Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of the Coating Composition
3.2. Effect of Welding Current
3.3. XRD Analysis
3.4. Hardness
3.5. Surface Morphology
4. Conclusions
- The results of the study showed that the hardness of the treated layer of the Ti-6Al-4V surface could be successfully improved by embedding ceramic nanoparticles into the surface layer.
- The treated layer with the maximum hardness corresponded to the sample surface melted with 50 A welding current.
- The Ni/Al2O3 coating was more effective at doubling the surface hardness. The hardness of the surface layer decreased with the increasing size of the nanoparticles.
- The morphology of the surface is significantly affected by the welding current and coating composition. Surface roughness increased with welding current and decreased with increasing particle size.
- The heat input into the surface during the surface melting process resulted in the formation of various intermetallic compounds capable of increasing the hardness of the Ti-6Al-4V surface layer.
Author Contributions
Funding
Conflicts of Interest
References
- Peters, M.; Hemptenmacher, J.; Kumpfert, J.; Leyens, C. Structure and Properties of Titanium and Titanium Alloys. Titan. Titan. Alloy. 2005, 1–36. [Google Scholar] [CrossRef]
- de Viteri, V.S.; Fuentes, E. Titanium and Titanium Alloys as Biomaterials. Tribol. Fundam. Adv. 2013. [Google Scholar] [CrossRef]
- Warlimont, H. Titanium, and Titanium Alloys. In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New developments of Ti-based alloys for biomedical applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [PubMed]
- German, V.; Alin Pop, M.; Luca Motoc, D.; Radomir, I. Tribological Properties of Thermal Spray Coatings. Eur. Sci. J. 2013, 3, 154–159. [Google Scholar]
- Dong, H. Tribological properties of titanium-based alloys. In Surface Engineering of Light Alloys; Woodhead Publishing: Cambridge, UK, 2010; pp. 58–80. [Google Scholar] [CrossRef]
- Lütjering, G. Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng. A 1998, 243, 32–45. [Google Scholar] [CrossRef]
- Saleh, A.F.; Abboud, J.H.; Benyounis, K.Y. Surface carburizing of Ti-6Al-4V alloy by laser melting. Opt. Lasers Eng. 2010, 48, 257–267. [Google Scholar] [CrossRef]
- Rizzi, M.; Gatti, G.; Migliario, M.; Marchese, L.; Rocchetti, V.; Renò, F. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws. J. Prosthet. Dent. 2014, 112, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Zhou, P.; Wang, Y.; Zou, J.; Ma, Y.; Wang, Z.; Tian, W.; Yao, X.; Tang, B. Thermal oxidation of Ti6Al4V alloy with enhanced wear and corrosion resistance for oil and gas application: Effect of temperature. Surf. Rev. Lett. 2015, 22, 1550033. [Google Scholar] [CrossRef]
- Sidhu, B.S.; Singh, H.; Puri, D.; Prakash, S. Wear, and oxidation behaviour of shrouded plasma sprayed fly ash coatings. Tribol. Int. 2007, 40, 800–808. [Google Scholar] [CrossRef]
- Lin, N.; Liu, Q.; Zou, J.; Li, D.; Yuan, S.; Wang, Z.; Tang, B. Surface damage mitigation of Ti6Al4V alloy via thermal oxidation for oil and gas exploitation application: Characterization of the microstructure and evaluation of the surface performance. RSC Adv. 2017, 7, 13517–13535. [Google Scholar] [CrossRef]
- Liu, L.; Ernst, F.; Michal, G.M.; Heuer, A.H. Surface hardening of Ti alloys by gas-phase nitridation: Kinetic control of the nitrogen surface activity. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2005, 36, 2429–2434. [Google Scholar] [CrossRef]
- Yazdi, R.; Kashani-Bozorg, S.F. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid-phase process. Mater. Chem. Phys. 2015, 152, 147–157. [Google Scholar] [CrossRef]
