Effect of Methyl Jasmonate Plus Urea Foliar Application on the Polysaccharide and Monosaccharide Composition of Tempranillo Grapes and Wines and on the Wine’s Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Site, Experimental Design, and Vinification
2.2. General Parameters of Must and Wines
2.3. Analysis of Soluble Polysaccharides from Grapes and Wine via GC–MS
2.3.1. Extraction of Soluble Polysaccharides from Grapes
2.3.2. Precipitation of Total Soluble Polysaccharides from Grapes and Wines
2.3.3. Identification and Quantification of Monosaccharides by GC–MS in Grapes and Wines
2.4. Sensory Analysis of the Wines
2.5. Statistical Analysis
3. Results and Discussion
3.1. General Parameters of Must and Wines
3.2. Monosaccharide Composition and the Polysaccharide Families of Tempranillo Grapes
3.3. Monosaccharide Composition and the Polysaccharide Families of Tempranillo Wines
3.4. Multifactor Analysis of Variance of Monosaccharide Composition and the Polysaccharide Families of Tempranillo Grapes and Wines and Discriminant Analysis of Monosaccharide Compounds in Wines
3.5. Sensory Analysis of Tempranillo Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unterkofler, J.; Muhlack, R.A.; Jeffery, D.W. Processes and purposes of extraction of grape components during winemaking: Current state and perspectives. Appl. Microbiol. Biotechnol. 2020, 104, 4737–4755. [Google Scholar] [CrossRef]
- Doco, T.; Quellec, N.; Moutounet, M.; Pellerin, P. Polysaccharide patterns during the aging of Carignan noir red wines. Am. J. Enol. Vitic. 1999, 50, 25–32. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Romero-Cascales, I.; Ros-García, J.M.; López-Roca, J.M.; Gómez-Plaza, E. A first approach towards the relationship between grape skin cell-wall composition and anthocyanin extractability. Anal. Chim. Acta 2006, 563, 26–32. [Google Scholar] [CrossRef]
- Brandão, E.; Silva, M.S.; García-Estévez, I.; Williams, P.; Mateus, N.; Doco, T.; de Freitas, V.; Soares, S. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydr. Polym. 2017, 177, 77–85. [Google Scholar] [CrossRef]
- Jouquand, C.; Ducruet, V.; Giampaoli, P. Partition coefficients of aroma compounds in polysaccharide solutions by the phase ratio variation method. Food Chem. 2004, 85, 467–474. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Properties of Wine Polysaccharides. In Pectins—Extraction, Purification, Characterization and Applications; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Ortega-Heras, M.; Pérez-Magariño, S. Changes in polysaccharide composition during sparkling wine making and aging. J. Agric. Food Chem. 2013, 61, 12362–12373. [Google Scholar] [CrossRef] [PubMed]
