Influence of Soil Type and Temperature on Nitrogen Mineralization from Organic Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Organic Fertilizers
2.2. Laboratory Incubation Study
2.3. Mineralization Kinetics and Statistics
3. Results and Discussion
3.1. Laboratory Incubation
3.2. Mineralization Kinetics
3.2.1. FM Fertilizer Mineralization Kinetics
3.2.2. PPL Fertilizer Mineralization Kinetics
3.2.3. MIX Fertilizer Mineralization Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- US Department of Agriculture. Results from the 2021 Organic Survey. 2022. Available online: https://www.nass.usda.gov/Publications/Highlights/2022/2022_Organic_Highlights.pdf (accessed on 11 November 2023).
- Bergstrand, K.J. Organic fertilizers in greenhouse production systems—A review. Sci. Hortic. 2022, 295, 110855. [Google Scholar] [CrossRef]
- Gale, E.S.; Sullivan, D.M.; Cogger, C.G.; Bary, A.I.; Hemphill, D.D.; Myhre, E.A. Estimating plant-available nitrogen release from manures, composts, and specialty products. J. Environ. Qual. 2006, 35, 2321–2332. [Google Scholar] [CrossRef] [PubMed]
- Wortman, S.E.; Holmes, A.A.; Miernicki, E.; Knoche, K.; Pittelkow, C.M. First-season crop yield response to organic soil amendments: A meta-analysis. Agron. J. 2017, 109, 1210–1217. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.; Cabrera, M.; Gaskin, J.; Franklin, D.; Kissel, D.; Saha, U. Nitrogen mineralization from organic materials and fertilizers: Predicting N release. Soil Sci. Soc. Am. J. 2020, 84, 522–533. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, D.E.; Vigil, M.F. Nitrogen mineralization from organic residues: Research opportunities. J. Environ. Qual. 2005, 34, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Cassity-Duffey, K.; Cabrera, M.; Franklin, D.; Gaskin, J.; Kissel, D. Effect of soil texture on nitrogen mineralization from organic fertilizers in four common southeastern soils. Soil Sci. Soc. Am. J. 2020, 84, 534–542. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 1–8. [Google Scholar] [CrossRef]
- Calderón, F.J.; McCarty, G.W.; Van Kessel, J.A.S.; Reeves III, J.B. Carbon and nitrogen dynamics during incubation of manured soil. Soil Sci. Soc. Am. J. 2004, 68, 1592–1599. [Google Scholar] [CrossRef]
- Geisseler, D.; Horwath, W.R.; Joergensen, R.G.; Ludwig, B. Pathways of nitrogen utilization by soil microorganisms—A review. Soil. Biol. Biochem. 2010, 42, 2058–2067. [Google Scholar] [CrossRef]
- Agehara, S.; Warncke, D.D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Sci. Soc. Am. J. 2005, 69, 1844–1855. [Google Scholar] [CrossRef]
- Hartz, T.K.; Johnstone, P.R. Nitrogen availability from high-nitrogen-containing organic fertilizers. HortTechnology 2006, 16, 39–42. [Google Scholar] [CrossRef]
- Wild, P.L.; Van Kessel, C.; Lundberg, J.; Linquist, B.A. Nitrogen availability from poultry litter and pelletized organic amendments for organic rice production. Agron. J. 2011, 103, 1284–1291. [Google Scholar] [CrossRef]
