Exploring Advanced Weighted Integral Inequalities via Extended Fractional Calculus Approaches
Abstract
1. Introduction
2. Preliminaries and Some Key Identities
3. Fractional Weighted Milne-Type Inequalities Under Convexity
4. Fractional Milne-Type Estimates with Weights Involving Functions of Limited Magnitude
5. Milne-Inspired Fractional Weighted Inequalities for Lipschitz Families
6. Fractionally Weighted Milne-Form Results for Bounded-Variation Functions
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Courier Corporation: North Chelmsford, MA, USA, 2007. [Google Scholar]
- Brass, H.; Petras, K. Quadrature Theory: The Theory of Numerical Integration on a Compact Interval; Number 178; American Mathematical Society: Charles Street, RI, USA, 2011. [Google Scholar]
- Mishra, S.K.; Sharma, N.; Bisht, J. Integral Inequalities and Generalized Convexity; Chapman and Hall/CRC: Boca Raton, FL, USA, 2023. [Google Scholar]
- Alomari, M.W.; Liu, Z. New error estimations for the Milne’s quadrature formula in terms of at most first derivatives. Konuralp J. Math. 2013, 1, 17–23. [Google Scholar]
- Djenaoui, M.; Meftah, B. Milne type inequalities for differentiable s-convex functions. Honam Math. J. 2022, 44, 325–338. [Google Scholar]
- Budak, H.; Kosem, P.; Kara, H. On new Milne-type inequalities for fractional integrals. J. Inequalities Appl. 2023, 2023, 10. [Google Scholar] [CrossRef]
- Benaissa, B.; Sarikaya, M.Z. Milne-type inequalities for h-convex functions. Real Anal. Exch. 2024, 49, 363–376. [Google Scholar] [CrossRef]
- Ali, M.A.; Zhang, Z.; Fečkan, M. On some error bounds for Milne’s formula in fractional calculus. Mathematics 2023, 11, 146. [Google Scholar] [CrossRef]
- Budak, H.; Karagözoglu, P. Fractional Milne type inequalities. Acta Math. Univ. Comen. 2024, 93, 1–15. [Google Scholar] [CrossRef]
- Saber, H.; Moumen, A.; Meftah, B.; Boulares, H.; Imsatfia, M.; Guefaifia, R.; Mekawy, I. A variante of Katugampola Milne-type inequalities for differentiable s-convex functions. Fractals 2025, 2540102, 18. [Google Scholar] [CrossRef]
- Üneş, E.; Demir, I. Error estimates for perturbed Milne-type inequalities by twice-differentiable functions using conformable fractional integrals. Bound. Value Probl. 2025, 2025, 73. [Google Scholar] [CrossRef]
- Aslan, S.; Karaduman, E.; Akdemir, A.O. Fractional Inequalities of Milne-Type for Twice Differentiable Strongly Convex Functions. Turk. J. Inequalities 2025, 9, 16–26. [Google Scholar]
- Umar, M.; Butt, S.I.; Seol, Y. Milne and Hermite-Hadamard’s type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Math 2024, 9, 34090–34108. [Google Scholar] [CrossRef]
- Mateen, A.; Zhang, Z.; Ali, M.A. Some Milne’s rule type inequalities for convex functions with their computational analysis on quantum calculus. Filomat 2024, 38, 3329–3345. [Google Scholar] [CrossRef]
- Bin-Mohsin, B.; Javed, M.Z.; Awan, M.U.; Khan, A.G.; Cesarano, C.; Noor, M.A. Exploration of quantum Milne-Mercer-type inequalities with applications. Symmetry 2023, 15, 1096. [Google Scholar] [CrossRef]
- De Lejarza, J.J.M.; Rentería-Estrada, D.F.; Grossi, M.; Rodrigo, G. Quantum integration of decay rates at second order in perturbation theory. Quantum Sci. Technol. 2025, 10, 025026. [Google Scholar] [CrossRef]
- Shah, A.F.; Boulaaras, S.M.; Wong, P.J.; Saleem, M.S.; Umair Shahzad, M. Quantum Integral Inequalities via Different Variants of Parameterized Harmonically Convex Functions on Finite Intervals with Related Applications. Math. Methods Appl. Sci. 2025, 48, 9194–9206. [Google Scholar] [CrossRef]
- Ying, R.; Lakhdari, A.; Xu, H.; Saleh, W.; Meftah, B. On conformable Fractional Milne-type Inequalities. Symmetry 2024, 16, 196. [Google Scholar] [CrossRef]