- Mira de Orduña, R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Gutiérrez, N.; López-De-silanes, L.; Escott, C.; Loira, I.; del Fresno, J.M.; Suárez-Lepe, J.A.; Morata, A. The effect of elicitors and canopy management in the chemical composition of vitis vinifera red varieties in warm and hot areas in spain. Agronomy 2021, 11, 1192. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. Oeno One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Frioni, T.; VanderWeide, J.; Palliotti, A.; Tombesi, S.; Poni, S.; Sabbatini, P. Foliar vs. soil application of Ascophyllum nodosum extracts to improve grapevine water stress tolerance. Sci. Hortic. 2021, 277, 109807. [Google Scholar] [CrossRef]
- Portu, J.; López-Alfaro, I.; Gómez-Alonso, S.; López, R.; Garde-Cerdán, T. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chem. 2015, 180, 171–180. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Santamarıá, P.; Winterhalter, P.; Garde-Cerdán, T. Methyl jasmonate effect on Tempranillo (Vitis vinifera L.) grape phenolic content: A 2-year study. Acta Hortic. 2017, 1188, 127–134. [Google Scholar] [CrossRef]
- Benhamou, N. Elicitor-induced plant defence pathways. Trends Plant Sci. 1996, 1, 233–240. [Google Scholar] [CrossRef]
- Ruiz-García, Y.; Gómez-Plaza, E. Elicitors: A tool for improving fruit phenolic content. Agriculture 2013, 3, 33–52. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Effect of methyl jasmonate on the aroma of Sangiovese grapes and wines. Food Chem. 2018, 242, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Plaza, E.; Mestre-Ortuño, L.; Ruiz-García, Y.; Fernández-Fernández, J.I.; López-Roca, J.M. Effect of benzothiadiazole and methyl jasmonate on the volatile compound composition of Vitis vinifera L. Monastrell grapes and wines. Am. J. Enol. Vitic. 2012, 63, 394–401. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Santamaría, P.; Garde-Cerdán, T. Methyl jasmonate treatment to increase grape and wine phenolic content in Tempranillo and Graciano varieties during two growing seasons. Sci. Hortic. 2018, 240, 378–386. [Google Scholar] [CrossRef]
- Portu, J.; Santamaría, P.; López-Alfaro, I.; López, R.; Garde-Cerdán, T. Methyl jasmonate foliar application to tempranillo vineyard improved grape and wine phenolic content. J. Agric. Food Chem. 2015, 63, 2328–2337. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Portu, J.; López, R.; Santamaría, P. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content. Food Chem. 2016, 203, 536–539. [Google Scholar] [CrossRef]
- Gil-Muñoz, R.; Giménez-Bañón, M.J.; Moreno-Olivares, J.D.; Paladines-Quezada, D.F.; Bleda-Sánchez, J.A.; Fernández-Fernández, J.I.; Parra-Torrejón, B.; Ramírez-Rodríguez, G.B.; Delgado-López, J.M. Effect of methyl jasmonate doped nanoparticles on nitrogen composition of monastrell grapes and wines. Biomolecules 2021, 11, 1631. [Google Scholar] [CrossRef]
