

1 1,

1,

T

i k

k i k

ij T

i j j k

k j k

x x

x x x x


 

 





 




 (66) 

As far as two-dimensional domains are concerned, the present approach can be easily 

generalized as shown in [23,117]. In these circumstances, the grid distribution (63) is applied along 

the main directions 1 2,   by specifying the number of discrete points as ,N MI I , respectively. 

The same numerical approach can be considered as the starting point for the evaluation of 

integrals. The methodology in hand is known as Generalized Integral Quadrature (GIQ) method. 

For the sake of completeness, only the main definition is presented in the paper. Further details 

concerning this technique can be found in [117]. The integral of a smooth function  f x  within the 

interval ,i jx x    included in the reference domain, with  , ,i jx x a b  and ,i jx a x b  , can be 

computed as follows 

   
1

j

i

x
T

ij

k k

kx

f x dx w f x


  (67) 

where ij

kw  stands for the weighting coefficients for the integration at issue, which can be easily 

evaluated starting from the weighting coefficients for the first-order derivatives (66). This numerical 
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method is used in the present research to compute the stiffness terms (51), once the thickness 

direction is discretized by applying the same grid shown above. 

5. Solution of the Static Problem 

By means of the GDQ method, the discrete form of the fundamental system of Equation (53) is 

achieved, which becomes 

K f  (68) 

where K  is the global discrete stiffness matrix,   the vector of generalized displacements related to 

the discrete points of the domain, and f  is the vector that collects the values of the external loads. It 

should be noted that the unknowns of the static problem at issue are collected in the corresponding 

algebraic vector  . It is convenient at this point to collect such displacements so that the degrees of 

freedom linked to the inner points of the domain are separated from the ones related to the 

boundary points. The sub-vectors d b    are introduced, respectively. Analogously, the same 

classification is specified for the external load vector ( d bf f ). Thus, the system of linear Equation (68) 

becomes 

bb bd b b

db dd d d

     
     

     

K K f

K K f




 (69) 

in which the stiffness matrix is also partitioned, consequently. Finally, the proper manipulations 

lead to the following result, which allows the obtaining of the static solution d  in terms of 

generalized nodal displacements 

 1 1

dd db bb bd d d db bb b

   K K K K f K K f  (70) 

The procedure just illustrated represents the so-called static condensation procedure and allows 

the reduction of the initial size of the problem [4]. 

Once the static solution in terms of generalized displacements is accomplished, the 

through-the-thickness profiles of stress and strain components can be evaluated by using the 

three-dimensional elasticity equations written in an orthogonal curvilinear coordinate system. This 

approach is known as recovery procedure and can be employed to evaluate the three-dimensional 

quantities at issue, starting from the solutions obtained by a two-dimensional shell model. The 

reader can find a complete treatise about this approach in the papers [21]. 

Finally, it should be mentioned that the present formulation is implemented in a computational 

code developed in MATLAB by the authors [119]. 

6. Applications 

The numerical results are presented in this section. For this purpose, four structures reinforced 

by curvilinear fibers are analyzed. Their geometries are depicted in Figure 2. In particular, a square 

plate, a conical shell, a doubly-curved panel of revolution with catenary meridian and a 

doubly-curved panel of translation (obtained by moving a circumference over a parabola) are 

investigated. Their shape is described through the position vectors listed in Table 1. Analogously, 

the lamination schemes, as well as the mathematical laws that describe the curvilinear paths of the 

reinforcing fibers, are specified in Table 1. For the sake of clarity, the curvilinear paths are also 

presented in graphical form in Figure 3 for the lower and upper sheets of each structure, considering 

the maximum value of the fiber orientation. For conciseness purposes, the mechanical properties of 

the orthotropic skins and the isotropic core are listed in Table 2. On the other hand, the mechanical 

composition of the four structures, which are all loaded by an external pressure  
10  kPanq


  , is 

summarized in Table 3. 
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The results are presented in terms of through-the-thickness profiles of strain, stress, and 

displacement components. Then, the profiles of the generalized displacements 
     0 0 0

1 2 3, ,u u u  along 

two couples of orthogonal directions are also provided for each structure. 