- Cooke, K.O.; Khan, T.I.; Oliver, G.D. Transient liquid phase diffusion bonding Al-6061 using nano-dispersed Ni coatings. Mater. Des. 2012, 33, 469–475. [Google Scholar] [CrossRef]
- Cooke, K.O. Parametric Analysis of Electrodeposited Nanocomposite Coatings for Abrasive Wear Resistance. In Electrodeposition of Composite Materials; Intech Open: London, UK, 2014; p. 64. [Google Scholar] [CrossRef]
- Akhtar, T.S.; Cooke, K.O.; Khan, T.I.; Shar, M.A. Nanoparticle enhanced eutectic reaction during diffusion brazing of aluminum to magnesium. Nanomaterials 2019, 9, 370. [Google Scholar] [CrossRef]
- Easterling, K. Introduction to the Physical Metallurgy of Welding; Butterworth-Heinemann: Oxford, UK, 1992. [Google Scholar] [CrossRef]
- Shao, X.; Guo, X.; Han, Y.; Lin, Z.; Qin, J.; Lu, W.; Zhang, D. Preparation of TiNi films by diffusion technology and the study of the formation sequence of the intermetallics in Ti-Ni systems. J. Mater. Res. 2014, 29, 2707–2716. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Zhang, C.H. Synthesis of TiNi-TiN gradient coating by a hybrid method of laser cladding and laser nitriding. Zhongguo Youse Jinshu Xuebao/Chin. J. Nonferrous Met. 2006, 16, 213–218. [Google Scholar]
- Gong, J.; Wilkinson, A.J. A microcantilever investigation of size effect, solid-solution strengthening and second-phase strengthening for <a> prism slip in alpha-Ti. Acta Mater. 2011, 59, 5970–5981. [Google Scholar] [CrossRef]
- Cooke, K.O.; Khan, T.I. Resistance spot welding aluminum to magnesium using nanoparticle reinforced eutectic forming interlayers. Sci. Technol. Weld. Join. 2017, 23, 271–278. [Google Scholar] [CrossRef]
- Cooke, K.O.; Khan, T.I. Microstructure Development during Low-Current Resistance Spot Welding of Aluminum to Magnesium. J. Manuf. Mater. Process. 2019, 3, 46. [Google Scholar] [CrossRef]
Alloy | Al | Mn | V | Ag | Si | Fe | Ti |
---|---|---|---|---|---|---|---|
Ti-6Al-4V | 6.37 | 0.23 | 4.33 | 0.86 | 0.15 | 0.03 | Bal. |
Parameters | Levels Settings | ||
---|---|---|---|
Particle concentration | Ni/Al2O3 (20g/L) 40 nm | Ni/Al2O3 + TiO2 (10 and 10 g/L) 40 nm + 32 nm | Ni/Al2O3 + TiO2 (10 and 10 g/L) 40 nm + 250 nm |
Welding current (A) | 50 | 75 | 100 |
Heat input (J/mm) | 337.5 | 506.25 | 675 |
Phase | Ti | O | Al | Ni | V |
---|---|---|---|---|---|
a | 89.38 | 6.95 | 2.07 | - | 1.60 |
b | 57.11 | 38.06 | 4.83 | - | - |
c | 52.51 | 3.14 | 3.2 | 39.44 | 2.01 |
d | 50.35 | 7.89 | 8.34 | 32.22 | 2.76 |
e | 62.53 | 3.15 | 6.53 | 35.18 | 1.09 |
f | 83.9 | - | 4.48 | 7.49 | 4.14 |
g | 82.29 | - | 4.03 | 9.85 | 3.83 |
h | 78.61 | 1.92 | 5.51 | 10.22 | 3.74 |
i | 62.55 | - | 2.3 | 34.10 | 1.04 |
j | 90.6 | 6.49 | 1.79 | - | 1.13 |
k | 85.06 | - | 6.82 | 3.01 | 5.12 |
l | 76.35 | 1.92 | 5.51 | 12.22 | 4.74 |
m | 62.53 | - | 2.3 | 35.18 | 1.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooke, K.O.; Shar, M.A.; Hussain, S. Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding. J. Manuf. Mater. Process. 2020, 4, 29. https://doi.org/10.3390/jmmp4020029
Cooke KO, Shar MA, Hussain S. Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding. Journal of Manufacturing and Materials Processing. 2020; 4(2):29. https://doi.org/10.3390/jmmp4020029
Chicago/Turabian StyleCooke, Kavian Omar, Muhammad Ali Shar, and Suleman Hussain. 2020. "Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding" Journal of Manufacturing and Materials Processing 4, no. 2: 29. https://doi.org/10.3390/jmmp4020029
APA StyleCooke, K. O., Shar, M. A., & Hussain, S. (2020). Micro-Alloying and Surface Texturing of Ti-6Al-4V Alloy by Embedding Nanoparticles Using Gas Tungsten Arc Welding. Journal of Manufacturing and Materials Processing, 4(2), 29. https://doi.org/10.3390/jmmp4020029