- Gil-Muñoz, R.; Bautista-Ortín, A.B.; Ruiz-García, Y.; Fernández-Fernández, J.I.; Gómez-Plaza, E. Improving phenolic and chromatic characteristics of monastrell, merlot and syrah wines by using methyl jasmonate and benzothiadiazole. Oeno One 2017, 51, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Apolinar-Valiente, R.; Ruiz-García, Y.; Williams, P.; Gil-Muñoz, R.; Gómez-Plaza, E.; Doco, T. Preharvest Application of Elicitors to Monastrell Grapes: Impact on Wine Polysaccharide and Oligosaccharide Composition. J. Agric. Food Chem. 2018, 66, 11151–11157. [Google Scholar] [CrossRef] [PubMed]
- Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B.; Gil-Muñoz, R. Influence of methyl jasmonate and benzothiadiazole on the composition of grape skin cell walls and wines. Food Chem. 2019, 277, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Paladines-Quezada, D.F.; Gil-Muñoz, R.; Apolinar-Valiente, R.; Williams, P.; Fernández-Fernández, J.I.; Doco, T. Effect of applying elicitors to Vitis vinifera L. cv. Monastrell at different ripening times on the complex carbohydrates of the resulting wines. Eur. Food Res. Technol. 2022, 248, 2369–2381. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Garde-Cerdan, T.; Pérez-Álvarez, E.P.; Guadalupe, Z.; Parra-Torrejón, B.; Ayestarán, B. Foliar applications to vines of methyl jasmonate and nanoparticles doped with methyl jasmonate: Impact on grape and wine polysaccharide composition. OENO One 2023, 57, 1–14. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Ramírez-Rodríguez, G.B.; Carmona, F.J.; Martínez-Vidaurre, J.M.; Masciocchi, N.; Guagliardi, A.; Garde-Cerdán, T.; Delgado-López, J.M. Towards a more sustainable viticulture: Foliar application of N-doped calcium phosphate nanoparticles on Tempranillo grapes. J. Sci. Food Agric. 2021, 101, 1307–1313. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; López, R.; Portu, J.; González-Arenzana, L.; López-Alfaro, I.; Santamaría, P. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers. Food Chem. 2014, 163, 136–141. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Garde-Cerdán, T.; García-Escudero, E.; Martínez-Vidaurre, J.M. Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages. J. Sci. Food Agric. 2017, 97, 2524–2532. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Portu, J.; López, R.; Santamaría, P. Effect of foliar applications of proline, phenylalanine, urea, and commercial nitrogen fertilizers on stilbene concentrations in tempranillo musts and wines. Am. J. Enol. Vitic. 2015, 66, 542–547. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Gutiérrez-Gamboa, G.; López, R.