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen mineralization from organic amendments is variable but predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: Literature survey and model fitting. J. Environ. Qual. 2021, 50, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Dessureault-Rompré, J.; Zebarth, B.J.; Georgallas, A.; Burton, D.L.; Grant, C.A.; Drury, C.F. Temperature dependence of soil nitrogen mineralization rate: Comparison of mathematical models, reference temperatures and origin of the soils. Geoderma 2010, 157, 97–108. [Google Scholar] [CrossRef]
- Guntiñas, M.E.; Leirós, M.C.; Trasar-Cepeda, C.; Gil-Sotres, F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 2012, 48, 73–80. [Google Scholar] [CrossRef]
- Sierra, J. Temperature and soil moisture dependence of N mineralization in intact soil cores. Soil Biol. Biochem. 1997, 29, 1557–1563. [Google Scholar] [CrossRef]
- Bowles, T.M.; Acosta-Martínez, V.; Calderón, F.; Jackson, L.E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively managed agricultural landscape. Soil Biol. Biochem. 2014, 68, 252–262. [Google Scholar] [CrossRef]
- Miller, K.S.; Geisseler, D. Temperature sensitivity of nitrogen mineralization in agricultural soils. Biol. Fertil. Soils 2018, 54, 853–860. [Google Scholar] [CrossRef]
- Clivot, H.; Mary, B.; Valé, M.; Cohan, J.P.; Champolivier, L.; Piraux, F.; Justes, E. Quantifying in situ and modeling net nitrogen mineralization from soil organic matter in arable cropping systems. Soil Biol. Biochem. 2017, 111, 44–59. [Google Scholar] [CrossRef]
- Knoepp, J.D.; Swank, W.T. Using soil temperature and moisture to predict forest soil nitrogen mineralization. Biol. Fertil. Soils 2002, 36, 177–182. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.B.; Moore, A.; Satterwhite, M.; Leytem, A. Nitrogen mineralization as affected by temperature in calcareous soils receiving repeated applications of dairy manure. Soil Sci. Soc. Am. J. 2018, 82, 235–242. [Google Scholar] [CrossRef]
- Sims, J.T. Nitrogen transformations in a poultry manure amended soil: Temperature and moisture effects. J. Environ. Qual. 1986, 15, 59–63. [Google Scholar] [CrossRef]
- Hartz, T.K.; Smith, R.; Gaskell, M. Nitrogen availability from liquid organic fertilizers. HortTechnology 2010, 20, 169–172. [Google Scholar] [CrossRef]
- Stanford, G.; Smith, S.J. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. J. 1972, 36, 465–472. [Google Scholar] [CrossRef]
- Gordillo, R.M.; Cabrera, M.L. Mineralizable nitrogen in broiler litter: II. Effect of selected soil characteristics. J. Environ. Qual. 1997, 26, 1679–1686. [Google Scholar] [CrossRef]
- Hassink, J.; Bouwman, L.A.; Zwart, K.B.; Bloem, J.; Brussaard, L. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma 1993, 57, 105–128. [Google Scholar] [CrossRef]