A set of parametric investigations is presented to study the effect of the fiber orientation 

represented by the symbol  0 ,60     on the linear static response. Each group of analyses is 

repeated to investigate also the influence of the maximum order of kinematic expansion. To this aim, 

three higher-order theories are considered, which are EDZ2 , EDZ3  and EDZ4 . 

Finally, it should be mentioned that the same structures have been analyzed from the dynamic 

point of view (free vibration analysis) in the previous paper by Tornabene et al. [56]. 

 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 2. Three-dimensional shell structures: (a) Square plate; (b) Conical shell; (c) Doubly-curved 

panel of revolution with catenary meridian; (d) Doubly-curved panel of translation (a circumference 

slides over a parabola). 

  

lower sheet upper sheet 

(a) 
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lower sheet upper sheet 

(b) 

  

lower sheet upper sheet 

(c) 

  

lower sheet upper sheet 

(d) 

Figure 3. Curvilinear fiber paths in the external sheets of the structures: (a) Square plate; (b) Conical 

shell; (c) Doubly-curved panel of revolution; (d) Doubly-curved panel of translation. 

Table 1. Definition of structural geometries and corresponding lamination schemes. 

Square plate 

Position vector 

  1 2,x y x y r e e ,  0, , 0, , 1.5mx y x yx L y L L L       

Lamination scheme 
            1 1 3 3 1 3

1 1 1 1 1 1/ Soft-core / 90 , , 0.02m, 0.06ms ch h            

           
11 3

1 1 1 1 1sin
p

mx x n        

Conical shell 

Position vector 

     

       

1 1 1 2 1 3

0 11

1 1 1 1 0 1
2

1

, cos sin sin cos sin sin cos

cos
arctan , 0.5m, 12, , 0,2 , , 0,1m

1 cos

y a y y b y

b
a b y y y

a

       


       



    

 
              

r e e e
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Lamination scheme 
            

        2

1 1 3 3 1 3

2 2 2 2 2 2

1 3

2 2 2 2

90 /Soft-core/90 , , 0.02m, 0.06m

, 1

s c

p

h h

y y p

      

  

      

  
 

Doubly-curved panel of revolution with catenary meridian 

Position vector 

     

 

   

0 1 0 2 3

0

0 1 0 1

1 1 1 2 2 2

1
, cos sin arcsinh

tan

1
cosh arcsinh , 2m, 2m, 1m

tan

, 2.05117,2.05117 , , 6, 6

R R a

R a a c d

     





       

 
    

 

  
     

  

           

r e e e

 

Lamination scheme 

            

   

   
 

1

2 2

122
1 2 1 212

1 1 3 3 1 3

1 1 5 5 1 5

1

1 1

1
2

2 13 1 0

5 1 2

30 /Soft-core/45 , 2 , 0.05m, 0.1m

, 1, 0.9

, , 0, , 0.3, 1
2

p

m

m m m m

s c

m

m m

h h

e p

e





       




      

  

 
    

 
  
 

                              

      

  


       1200, 0 

 

Doubly-curved panel of translation (a circumference slides over a parabola) 

Position vector 

             

   
  

     

1 2 2 1 2

1
1

1 1 1

1

2 2

1 2 0 1 3 2 1 1 0 2 2 3 1 3 2 1 3

2
2 2

0 11

0 1 3 1

0 1 0 1

0 2 2 3 2 2 1 1 1 2 2 2

, sin cos

tan
, , , 2m, 0.5m, 2m, 0m

2

sin , 1 cos , 3m, , , , ,
6 6

R x R x x

R a d
R x a b c d

b

R R x R R

    


  



 

        


 

 
         

     


       

 
            

 

r e e e

k
k

k

 4, 4    

 

Lamination scheme 
              

       3 1

1 1 3 3 1 3

3 3 1 1 1 3 1

1 3

3 1 1 3 1 1 1 1

30 /Soft-core/60 , , 0.02m, 0.06m

, 1, , 1

s c

p p

h h

p p

       

     

      

   
 

Table 2. Mechanical properties of the materials used in the computations. 