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Influence of foliar application of phenylalanine and urea at two doses to vineyards on grape volatile composition and amino acids content. Vitis J. Grapvine Res. 2018, 57, 137–141. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Santamaría, P.; Rubio-Bretón, P.; González-Arenzana, L.; López-Alfaro, I.; López, R. Foliar application of proline, phenylalanine, and urea to Tempranillo vines: Effect on grape volatile composition and comparison with the use of commercial nitrogen fertilizers. LWT-Food Sci. Technol. 2015, 60, 684–689. [Google Scholar] [CrossRef]
- OIV. Compendium of Internationals Methods of Wine and Must Analysis; OIV: Paris, France, 2009. [Google Scholar]
- Ribéreau-Gayon, P.; Stonestreet, E. Determination of anthocyanins in red wine. Bull. Soc. Chim. Fr. 1965, 9, 2649–2652. [Google Scholar]
- Canalejo, D.; Guadalupe, Z.; Martínez-Lapuente, L.; Ayestarán, B.; Pérez-Magariño, S. Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chem. 2021, 365, 130445. [Google Scholar] [CrossRef]
- Ayestarán, B.; Guadalupe, Z.; León, D. Quantification of major grape polysaccharides (Tempranillo v.) released by maceration enzymes during the fermentation process. Anal. Chim. Act. 2004, 513, 29–39. [Google Scholar] [CrossRef]
- Guadalupe, Z.; Martínez-Pinilla, O.; Garrido, A.; Carrillo, J.D.; Ayestarán, B. Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size exclusion chromatography (SEC). Food Chem. 2012, 131, 367–374. [Google Scholar] [CrossRef]
- OIV. OIV Standard for International Wine and Spirituous Beverages of Vitivinicultural Origin Competitions. Annex 3.1. Score Sheet. 2009 In RESOLUTION OIV/CONCOURS 332A/2009. Available online: https://www.oiv.int/public/medias/4661/oiv-concours-332a-2009-en.pdf (accessed on 31 January 2023).
- Garde-Cerdán, T.; Gutiérrez-Gamboa, G.; Baroja, E.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages. Food Res. Int. 2018, 112, 274–283. [Google Scholar] [CrossRef]
- Arnous, A.; Meyer, A.S. Quantitative prediction of cell wall polysaccharide composition in grape (Vitis vinifera L.) and apple (Malus domestica) skins from acid hydrolysis monosaccharide profiles. J. Agric. Food Chem. 2009, 57, 3611–3619. [Google Scholar] [CrossRef] [PubMed]
- Minjares-Fuentes, R.; Femenia, A.; Garau, M.C.; Candelas-Cadillo, M.G.; Simal, S.; Rossell’o, C. Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohydr. Polym. 2016, 138, 180–191. [Google Scholar] [CrossRef]
- Pellerin, P.; Doco, T.; Vidal, S.; Williams, P.; Brillouet, J.M.; O’Neill, M.A. Structural characterization of red wine rhamnogalacturonan II. Carbohydr. Res. 1996, 290, 183–197. [Google Scholar] [CrossRef]
2019 | 2020 | |||