- Abdelhafez, A.A.; Abbas, M.H.; Attia, T.M.; El Bably, W.; Mahrous, S.E. Mineralization of organic carbon and nitrogen in semi-arid soils under organic and inorganic fertilization. Environ. Technol. Innov. 2018, 9, 243–253. [Google Scholar] [CrossRef]
- Soinne, H.; Keskinen, R.; Räty, M.; Kanerva, S.; Turtola, E.; Kaseva, J.; Nuutinen, V.; Simojoki, A.; Salo, T. Soil organic carbon and clay content as deciding factors for net nitrogen mineralization and cereal yields in boreal mineral soils. Eur. J. Soil Sci. 2021, 72, 1497–1512. [Google Scholar] [CrossRef]
- De Jesus, H.I.; Ribeiro da Silva, A.L.B.; Dutta, B.; Cassity-Duffey, K.; Coolong, T. Influence of Organic Fertilizer Sources and Application Rates on Onion Production in Georgia, USA. HortTechnology 2023, 33, 398–406. [Google Scholar] [CrossRef]
- Masunga, R.H.; Uzokwe, V.N.; Mlay, P.D.; Odeh, I.; Singh, A.; Buchan, D.; De Neve, S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 2016, 101, 185–193. [Google Scholar] [CrossRef]
- Honeycutt, C.W. Nitrogen mineralization from soil organic matter and crop residues: Field validation of laboratory predictions. Soil Sci. Soc. Am. J. 1999, 63, 134–141. [Google Scholar] [CrossRef]
- Kaupa, P.; Rao, B.R. Nitrogen mineralization and efficiency from co-applied animal manures and mineral fertilizer in sweetpotato under humid tropical conditions. Field Crops Res. 2014, 168, 48–56. [Google Scholar] [CrossRef]
- Lei, L.; McDonald, L.M. Soil moisture and temperature effects on nitrogen mineralization in a high tunnel farming system. Commun. Soil Sci. Plant Anal. 2019, 50, 2140–2150. [Google Scholar] [CrossRef]
- Cabrera, M.; Molina, J.A.; Vigil, M. Modeling the nitrogen cycle. In Nitrogen in Agricultural Systems; Schepers, J.S., Raun, W., Eds.; ASA: Madison, WI, USA, 2008; pp. 695–730. [Google Scholar]
- US Department of Agriculture. 2022b. Soil Survey. Web Soil Survey—Soil Survey of Oconee and Tift Counties, Georgia. Available online: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed on 28 March 2023).
- Priha, O.; Smolander, A. Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biol. Biochem. 1999, 31, 965–977. [Google Scholar] [CrossRef]
- Wyngaard, N.; Cabrera, M.L.; Shober, A.; Kanwar, R. Fertilization strategy can affect the estimation of soil nitrogen mineralization potential with chemical methods. Plant Soil 2018, 432, 75–89. [Google Scholar] [CrossRef]
- Cabrera, M.L. Modeling the flush of nitrogen mineralization caused by drying and rewetting soils. Soil Sci. Soc. Am. J. 1993, 57, 63–66. [Google Scholar] [CrossRef]
- Crooke, W.M.; Simpson, W.E. Determination of ammonium in Kjeldahl digests of crops by an automated procedure. J. Sci. Food Agric. 1971, 22, 9–10. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic forms. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1983; pp. 643–698. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois river watershed using HSPF and SWAT 1. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Vazquez-Amábile, G.G.; Engel, B.A. Use of SWAT to compute groundwater table depth and streamflow in the Muscatatuck River watershed. Trans. Am. Soc. Agric. Eng. 2005, 48, 991–1003. [Google Scholar] [CrossRef]
