Next Article in Journal
On Extended Numerical Discretization Technique of Fractional Models with Caputo-Type Derivatives
Previous Article in Journal
Chaotic Analysis and Wave Photon Dynamics of Fractional Whitham–Broer–Kaup Model with β Derivative
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence and Ulam-Type Stability for Fractional Multi-Delay Differential Systems

Department of Mathematics, Guizhou University, Guiyang 550025, China
*
Author to whom correspondence should be addressed.
Fractal Fract. 2025, 9(5), 288; https://doi.org/10.3390/fractalfract9050288
Submission received: 25 March 2025 / Revised: 21 April 2025 / Accepted: 25 April 2025 / Published: 28 April 2025

Abstract

Fractional multi-delay differential systems, as an important mathematical model, can effectively describe viscoelastic materials and non-local delay responses in ecosystem population dynamics. It has a wide and profound application background in interdisciplinary fields such as physics, biomedicine, and intelligent control. Through literature review and classification, it is evident that for the fractional multi-delay differential system, the existence and uniqueness of the solution and Ulam-Hyers stability (UHS), Ulam-Hyers-Rassias stability (UHRS) of the fractional multi-delay differential system are rarely studied by using the multi-delayed perturbation of two parameter Mittag-Leffler typematrix function. In this paper, we first establish the existence and uniqueness of the solution for the Riemann-Liouville fractional multi-delay differential system on finite intervals using the Banach and Schauder fixed point theorems. Second, we demonstrate the existence and uniqueness of the solution for the system on the unbounded intervals in the weighted function space. Furthermore, we investigate UHS and UHRS for the nonlinear fractional multi-delay differential system in unbounded intervals. Finally, numerical examples are provided to validate the key theoretical results.