---|---|---|---|---|
Control | MeJ + Ur | Control | MeJ + Ur | |
Weight of 100 berries (g) | 113.68 ± 11.07 | 131.52 ± 25.19 | 199.57 ± 7.27 | 222.83 ± 25.25 |
°Brix | 24.7 ± 0.7 b | 23.0 ± 0.6 a | 22.3 ± 0.9 a | 22.8 ± 0.7 a |
Potential alcohol (% v/v) | 14.63 ± 0.49 b | 13.48 ± 0.42 a | 12.97 ± 0.63 | 13.29 ± 0.51 |
pH | 3.83 ± 0.05 | 3.80 ± 0.04 | 3.76 ± 0.01 | 3.71 ± 0.03 |
Total acidity (g/L) * | 4.61 ± 0.11 | 5.11 ± 0.36 | 4.12 ± 0.33 | 3.83 ± 0.13 |
Glu (g/L) | 120.18 ± 5.13 b | 107.43 ± 3.65 a | 107.31 ± 4.54 | 113.11 ± 6.85 |
Fru (g/L) | 129.68 ± 4.84 b | 119.25 ± 2.52 a | 109.11 ± 6.53 | 115.75 ± 3.49 |
Malic acid (g/L) | 2.24 ± 0.24 | 2.45 ± 0.46 | 1.21 ± 0.08 a | 1.42 ± 0.05 b |
Ammonium nitrogen (mg N/L) | 78.00 ± 8.22 a | 118.30 ± 6.54 b | 121.16 ± 3.52 | 109.72 ± 8.59 |
Amino nitrogen (mg N/L) | 118.51 ± 14.33 a | 237.60 ± 30.51 b | 152.53 ± 14.33 | 149.89 ± 7.06 |
YAN (mg N/L) | 196.51 ± 21.18 a | 355.90 ± 31.59 b | 273.69 ± 17.69 | 259.61 ± 13.65 |
Total phenols (mg/L) | 1185.33 ± 72.31 a | 1351.83 ± 29.05 b | 541.60 ± 64.02 | 578.17 ± 82.64 |
2019 | 2020 | |||
---|---|---|---|---|
Control | MeJ + Ur | Control | MeJ + Ur | |
Alcohol (% v/v) | 13.97 ± 0.31 b | 12.80 ± 0.40 a | 12.47 ± 0.70 | 12.53 ± 0.81 |
pH | 3.96 ± 0.07 | 3.94 ± 0.13 | 3.66 ± 0.08 | 3.73 ± 0.13 |
Total acidity (g/L) * | 4.27 ± 0.10 b | 3.92 ± 0.06 a | 4.43 ± 0.59 | 4.02 ± 0.23 |
V A 1 (g/L) ** | 0.23 ± 0.02 | 0.20 ± 0.01 | 0.22 ± 0.02 | 0.22 ± 0.03 |
Lactic acid (g/L) | 1.32 ± 0.10 | 1.28 ± 0.12 | 0.86 ± 0.07 a | 1.05 ± 0.09 b |
YAN 2 (mg N/L) | 18.06 ± 2.08 a | 67.89 ± 8.90 b | 30.36 ± 0.54 | 39.34 ± 10.65 |
T P 3 (mg/L) | 2440.83 ± 123.16 | 2460.73 ± 124.74 | 1116.63 ± 106.69 | 1333.47 ± 153.38 |
T A 4 (mg/L) | 1117.33 ± 69.97 | 1289.67 ± 102.00 | 130.99 ± 20.13 | 168.00 ± 18.68 |
CI 5 | 18.27 ± 1.03 | 19.01 ± 1.14 | 6.05 ± 0.55 a | 8.62 ± 1.10 b |
TPI 6 | 70.83 ± 3.47 | 73.32 ± 5.00 | 36.82 ± 4.05 | 44.73 ± 5.62 |
2019 | 2020 | |||
---|---|---|---|---|
Control | MeJ + Ur | Control | MeJ + Ur | |
* 2-Omefu | 0.04 ± 0.00 a | 0.06 ± 0.00 b | 0.14 ± 0.02 | 0.12 ± 0.03 |
* 2-OmeXyl | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.08 ± 0.00 | 0.06 ± 0.01 |
Apiose | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.04 ± 0.00 | 0.03 ± 0.01 |
Arabinose | 1.59 ± 0.01 a | 2.45 ± 0.45 b | 4.74 ± 0.35 | 4.60 ± 0.81 |
Rhamnose | 0.60 ± 0.08 | 0.69 ± 0.10 | 1.66 ± 0.14 | 1.33 ± 0.27 |
Fucose | 0.02 ± 0.00 a | 0.03 ± 0.00 b | 0.05 ± 0.00 | 0.05 ± 0.01 |
Xylose | 0.36 ± 0.08 | 0.29 ± 0.02 | 0.84 ± 0.07 | 0.72 ± 0.06 |
Mannose | 0.72 ± 0.00 | 0.73 ± 0.05 | 1.46 ± 0.23 | 1.63 ± 0.37 |
Galactose | 5.72 ± 0.24 | 6.31 ± 1.71 | 16.34 ± 0.90 | 16.01 ± 2.71 |
Galacturonic acid | 2.81 ± 0.04 | 2.66 ± 0.52 | 11.32 ± 0.59 | 9.17 ± 2.04 |