Material 
Young’s Moduli 

[GPa] 
Poisson’s Ratios 

Shear Moduli 

[GPa] 

Graphite-epoxy 

(orthotropic) 

1 137.90E   12 0.30   12 7.10G   

2 8.96E   13 0.30   13 7.10G   

3 8.96E   23 0.49   23 6.21G   

Glass-epoxy 

(orthotropic) 

1 53.78E   12 0.25   
12 8.96G   

12 8.96G   
2 17.93E   13 0.25   

3 17.93E   23 0.34   

Foam 

(isotropic) 
0.232E   0.20   

 2 1

E
G





 

Table 3. Mechanical composition of the four structures. 

Structural Element Core Material Skin Material 

Square plate Foam Glass-epoxy 

Conical shell Foam Glass-epoxy 

Doubly-curved panel of revolution Foam Graphite-epoxy 
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Doubly-curved panel of translation Foam Graphite-epoxy 

6.1. Square Plate 

The discrete model of a completely clamped (CCCC) square plate is obtained by setting 

25N MI I   grid points. In this circumstance, a three-dimensional finite element model (3D-FEM) is 

also developed for comparison purposes, only for straight reinforcing fibers ( 0  ). The commercial 

software Strand7 is employed for this reason, by using the Hexa20 brick elements. 

The through-the-thickness variations of the strain, stress and displacement components are 

evaluated in  0.25 ,0.25x yL L  and are shown in Figures 4–6. On the other hand, the profiles of the 

generalized displacements are evaluated for constant values of the main coordinates, varying the 

values of the fiber orientation   and the maximum order of kinematic expansion. 

 

  

  

  

Figure 4. Through-the-thickness variation of the strain components for a completely clamped square 

plate evaluated in  0.25 ,0.25x yL L , varying the values of the fiber orientation   and the maximum 

order of kinematic expansion N . Comparison with the finite element method (3D FEM). 
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Figure 5. Through-the-thickness variation of the stress components [Pa] for a completely clamped 

square plate evaluated in  0.25 ,0.25x yL L , varying the values of the fiber orientation   and the 

maximum order of kinematic expansion N . Comparison with the finite element method (3D FEM). 
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Figure 6. Through-the-thickness variation of the displacement components [m] for a completely 

clamped square plate evaluated in  0.25 ,0.25x yL L , varying the values of the fiber orientation   and 

the maximum order of kinematic expansion N . Comparison with the finite element method (3D 

FEM). 

These results are presented in Figures 7 and 8. It can be noted that the variation of the fiber 

orientation mainly affects the generalized displacements defined on the middle surface than the 

three-dimensional profiles of strains, stresses and displacements, since the soft-core effect is 

prevalent. Nevertheless, also the stress and strain components are influenced by the placement of 

the fibers, especially for higher values of  0 ,60    . This example proves also the validity of the 

current formulation, both in terms of two-dimensional and three-dimensional solutions, through the 

great agreement with the 3D-FEM results. 
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(a) (b) 

Figure 7. Profiles of generalized displacements 
     0 0 0

1 2 3, ,u u u  of a completely clamped square plate 

evaluated for constant value of y  coordinate, varying the values of the fiber orientation   and the 

maximum order of kinematic expansion N : (a) 0.25 yy L ; (b) 0.5 yy L . 

  

  

  

(a) (b) 
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Figure 8. Profiles of generalized displacements 
     0 0 0

1 2 3, ,u u u  of a completely clamped square plate 

evaluated for constant value of x  coordinate, varying the values of the fiber orientation   and the 

maximum order of kinematic expansion N : (a) 0.25 xx L ; (b) 0.5 xx L . 