- Erwiha, G.M.; Ham, J.; Sukor, A.; Wickham, A.; Davis, J.G. Organic fertilizer source and application method impact ammonia volatilization. Commun. Soil Sci. Plant Anal. 2020, 51, 1469–1482. [Google Scholar] [CrossRef]
- Hadas, A.; Bar-Yosef, B.; Davidov, S.; Sofer, M. Effect of pelleting, temperature, and soil type on mineral nitrogen release from poultry and dairy manures. Soil Sci. Soc. Am. J. 1983, 47, 1129–1133. [Google Scholar] [CrossRef]
- Hadas, A.; Kautsky, L. Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fert. Res. 1994, 38, 165–170. [Google Scholar] [CrossRef]
- Jan, M.T.; Roberts, P.; Tonheim, S.K.; Jones, D.L. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol. Biochem. 2009, 41, 2272–2282. [Google Scholar] [CrossRef]
- Mazeika, R.; Staugaitis, G.; Baltrusaitis, J. Engineered pelletized organo-mineral fertilizers (OMF) from poultry manure, diammonium phosphate and potassium chloride. ACS Sustain. Chem. Eng. 2016, 4, 2279–2285. [Google Scholar] [CrossRef]
- Purnomo, C.W.; Indarti, S.; Wulandari, C.; Hinode, H.; Nakasaki, K. Slow-release fertilizer production from poultry manure. Chem. Eng. Trans. 2017, 56, 1531–1536. [Google Scholar] [CrossRef]
- Boyhan, G.E.; Hicks, R.; Torrance, R.; Riner, C.M.; Hill, C.R. Evaluation of poultry litter and organic fertilizer rate and source for production of organic short-day onions. HortTechnology 2010, 20, 304–307. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.C.; Bautista, J.; Gunawan, G.; Bateman, A.; Riner, C.M. Sweet onion (Allium cepa L.) as influenced by organic fertilization rate: 2. Bulb yield and quality before and after storage. HortScience 2018, 53, 459–464. [Google Scholar] [CrossRef]
- Quan, Z.; Huang, B.; Lu, C.; Su, C.; Song, L.; Zhao, X.; Fang, Y. Effects of ryegrass amendments on immobilization and mineralization of nitrogen in a plastic shed soil: A 15N tracer study. Catena 2021, 203, 105325. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Chiang, S.C.; Merka, W.C.; Thompson, S.A.; Pancorbo, O.C. Nitrogen transformations in surface-applied poultry litter: Effect of litter physical characteristics. Soil Sci. Soc. Am. J. 1993, 57, 1519–1525. [Google Scholar] [CrossRef]
- Hargrove, W.L. Evaluation of ammonia volatilization in the field. J. Prod. Agric. 1988, 1, 104–111. [Google Scholar] [CrossRef]
- Zhenghu, D.; Honglang, X. Effects of soil properties on ammonia volatilization. Soil Sci. Plant Nutr. 2020, 46, 845–852. [Google Scholar] [CrossRef]
- Wang, F.L.; Alva, A.K. Ammonium adsorption and desorption in sandy soils. Soil Sci. Soc. Am. J. 2000, 64, 1669–1674. [Google Scholar] [CrossRef]