Glucose | 5.91 ± 1.10 | 4.92 ± 1.76 | 3.93 ± 0.75 | 3.09 ± 0.66 |
Glucuronic acid | 0.53 ± 0.09 | 0.61 ± 0.03 | 1.52 ± 0.16 | 1.52 ± 0.19 |
Kdo | 0.03 ± 0.00 b | 0.02 ± 0.01 a | 0.04 ± 0.00 | 0.05 ± 0.02 |
* TOTAL ms | 18.38 ± 1.14 | 18.81 ± 2.55 | 42.16 ± 1.40 | 38.37 ± 3.59 |
* RGII | 0.44 ± 0.02 | 0.46 ± 0.03 | 1.23 ± 0.07 | 1.03 ± 0.15 |
* Mannans | 0.72 ± 0.00 | 0.73 ± 0.05 | 1.46 ± 0.23 | 1.63 ± 0.37 |
* PRAG | 8.10 ± 0.44 | 9.59 ± 1.97 | 23.09 ± 1.11 | 22.51 ± 3.25 |
* HL | 2.44 ± 0.15 | 2.14 ± 0.51 | 10.02 ± 0.62 | 8.11 ± 1.96 |
* PST | 11.70 ± 0.47 | 12.92 ± 2.03 | 35.80 ± 1.29 | 33.28 ± 3.82 |
2019 | 2020 | |||
---|---|---|---|---|
Control | MeJ + Ur | Control | MeJ + Ur | |
Aceric acid | 0.01 ± 0.00 | 0.23 ± 0.31 | N.D | N.D. |
* 2-Omefu | 19.37 ± 5.68 | 15.87 ± 3.09 | 5.38 ± 0.56 b | 1.46 ± 0.07 a |
* 2-OmeXyl | 9.29 ± 4.09 | 8.33 ± 1.77 | 3.28 ± 0.53 b | 0.71 ± 0.28 a |
Apiose | 3.88 ± 2.29 | 4.25 ± 0.26 | 1.51 ± 0.32 b | 0.58 ± 0.01 a |
Arabinose | 323.71 ± 116.87 | 326.83 ± 62.11 | 206.14 ± 45.21 | 170.41 ± 2.78 |
Rhamnose | 161.22 ± 73.57 | 149.11 ± 19.02 | 43.00 ± 2.59 | 33.68 ± 12.39 |
Fucose | 7.56 ± 2.28 | 7.05 ± 1.29 | 1.84 ± 0.29 b | 0.93 ± 0.15 a |
Xylose | 22.77 ± 7.24 | 24.72 ± 4.56 | 9.84 ± 2.06 | 17.14 ± 4.83 |
Mannose | 542.37 ± 171.67 | 653.40 ± 154.28 | 582.66 ± 108.83 | 510.12 ± 75.20 |
Galactose | 1103.55 ± 427.71 | 1176.07 ± 219.70 | 623.81 ± 75.30 | 746.23 ± 59.81 |
Galacturonic acid | 641.24 ± 73.45 | 695.02 ± 100.69 | 68.28 ± 4.30 | 55.60 ± 12.37 |
Glucose | 178.68 ± 53.51 | 203.25 ± 14.38 | 78.06 ± 13.99 | 75.66 ± 27.47 |
Glucuronic acid | 35.15 ± 17.42 | 56.76 ± 16.31 | 24.96 ± 7.64 | 23.97 ± 6.13 |
Kdo | 11.61 ± 5.02 | 9.32 ± 5.00 | 1.42 ± 0.03 b | 0.45 ± 0.08 a |
* TOTAL ms | 3060.41 ± 487.14 | 3330.21 ± 294.54 | 1650.18 ± 140.87 | 1636.94 ± 101.80 |
* RGII | 176.64 ± 35.68 | 152.01 ± 24.61 | 46.34 ± 1.31 b | 12.78 ± 1.40 a |
* MP | 542.37 ± 171.67 | 653.40 ± 154.28 | 582.66 ± 108.83 | 510.12 ± 75.20 |
* PRAG | 1468.67 ± 466.28 | 1581.82 ± 247.49 | 854.90 ± 29.56 | 962.60 ± 68.95 |
* HL | 466.91 ± 91.56 | 552.20 ± 93.73 | 19.89 ± 0.78 a | 42.44 ± 11.94 b |
* PST | 2654.58 ± 506.50 | 2939.43 ± 307.31 | 1503.79 ± 79.80 | 1527.94 ± 147.76 |
Grapes | ||||
---|---|---|---|---|
Season (%) | Treatment (%) | S × T (%) | Residual (%) | |
Weight of 100 berries (g) | 84.91 *** | 4.57 | 0.08 | 10.44 |
°Brix | 37.14 * | 7.52 | 23.77 * | 31.57 |
Potential alcohol (% v/v) | 37.19 * | 7.54 | 23.87 * | 31.40 |
pH | 59.44 ** | 10.32 | 0.93 | 29.31 |
Total acidity | 69.25 *** | 0.98 | 13.82 * | 15.96 |
Glu | 7.15 | 6.69 | 47.61 * | 38,55 |
Fru | 52.17 ** | 1.30 | 26.24 * | 20.29 |
Malic acid | 82.20 *** | 3.42 | 0.00 | 14.38 |