6.2. Conical Shell 

A completely clamped conical shell is considered in the next application. The discrete model is 

obtained by setting 31NI   and 25MI  . The through-the-thickness profiles of strain, stress and 

displacement components are evaluated in the point     1 0 0

1 1 1 1 0 00.25 ,0.25 y y y       and are 

presented in Figures 9–11. As it can be noted from these figures, the fiber orientation  0 ,60     

affects the static response of the sandwich structure at issue. Analogously, several profiles of the 

generalized displacements 
     0 0 0

1 2 3, ,u u u  for constant values of the main coordinates can be obtained 

by varying the fiber orientation, as it can be noted in Figures 12 and 13. The influence of the 

curvilinear path is especially evident along the circumferential lines obtained for constant values of 

y  coordinate (Figure 12), where the corresponding displacement profiles are represented by 

straight segments. 
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Figure 9. Through-the-thickness variation of the strain components for a completely clamped conical 

shell evaluated in     1 0 0

1 1 1 1 0 00.25 ,0.25 y y y      , varying the values of the fiber orientation   

and the maximum order of kinematic expansion N . 
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Figure 10. Through-the-thickness variation of the stress components [Pa] for a completely clamped 

conical shell evaluated in     1 0 0

1 1 1 1 0 00.25 ,0.25 y y y      , varying the values of the fiber 

orientation   and the maximum order of kinematic expansion N . 

  

 

Figure 11. Through-the-thickness variation of the displacement components [m] for a completely 

clamped conical shell evaluated in     1 0 0

1 1 1 1 0 00.25 ,0.25 y y y      , varying the values of the 

fiber orientation   and the maximum order of kinematic expansion N . 
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(a) (b) 

Figure 12. Profiles of generalized displacements 
     0 0 0

1 2 3, ,u u u  of a completely clamped conical shell 

evaluated for constant value of y  coordinate, varying the values of the fiber orientation   and the 

maximum order of kinematic expansion N : (a)  1 0 00.25y y y y   ; (b)  1 0 00.5y y y y   . 
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(a) (b) 

Figure 13. Profiles of generalized displacements 
     0 0 0

1 2 3, ,u u u  of a completely clamped conical shell 

evaluated for constant value of 
1  coordinate, varying the values of the fiber orientation   and the 

maximum order of kinematic expansion N : (a)  1 0 0

1 1 1 10.25      ; (b)  1 0 0

1 1 10.5y      . 

6.3. Doubly-Curved Panel of Revolution 

The doubly-curved panel investigated in this paragraph is obtained by the rotation of a 

catenary shaped profile about the axis of revolution. The corresponding discrete model is obtained 

by setting 31NI   and 25MI   as in the previous example. The boundary conditions are specified 

by the notation CCCF; in other words, the northern edge is free, whereas the others are clamped. 

The through-the-thickness variations of three-dimensional strains, stresses and displacements 

are computed in the point     1 0 0 1 0 00.25 ,0.25         . The corresponding graphs are 

illustrated in Figures 14–16, varying the values of the fiber orientation  0 ,60     and the 

maximum order of kinematic expansion. Even in this circumstance, the static response is affected by 

the fiber orientation. 

On the other hand, the profiles of the generalized displacements within the shell middle surface 

are collected in Figures 17 and 18 for constant values of the principal coordinates. 
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Figure 14. Through-the-thickness variation of the strain components for a doubly-curved panel of 

revolution evaluated in     1 0 0 1 0 00.25 ,0.25         , varying the values of the fiber 

orientation   and the maximum order of kinematic expansion N . 
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Figure 15. Through-the-thickness variation of the stress components [Pa] for a doubly-curved panel 

of revolution evaluated in     1 0 0 1 0 00.25 ,0.25         , varying the values of the fiber 

orientation   and the maximum order of kinematic expansion N . 

  

 

Figure 16. Through-the-thickness variation of the displacements components [m] for a 

doubly-curved panel of revolution evaluated in     1 0 0 1 0 00.25 ,0.25         , varying the 

values of the fiber orientation   and the maximum order of kinematic expansion N . 
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(a) (b) 

Figure 17. Profiles of generalized displacements 
     0 0 0

1 2 3, ,u u u  of a doubly-curved panel of revolution 

evaluated for constant value of   coordinate, varying the values of the fiber orientation   and the 

maximum order of kinematic expansion N : (a)  1 0 00.25      ; (b)  1 0 00.5      . 
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(a) (b) 

Figure 18. Profiles of generalized displacements 
     0 0 0

1 2 3, ,u u u  of a doubly-curved panel of revolution 

evaluated for constant value of   coordinate, varying the values of the fiber orientation   and the 

maximum order of kinematic expansion N : (a)  1 0 00.25      ; (b)  1 0 00.5      . 