- Rashid, S.; Akdemir, A.O.; Nisar, K.S.; Abdeljawad, T.; Rahman, G. New generalized reverse Minkowski and related integral inequalities involving generalized fractional conformable integrals. J. Inequalities Appl. 2020, 2020, 177. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H.; Kara, H.; Baş, U. Novel results of Milne-type inequalities involving tempered fractional integrals. Bound. Value Probl. 2024, 2024, 12. [Google Scholar] [CrossRef]
- Palsaniya, V.; Mittal, E.; Joshi, S.; Purohit, S.; Al-Mdallal, Q. Some Novel Inequalities Via Tempered Fractional Integral Operator and Their Applications. Palest. J. Math. 2025, 14, 52–64. [Google Scholar]
- Napoles, J.E.; Guzmán, P.M.; Bayraktar, B. Milne-type integral inequalities for modified (h,m)-convex functions on fractal sets. Probl. Anal. Issues Anal. 2024, 13, 106–127. [Google Scholar] [CrossRef]
- Sadi, S.; Bibi, M.; Seol, Y.; Mudassar, M. Milne type fractal integral inequalities for generalized m-convex mapping. Fractals 2023, 31, 2350081. [Google Scholar] [CrossRef]
- Lakhdari, A.; Meftah, B.; Saleh, W. On corrected Simpson-type inequalities via local fractional integrals. Georgian Math. J. 2025, 32, 111–121. [Google Scholar] [CrossRef]
- Lakhdari, A.; Budak, H.; Awan, M.U.; Meftah, B. Extension of Milne-type inequalities to Katugampola fractional integrals. Bound. Value Probl. 2024, 2024, 100. [Google Scholar] [CrossRef]
- Kuppusamy, V.; Gajendran, G. A novel fractional-order numerical differentiation formula for Katugampola derivative with applications to neural networks system dynamics. J. Appl. Math. Comput. 2025, 1–24. [Google Scholar] [CrossRef]
- Barakat, M.A. Comprehensive weighted Newton inequalities for broad function classes via generalized proportional fractional operators. Axioms 2025, 14, 234. [Google Scholar] [CrossRef]
- Demir, I. A new approach of Milne-type inequalities based on proportional Caputo-Hybrid operator: A new approach for Milne-type inequalities. J. Adv. Appl. Comput. Math. 2023, 10, 102–119. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Breaz, D.; Cotîrlă, L.I. Fractional Hermite-Hadamard, Newton-Milne, and convexity involving arithmetic-geometric mean-type inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with variable exponents. Fractal Fract. 2024, 8, 518. [Google Scholar] [CrossRef]
- Munir, A.; Qayyum, A.; Rathour, L.; Atta, G.; Supadi, S.S.; Ali, U. A study on Milne-type inequalities for a specific fractional integral operator with applications. Korean J. Math. 2024, 32, 297–314. [Google Scholar]
- Saleh, W.; Boulares, H.; Moumen, A.; Albala, H.; Meftah, B. New Approaches to Fractal–Fractional Bullen’s Inequalities Through Generalized Convexity. Fractal Fract. 2025, 9, 25. [Google Scholar] [CrossRef]
- Shehzadi, A.; Budak, H.; Haider, W.; Chen, H. Milne-type inequalities for co-ordinated convex functions. Filomat 2024, 38, 8295–8303. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoneef, A.A.; Hyder, A.-A.; Budak, H.; Barakat, M.A. Exploring Advanced Weighted Integral Inequalities via Extended Fractional Calculus Approaches. Fractal Fract. 2025, 9, 516. https://doi.org/10.3390/fractalfract9080516
Almoneef AA, Hyder A-A, Budak H, Barakat MA. Exploring Advanced Weighted Integral Inequalities via Extended Fractional Calculus Approaches. Fractal and Fractional. 2025; 9(8):516. https://doi.org/10.3390/fractalfract9080516
Chicago/Turabian StyleAlmoneef, Areej A., Abd-Allah Hyder, Hüseyin Budak, and Mohamed A. Barakat. 2025. "Exploring Advanced Weighted Integral Inequalities via Extended Fractional Calculus Approaches" Fractal and Fractional 9, no. 8: 516. https://doi.org/10.3390/fractalfract9080516
APA StyleAlmoneef, A. A., Hyder, A.-A., Budak, H., & Barakat, M. A. (2025). Exploring Advanced Weighted Integral Inequalities via Extended Fractional Calculus Approaches. Fractal and Fractional, 9(8), 516. https://doi.org/10.3390/fractalfract9080516