1. Introduction

Fractional calculus, a mathematical theory generalizing differentiation and integration to arbitrary orders, extends classical integer-order calculus. Its nonlocality implies that the derivative or integral of a function at a point depends not only on the local value but also on the global behavior of the function. Consequently, fractional differential systems (FDSs) are particularly effective in modeling complex systems with memory and hereditary characteristics, such as viscoelastic materials and biological phenomena [1]. As a pivotal branch of modern differential theory, fractional calculus provides unique advantages in practical application modeling. These advantages have driven its widespread adoption across disciplines, including engineering, biomedicine, electrical engineering, and communication systems [2,3,4]. The inherent precision and flexibility of FDSs not only improve model accuracy but also offer novel perspectives for problem analysis and solution design.
As a fundamental characteristic of dynamical systems, time delays are universally present in both natural and engineering systems. These delays are primarily reflected in the significant temporal lag between the feedback of system output signals and the input signals. Delay effects are prevalent in processes such as energy transfer, material transport, and information transmission. The presence of delays can alter the original properties of a system; for example, they can make the system unstable and induce oscillations or chaotic behavior [5]. Therefore, delays have become critical factors in diverse fields, including control engineering, biological systems, economic management, and medicine [6,7,8].
Fractional delay differential systems (FDDSs) extend classical FDSs through the introduction of delay terms. This extension not only preserves the fractional derivatives but also accounts for the influence of historical states on the current system state. Such systems have been shown to be particularly effective in simulating memory relaxation behaviors in viscoelastic materials and nonlocal delayed responses in ecological population dynamics, offering unique advantages for analyzing processes with hereditary characteristics and propagation delays. Compared to ordinary differential systems (ODSs), FDDSs provide a more rigorous mathematical framework for characterizing real-world dynamical behaviors in biological systems and engineering applications [9,10,11]. In the framework of the qualitative theory of FDDSs, the main research include the explicit solution representation and the basic analytical properties, including the existence, uniqueness, stability and controllability of the solution [12,13,14,15].
In 2012, Medved and Pospíšil [16] studied the following multi-delay differential systems:
ν ( t ) = A ν ( t ) + B 1 ν ( t h 1 ) + B 2 ν ( t h 2 ) + + B N ν ( t h N ) + f ( t ) , t 0 , ν ( t ) = ψ ( t ) , h t 0 ,
where A ,   B m R n × n are constant matrices that pairwise commute, h m > 0 , m = 1 ,   2 ,   , N , ψ C 1 ( [ h , 0 ] , R n ) , and h : = max { h 1 , , h N } . In [16], the authors pioneered a multi-delay matrix exponential approach to derive an explicit solution for system (1). It is worth mentioning that the author overcomes the difficulty of constructing the fundamental solution matrix caused by multiple delays.
In 2017–2018, Li and Wang [17,18] constructed the Mittag-Leffler type matrix polynomial function with fractional delay and studied its related properties. Based on these properties, they subsequently provided the explicit solutions for the Caputo type linear homogeneous FDDS and the Riemann-Liouville type FDDS.
In 2022, Mahmudov [19] obtained the multi-delayed perturbation of two parameter Mittag-Leffler type matrix function by introducing the concept of multivariate determining matrix equation, which extends the classical Mittag-Leffler type matrix functions and delayed Mittag-Leffler type matrix functions. Then he presented an explicit analytical solution for the following system of order l < α l 1 :
( R L D 0 + α y ) ( t ) = B y ( t ) + i = 1 d B i y ( t ϑ i ) + g ( t ) , t ( 0 , T ] , ϑ i > 0 , ( R L D 0 + α j y ) ( t ) | t = 0 = φ ( 0 ) = q j , j = 1 , 2 , , l , y ( t ) = φ ( t ) , ϑ t < 0 ,
where D 0 + α R L denotes the Riemann-Liouville fractional derivative, l N , T > 0 , B , B 1 , , B d R n × n , ϑ : = max { ϑ 1 , ϑ 2 , , ϑ d } , φ : [ ϑ , 0 ] R n an arbitrary differentiable function that determines initial conditions and g C ( ( 0 , T ] , R n ) .
The stability of differential systems is a crucial research topic in mathematics, spanning multiple disciplines and playing a key role in practical applications. Ulam-type stability, with its theoretical depth and practical value, has attracted significant academic attention in recent years. In 1940, Ulam [20] first put forward a question about the stability of functional equations at a conference at the University of Wisconsin. The first answer to the question of Ulam was given by Hyers [21] in 1941 in Banach space. In 1978, Rassias [22] weakened the boundedness condition of Cauchy difference and obtained the UHRS, which marked a new breakthrough. Recently, Wang [23] applied the Henry-Gronwall inequality to establish four types of Ulam stability results for Caputo FDS over the infinite time intervals. In [24], Ali investigated the controllability and generalized UHS of variable coefficient linear Riemann-Liouville type FDS in Banach space. Existence and uniqueness of solutions of the initial value problem for nonlinear second order impulsive differential equations have been established in [25] and the authors considered UHRS of the system. For more details, refer to the relevant studies [26,27,28,29,30].
Motivated by [19,25], we study the existence, uniqueness, and Ulam-type stability of a fractional differential system with multi-delay:
( R L D 0 + α y ) ( t ) = B y ( t ) + i = 1 d B i y ( t ϑ i ) + g ( t , y ( t ) ) , t > 0 , ϑ i > 0 , ( R L D 0 + α 1 y ) ( t ) | t = 0 = φ ( 0 ) = y 0 , y ( t ) = φ ( t ) , ϑ t < 0 ,
where 0 < α < 1 , φ C ( [ ϑ , 0 ] , R n ) , g C ( J × R n , R n ) and J : = ( 0 , ) .
By ([19], Theorem 4.2), the solution y ( t ) of system (3) can be expressed as
y ( t ) = Y α , α ( t ) y 0 + i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d + 0 t Y α , α ( t ) g ( , y ( ) ) d ,
where Y α , α ( t ) is defined as (5) when β = α .
The organization of this paper is as follows. In Section 2, we introduce necessary notations and definitions and establish some vital lemmas. In Section 3, We present the existence and uniqueness of the solution for the fractional multi-delay differential system in the C γ space. In Section 4, the UHS and UHRS of the system (3) are discussed in the weighted space C ω . In Section 5, we provide some examples to illustrate the main theorems.