6.4. Doubly-Curved Panel of Translation 

The last structure is a completely clamped doubly-curved panel of translation. The middle 

surface of this peculiar geometry can be described by sliding a circumference over a parabolic arch. 

As far as the discrete model is concerned, the grid distribution is applied by setting 31N MI I  . 

The through-the-thickness profiles of strain, stress and displacement components are evaluated 

respectively in     1 0 0 1 0 0

1 1 1 2 2 20.25 ,0.25         , varying the values of the fiber orientation 

 0 ,60     and the maximum order of kinematic expansion N . Their graphs are shown in Figures 

19–21. 

The variations of the generalized displacement components computed on the shell middle 

surface are shown instead in Figures 22 and 23, by selecting constant values of the principal 

coordinates. 

Finally, the deformed shapes of the four shell structures analyzed in this section are depicted in 

Figure 24 for three different values of the fiber orientation ( 0 , 30 , 60        ). 
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Figure 19. Through-the-thickness variation of the strain components for a doubly-curved panel of 

translation evaluated in     1 0 0 1 0 0

1 1 1 2 2 20.25 ,0.25         , varying the values of the fiber 

orientation   and the maximum order of kinematic expansion N . 
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Figure 20. Through-the-thickness variation of the stress components [Pa] for a doubly-curved panel 

of translation evaluated in     1 0 0 1 0 0

1 1 1 2 2 20.25 ,0.25         , varying the values of the fiber 

orientation   and the maximum order of kinematic expansion N . 
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Figure 21. Through-the-thickness variation of the displacement components [m] for a doubly-curved 

panel of translation evaluated in     1 0 0 1 0 0

1 1 1 2 2 20.25 ,0.25         , varying the values of the fiber 

orientation   and the maximum order of kinematic expansion N . 

 
 

  

  

(a) (b) 

Figure 22. Profiles of generalized displacements 
     0 0 0

1 2 3, ,u u u  of a doubly-curved panel of translation 

evaluated for constant value of 
2  coordinate, varying the values of the fiber orientation   and the 

maximum order of kinematic expansion N : (a)  1 0 0

2 2 2 20.25      ; (b)  1 0 0

2 2 2 20.5      . 
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(a) (b) 

Figure 23. Profiles of generalized displacements 
     0 0 0

1 2 3, ,u u u  of a completely-clamped doubly-curved 

panel of translation evaluated for constant value of 
1  coordinate, varying the values of the fiber 

orientation   and the maximum order of kinematic expansion N : (a)  1 0 0

1 1 1 10.25      ; (b) 

 1 0 0

1 1 1 10.5      . 

 

 

 

0    30     60    

(a) 
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0    30     60    

(b) 

 

 

 

0    30     60    

(c) 

 
  

0    30     60    

(d) 

Figure 24. Deformed shapes of shell structures varying the values of the fiber orientation  : (a) 

Square plate; (b) Conical shell; (c) Doubly-curved panel of revolution; (d) Doubly-curved panel of 

translation. 

6.5. Remarks on the Use of the Murakami’s Function 

It can be noted that the present approach is used to perform the static analysis of sandwich 

structures made of three layers (two external stiffer skins and a soft-core). Murakami’s function can 

capture their effective mechanical behavior in this circumstance. Nevertheless, sandwich structures 

could be characterized by more than three layers. For instance, the inner soft-core could be enclosed 

by couples of orthotropic stiffer layers. Consequently, a lamination scheme could be given by 
        1 2 4 5

/ / Soft-core / /    . As highlighted first in the paper by Gherlone [120], then in the 

work by Groh and Weaver [121], the Murakami’s function embedded in an ESL model could be 

inadequate to deal with these kinds of structural problems. A final application is presented to 

illustrate this aspect. For this purpose, a completely clamped laminated square plate with 