- Griffin, T.S.; Honeycutt, C.W. Using growing degree days to predict nitrogen availability from livestock manures. Soil Sci. Soc. Am. J. 2000, 64, 1876–1882. [Google Scholar] [CrossRef]
Soil | Total N | Total C | P | K | Mg | Ca | pHw 1 | CEC i |
---|---|---|---|---|---|---|---|---|
(%) | (mg·kg−1) | (mEq·100 g−1) | ||||||
Cecil | 0.31 | 1.79 | 33.5 | 116.5 | 63.5 | 677 | 5.5 | 7.0 |
Tifton | 0.21 | 1.1 | 39.5 | 38.0 | 30.5 | 320 | 5.4 | 4.3 |
Material | Inorganic N | NO3-N | NH4-N | Total N | Total C | C:N Ratio |
---|---|---|---|---|---|---|
% | ||||||
FM | 1.18 | 0.85 | 0.33 | 13.61 | 48.17 | 3.54 |
PPL | 1.04 | 0.90 | 0.14 | 4.36 | 27.74 | 6.36 |
MIX | 0.49 | 0.35 | 0.14 | 9.44 | 34.35 | 3.64 |
Time of Incubation (Days) | Fertilizer | Temperature | |||||||
---|---|---|---|---|---|---|---|---|---|
4 °C | 10 °C | 20 °C | 30 °C | ||||||
Net Nmin (mg Inorganic N·kg−¹ Dry Material) 1 | |||||||||
2 | FM | 0.56 | A a 2 | 3.72 | A a | 3.66 | A a | 0.00 | A a |
PPL | 0.00 | A a | 0.00 | A a | 4.20 | A a | 1.77 | A a | |
MIX | 0.00 | A a | 4.61 | A a | 2.00 | A a | 0.00 | A a | |
4 | FM | 12.31 | AB ab | 6.17 | A b | 22.02 | A ab | 34.09 | A a |
PPL | 16.91 | A a | 1.31 | A a | 10.17 | B a | 5.45 | B a | |
MIX | 6.01 | B ab | 2.08 | A b | 3.08 | C b | 9.71 | AB a | |
14 | FM | 31.84 | A c | 41.66 | A b | 53.71 | A a | 45.22 | A ab |
PPL | 15.70 | A a | 11.97 | B a | 11.06 | C a | 0.06 | C b | |
MIX | 18.87 | A a | -- | 26.69 | B a | 16.88 | B a | ||
35 | FM | 62.00 | A b | 58.90 | A b | 65.43 | A ab | 72.04 | A a |
PPL | 23.61 | C a | 20.72 | B a | 13.47 | C a | 11.53 | C a | |
MIX | 32.67 | B a | 29.42 | B a | 30.20 | B a | 32.36 | B a | |
120 | FM | 65.22 | A a | 60.53 | A a | 73.70 | A a | 72.14 | A a |
PPL | 17.15 | C a | 22.46 | C a | 18.48 | B a | 14.98 | C a | |
MIX | 41.29 | B ab | 36.24 | B b | 58.85 | A a | 40.67 | B ab |
Time of Incubation (Days) | Fertilizer | Temperature | |||||||
---|---|---|---|---|---|---|---|---|---|
4 °C | 10 °C | 20 °C | 30 °C | ||||||
Net Nmin (mg Inorganic N·kg−¹ Dry Material) 1 | |||||||||
2 | FM | 3.15 | A a 2 | 3.51 | A a | 3.38 | A a | 4.15 | B a |
PPL | 2.77 | A ab | 0.00 | A b | 4.94 | A ab | 11.26 | A a | |
MIX | 0.24 | A b | 3.31 | A ab | 0.00 | A b | 4.02 | B a | |
4 | FM | 1.86 | A bc | 0.00 | B c | 14.46 | A ab | 18.60 | A a |
PPL | 2.24 | A b | 9.65 | A ab | 13.26 | A a | 8.57 | A ab | |
MIX | 1.15 | A a | 1.10 | B a | 0.91 | B a | 4.39 | A a | |
14 | FM | 28.06 | A a | 28.68 | A a | 44.01 | A a | 33.82 | A a |
PPL | 15.21 | AB a | 7.95 | B ab | 6.97 | B ab | 0.00 | B b | |
MIX | 6.04 | B a | 9.20 | B a | 21.71 | AB a | 17.88 | AB a | |
35 | FM | 50.74 | A ab | 56.51 | A a | 48.93 | A ab | 43.39 | A b |
PPL | 11.04 | C a | 15.33 | C a | 3.08 | B b | 0.00 | B b | |
MIX | 20.31 | B a | 28.73 | B a | 30.62 | A a | 35.51 | A a | |
120 | FM | 61.91 | A a | 64.55 | A a | 50.09 | A b | 42.13 | A b |
PPL | 13.22 | C a | 9.74 | C a | 10.76 | B a | 0.00 | B a | |
MIX | 28.43 | B b | 31.55 | B b | 49.49 | A a | 26.24 | A b |