Total phenols | 95.10 *** | 1.95 * | 0.80 | 2.15 |
Ammonium nitrogen (mg N/L) | 22.86 ** | 15.93 ** | 51.19 *** | 10.02 |
Amino nitrogen (mg N/L) | 8.37 * | 39.41 *** | 43.06 *** | 9.16 |
YAN (mg N/L) | 0.64 | 37.20 *** | 53.02 *** | 9.14 |
Wines | ||||
---|---|---|---|---|
Season (%) | Treatment (%) | S × T (%) | Residual (%) | |
Alcohol % v/v | 32.56 * | 12.62 | 15.87 | 38.95 |
pH | 67.95 ** | 0.71 | 2.19 | 29.15 |
Total acidity | 3.64 | 32.79 | 0.24 | 63.32 |
V.A. 1 | 1.96 | 17.65 | 5.45 | 74.95 |
Lactic acid | 73.46 *** | 3.17 | 8.16 | 15.21 |
YAN 2 | 4.46 | 58.45 *** | 28.20 *** | 8.88 |
TP 3 | 95.70 *** | 0.89 | 0.62 | 2.79 |
TA 4 | 97.69 *** | 0.96 * | 0.40 | 0.94 |
CI 5 | 95.39 *** | 2.04 * | 0.63 | 1.93 |
TPI 6 | 91.49 *** | 2.53 | 0.69 | 5.29 |
Grapes | Wines | |||||
---|---|---|---|---|---|---|
Season (%) | Treatment (%) | S × T (%) | Season (%) | Treatment (%) | S × T (%) | |
Aceric acid | 83.31 *** | 5.17 * | 5.17 * | 14.11 | 11.52 | 11.52 |
* 2-Omefu | 84.47 *** | 0.37 | 6.17 * | 82.79 *** | 5.64 | 0.02 |
* 2-OmeXyl | 88.62 *** | 1.97 | 4.39 * | 72.93 *** | 4.89 | 1.02 |
Apiose | 85.32 *** | 4.11 | 3.09 | 68.81 ** | 0.60 | 3.25 |
Arabinose | 87.09 *** | 1.61 | 3.12 | 57.83 ** | 0.82 | 1.16 |
Rhamnose | 84.45 *** | 1.66 | 5.17 | 77.02 *** | 0.65 | 0.01 |
Fucose | 80.39 *** | 0.33 | 5.78 | 87.08 *** | 1.27 | 0.10 |
Xylose | 91.31 *** | 3.83 * | 0.31 | 52.35 ** | 10.66 | 3.56 |
Mannose | 82.45 *** | 0.94 | 0.80 | 4.52 | 0.63 | 14.37 |
Galactose | 93.08 *** | 0.02 | 0.19 | 54.83 * | 2.52 | 0.16 |
Galacturonic acid | 91.09 *** | 2.13 | 1.62 | 96.84 *** | 0.11 | 0.29 |
Glucose | 45.25 *** | 10.51 | 0.08 | 81.35 *** | 0.77 | 1.14 |
Glucuronic acid | 94.64 *** | 0.20 | 0.18 | 40.54 * | 9.34 | 11.21 |
Kdo | 45.73 *** | 2.64 | 11.25 | 71.30 ** | 2.08 | 0.34 |
* TOTAL ms | 95.45 *** | 0.57 | 0.91 | 89.83 *** | 0.61 | 0.75 |
* RGII | 92.26 *** | 1.53 | 2.46 | 89.54 *** | 4.17 * | 0.10 |
* Mannans in grapes MP in wines | 82.45 *** | 0.94 | 0.80 | 4.52 | 0.63 | 14.37 |
* PRAG | 94.25 *** | 0.10 | 0.52 | 65.33 * | 2.10 | 0.00 |
* HL | 90.43 *** | 2.38 | 1.27 | 93.68 *** | 1.19 | 0.40 |
* PST | 96.55 *** | 0.08 | 0.68 | 84.82 *** | 1.23 | 0.88 |
2019 | 2020 | ||||
---|---|---|---|---|---|
Control | MeJ + Ur | Control | MeJ + Ur | ||
Appearence | Cleanness | 3.71 ± 0.74 | 3.63 ± 0.85 | 3.97 ± 0.82 | 4.13 ± 0.67 |
Color | 7.87 ± 1.26 | 7.67 ± 1.18 | 7.63 ± 1.54 | 7.87 ± 1.71 | |
Aroma | Intensity | 5.81 ± 1.40 | 6.33 ± 1.09 | 5.81 ± 1.18 | 6.32 ± 0.98 |
Frankness | 3.81 ± 0.95 | 4.13 ± 0.68 | 3.50 ± 0.88 a | 4.10 ± 0.79 b | |
Quality | 11.74 ± 2.13 | 12.33 ± 1.30 | 11.25 ± 1.88 | 11.94 ± 1.59 | |
Taste | Intensity | 5.81 ± 1.17 | 6.07 ± 0.83 | 5.56 ± 1.44 | 5.81 ± 1.08 |