1.5 mx yL L   and 0.1 mh  , loaded by an external pressure  
10 kPanq


  , is considered. Its 

lamination scheme is given by  0 / 90 / Soft-core / 90 / 0 , assuming 1 2 0.01 mh h  , 4 5 0.01 mh h   
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and 3 0.06  mh  . The four external layers are made of orthotropic material (Graphite-epoxy), 

whereas the soft-core is made of Foam. Their properties are listed in Table 2. In this circumstance, 

the reinforcing fibers are placed according to straight paths to perform the comparison also with the 

three-dimensional finite element solution (3D FEM). As far as the present ESL approach is 

concerned, the EDZ4 is considered to be structural theory. To prove the inadequacy of the 

Murakami’s function to capture the effective static behavior of this five-layered plate, a layer-wise 

theory is used for the sake of comparison. In particular, the LD4 model is used. The reader can find 

the meaning and the features of this theory in the paper by Tornabene [12]. The 

through-the-thickness profiles of strains, stresses and displacements are shown in Figures 25–27. The 

following results prove the same aspects highlighted in the reference papers [120,121]. In particular, 

the LD4 is in excellent agreement with the reference solution (3D FEM), whereas the EDZ4 is not 

able to capture the effective through-the-thickness profiles, especially in terms of strains and 

displacements. The discrete model is obtained by setting 25N MI I   grid points for the GDQ 

solutions. On the other hand, the commercial software Strand7 is employed for the 3D FEM solution, 

by using the Hexa20 brick elements. This final example justifies the use of the ESL zig-zag theories 

only for three-layered sandwich structures with an inner soft-core. 
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Figure 25. Through-the-thickness variation of the strain components for a completely clamped 

square plate evaluated in  0.25 ,0.25x yL L . Comparison among the finite element method (3D FEM), 

layer-wise (LD4) and ESL approaches (EDZ4). 

  

  

  

Figure 26. Through-the-thickness variation of the stress components [Pa] for a completely clamped 

square plate evaluated in  0.25 ,0.25x yL L . Comparison among the finite element method (3D FEM), 

layer-wise (LD4) and ESL approaches (EDZ4). 
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Figure 27. Through-the-thickness variation of the displacement components [m] for a completely 

clamped square plate evaluated in  0.25 ,0.25x yL L . Comparison among the finite element method 

(3D FEM), layer-wise (LD4) and ESL approaches (EDZ4). 

7. Discussion 

A massive set of parametric investigations has been performed and presented in the paper to 

show the effect of the curvilinear paths of the reinforcing fibers on the linear static response of 

soft-core sandwich structures. A theoretical framework based on higher-order ESL theories 

including the Murakami’s function has been employed. As far as the values of the fiber orientation 

are concerned, an innovative and general mathematical formulation has been developed, to describe 

more complex curvilinear paths (such as power law, sine-wave, exponential, Gaussian and ellipse 

shaped). The following observations can be gathered: 

• The soft-core effect is well-captured by means of the Murakami’s function. As highlighted in 

previous work [56], this function is required to model the so-called zig-zag effect. These aspects 

are extremely clear in the through-the-thickness profiles of strain, stress and displacement 

components presented in the paper. 

• The higher-order theories employed in this paper provide comparable results. Thus, all these 

models can be used to deal with similar structural problems. With respect to first-order models, 

the shear correction factor and the plane stress hypothesis can be neglected, and the mechanical 

behavior is closer to the three-dimensional one. 

• The linear static behavior is affected by the value of the fiber orientation. Therefore, the angle of 

the fiber orientation represents a design parameter that can be modified and optimized during 

the manufacturing process to obtain the desired structural behavior in terms of static response. 

• The boundary conditions in terms of generalized displacements on the shell middle surface, as 

well as stress profiles, are well-enforced. In particular, null displacements are obtained for 

clamped edges, whereas the normal stress n  coincides with the value of the corresponding 

applied load. 

• The numerical method employed in the paper represents an accurate tool to deal with similar 

structural problems. 
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