Soil | Fertilizer | Temperature | Net Nmin at 120 d | N03 | First Order Rate Coef. k 4 | RMSE | RSR | NSE | PBIAS | |
---|---|---|---|---|---|---|---|---|---|---|
°C | % 1 | mg Inorganic N·kg−1 Dry Soil 2 | d−1 | |||||||
Cecil | FM | 4 | 68.22 | 65.22 | 64.54 | 0.04 | 4.64 | 0.26 | 0.93 | 1.42 |
10 | 63.31 | 60.53 | 62.75 | 0.07 | 4.39 | 0.26 | 0.93 | −5.52 | ||
20 | 77.08 | 73.70 | 65.12 | 0.10 | 13.46 | 0.72 | 0.49 | −15.47 | ||
30 | 75.45 | 72.14 | 79.89 | 0.08 | 11.10 | 0.50 | 0.75 | −4.83 | ||
PPL | 4 | 25.83 | 17.15 | 17.17 | 0.26 | 5.14 | 0.85 | 0.28 | −11.74 | |
10 | 33.83 | 22.46 | 19.21 | 0.09 | 4.46 | 0.73 | 0.46 | −24.97 | ||
20 | 27.83 | 18.48 | 8.38 | 0.84 | 4.15 | 0.97 | 0.06 | 35.48 | ||
30 | 22.55 | 14.98 | 15.04 | 0.03 | 8.21 | 0.82 | 0.33 | −1.55 | ||
MIX | 4 | 46.14 | 41.29 | 38.01 | 0.04 | 4.59 | 0.36 | 0.87 | −8.84 | |
10 | 40.49 | 36.24 | 37.41 | 0.03 | 4.70 | 0.41 | 0.83 | −12.30 | ||
20 | 65.76 | 58.85 | 55.57 | 0.03 | 6.14 | 0.35 | 0.88 | −0.70 | ||
30 | 45.44 | 40.67 | 46.31 | 0.04 | 6.23 | 0.39 | 0.85 | −6.91 | ||
Tifton | FM | 4 | 64.75 | 61.91 | 64.54 | 0.04 | 5.56 | 0.22 | 0.95 | −2.98 |
10 | 67.52 | 64.55 | 62.55 | 0.04 | 5.21 | 0.25 | 0.94 | −6.00 | ||
20 | 52.39 | 50.09 | 48.03 | 0.11 | 5.55 | 0.33 | 0.89 | −2.06 | ||
30 | 44.07 | 42.13 | 41.85 | 0.10 | 7.14 | 0.51 | 0.74 | −3.77 | ||
PPL | 4 | 19.91 | 13.22 | 12.28 | 0.29 | 5.60 | 0.87 | 0.25 | −2.32 | |
10 | 14.66 | 9.74 | 10.56 | 0.22 | 4.13 | 0.80 | 0.36 | −5.90 | ||
20 | 16.21 | 10.76 | 8.38 | 0.84 | 8.95 | 1.00 | 0.01 | −0.27 | ||
30 | 0 | 0 | - | - | - | - | - | - | ||
MIX | 4 | 31.76 | 28.43 | 32.72 | 0.02 | 3.25 | 0.26 | 0.93 | −5.42 | |
10 | 35.26 | 31.55 | 30.61 | 0.03 | 4.82 | 0.38 | 0.86 | −4.79 | ||
20 | 55.29 | 49.49 | 48.93 | 0.03 | 7.85 | 0.41 | 0.83 | −1.90 | ||
30 | 29.32 | 26.24 | 30.15 | 0.09 | 8.39 | 0.64 | 0.59 | −1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jesus, H.I.; Cassity-Duffey, K.; Dutta, B.; da Silva, A.L.B.R.; Coolong, T. Influence of Soil Type and Temperature on Nitrogen Mineralization from Organic Fertilizers. Nitrogen 2024, 5, 47-61. https://doi.org/10.3390/nitrogen5010004
de Jesus HI, Cassity-Duffey K, Dutta B, da Silva ALBR, Coolong T. Influence of Soil Type and Temperature on Nitrogen Mineralization from Organic Fertilizers. Nitrogen. 2024; 5(1):47-61. https://doi.org/10.3390/nitrogen5010004
Chicago/Turabian Stylede Jesus, Hanna Ibiapina, Kate Cassity-Duffey, Bhabesh Dutta, Andre Luiz Biscaia Ribeiro da Silva, and Timothy Coolong. 2024. "Influence of Soil Type and Temperature on Nitrogen Mineralization from Organic Fertilizers" Nitrogen 5, no. 1: 47-61. https://doi.org/10.3390/nitrogen5010004
APA Stylede Jesus, H. I., Cassity-Duffey, K., Dutta, B., da Silva, A. L. B. R., & Coolong, T. (2024). Influence of Soil Type and Temperature on Nitrogen Mineralization from Organic Fertilizers. Nitrogen, 5(1), 47-61. https://doi.org/10.3390/nitrogen5010004