Frankness | 3.81 ± 0.60 | 4.07 ± 0.69 | 3.56 ± 0.76 a | 4.03 ± 0.71 b | |
Quality | 15.29 ± 2.28 | 15.97 ± 1.77 | 14.44 ± 2.40 a | 15.71 ± 2.10 b | |
Persistence | 6.13 ± 0.88 b | 5.63 ± 0.81 a | 5.75 ± 1.08 | 5.90 ± 0.91 | |
Harmony | 8.68 ± 0.70 | 8.97 ± 0.56 | 8.56 ± 0.80 a | 8.97 ± 0.66 b | |
Total valuation | 72.65 ± 8.66 | 74.80 ± 4.67 | 70.03 ± 8.41 a | 74.77 ± 8.23 b |
Treatment | Season | Treatment xSeason | ||||
---|---|---|---|---|---|---|
Control | MeJ + Ur | 2019 | 2020 | |||
View | Cleanness | 3.84 | 3.88 | 3.67 a | 4.05 b | N.S. |
Color | 7.75 | 7.77 | 7.77 | 7.75 | N.S. | |
Smell | Intensity | 5.81 a | 6.33 b | 6.07 | 6.07 | N.S. |
Frankness | 3.65 a | 4.12 b | 3.97 | 3.80 | N.S. | |
Quality | 11.50 a | 12.13 b | 12.04 | 11.59 | N.S. | |
Taste | Intensity | 5.68 | 5.94 | 5.94 | 5.68 | N.S. |
Frankness | 3.68 a | 4.05 b | 3.94 | 3.80 | N.S. | |
Quality | 14.86 a | 15.84 b | 15.63 | 15.07 | N.S. | |
Persistence | 5.94 | 5.77 | 5.88 | 5.83 | N.S. | |
Harmony | 8.62 a | 8.97 b | 8.82 | 8.77 | N.S. | |
Total valuation | 71.34 a | 74.79 b | 73.72 | 72.40 | N.S. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Lázaro, M.; Martínez-Lapuente, L.; Garde-Cerdán, T.; Landín Ross-Magahy, M.; Torres-Díaz, L.L.; Pérez-Álvarez, E.P.; Guadalupe, Z.; Ayestarán, B. Effect of Methyl Jasmonate Plus Urea Foliar Application on the Polysaccharide and Monosaccharide Composition of Tempranillo Grapes and Wines and on the Wine’s Quality. Nitrogen 2023, 4, 263-278. https://doi.org/10.3390/nitrogen4030019
González-Lázaro M, Martínez-Lapuente L, Garde-Cerdán T, Landín Ross-Magahy M, Torres-Díaz LL, Pérez-Álvarez EP, Guadalupe Z, Ayestarán B. Effect of Methyl Jasmonate Plus Urea Foliar Application on the Polysaccharide and Monosaccharide Composition of Tempranillo Grapes and Wines and on the Wine’s Quality. Nitrogen. 2023; 4(3):263-278. https://doi.org/10.3390/nitrogen4030019
Chicago/Turabian StyleGonzález-Lázaro, Miriam, Leticia Martínez-Lapuente, Teresa Garde-Cerdán, Mikel Landín Ross-Magahy, Lesly L. Torres-Díaz, Eva P. Pérez-Álvarez, Zenaida Guadalupe, and Belén Ayestarán. 2023. "Effect of Methyl Jasmonate Plus Urea Foliar Application on the Polysaccharide and Monosaccharide Composition of Tempranillo Grapes and Wines and on the Wine’s Quality" Nitrogen 4, no. 3: 263-278. https://doi.org/10.3390/nitrogen4030019
APA StyleGonzález-Lázaro, M., Martínez-Lapuente, L., Garde-Cerdán, T., Landín Ross-Magahy, M., Torres-Díaz, L. L., Pérez-Álvarez, E. P., Guadalupe, Z., & Ayestarán, B. (2023). Effect of Methyl Jasmonate Plus Urea Foliar Application on the Polysaccharide and Monosaccharide Composition of Tempranillo Grapes and Wines and on the Wine’s Quality. Nitrogen, 4(3), 263-278. https://doi.org/10.3390/nitrogen4030019