2. Preliminaries

Set x R n and A R n × n , we introduce vector norm x = i = 1 n | x i | and matrix norm A = max 1 j n i = 1 n | a i j | . Let C ( [ a , b ] , R n ) be the Banach space of continuous function with y = max a t b y ( t ) . For any 0 < γ < 1 , we denote C γ ( [ a , b ] , R n ) = { y C ( ( a , b ] , R n ) : ( · a ) γ y ( · ) C ( [ a , b ] , R n ) } . Then C γ ( [ a , b ] , R n ) is a Banach space with y C γ = max a t b ( t a ) γ y ( t ) . Let C ω ( J , R n ) be the Banach space composed of all bounded functions on C ( J , R n ) , and define the norm · C ω as y C ω : = sup { e ω t y ( t ) , t J } , where ω R is a given constant. Denote λ = B + j = 1 d B j .
Definition 1
(see [9]). For a function y : [ a , ) R , its Riemann-Liouville derivative of order 0 < α < 1 can be defined as
( R L D a + α y ) ( x ) = 1 Γ ( 1 α ) d d x a x ( x t ) α y ( t ) d t , x > a .
Definition 2
(see [9]). For a function y : [ a , ) R , its fractional integral of order 0 < α < 1 can be defined as
( I a + α y ) ( x ) = 1 Γ ( α ) a x ( x t ) α 1 y ( t ) d t , x > a .
Definition 3
(see [19]). The coefficient matrices Q k ( s 1 , , s d ) , k = 1 , 2 , , satisfies the following multivariate determining matrix equation
Q k + 1 ( s 1 , , s d ) = B Q k ( s 1 , , s d ) + i = 1 d B i Q k ( s 1 , , s i ϑ i , , s d ) , Q 0 ( s 1 , , s d ) = Q k ( ϑ 1 , , s d ) = = Q k ( s 1 , , ϑ d ) = Θ , Q 1 ( 0 , , 0 ) = I , k = 0 , 1 , 2 , , a n d s i = 0 , ϑ i , 2 ϑ i , ,
where I is an identity matrix, Θ is a zero matrix.
In [19], the author introduced a shift operator T ϑ ( ϑ R ) which takes a function f to its translation:
T ϑ f ( t ) = e ϑ d d t f : = f ( t + ϑ ) .
We now recall the multi-delayed perturbation of two parameter Mittag-Leffler type matrix function Y α , β ( t ) by using the shift operator T ϑ .
Definition 4
(see [19]). Let α , β > 0 . The multi-delayed perturbation of two parameter Mittag-Leffler type matrix function Y α , β ( · ) : R R n × n generated by B , B 1 , , B d is defined by
Y α , β ( t ) = Θ , t [ ϑ , 0 ) , k = 0 i 1 + + i d k i 1 , , i d 0 Q k + 1 ( i 1 ϑ 1 , i 2 ϑ 2 , , i d ϑ d ) e ( i 1 ϑ 1 + + i d ϑ d ) d d t ( t ) + k α + β 1 Γ ( k α + β ) , t [ 0 , ) ,
where ( · ) + : = max { 0 , · } . It follows from that Q k + 1 ( i 1 ϑ 1 , i 2 ϑ 2 , , i d ϑ d ) = Θ , if i 1 + + i d k + 1 , i 1 , , i d 0 .
Definition 5
(see [9]). Let α , β > 0 , the Mittag-Leffler function of two parameters E α , β ( · α ) is defined by
E α , β ( z α ) = k = 0 z k α Γ ( k α + β ) , z C .
Lemma 1.
For any t ( 0 , T ] , 0 < α < 1 , β > 0 and α + β 1 , one has
Y α , β ( t )   t β 1 E α , β ( λ t α ) .
Proof. 
According to (5) and ([19], Remark 3.5), we have
Y α , β ( t )   k = 0 i 0 + i 1 + + i d = k i 0 , i 1 , , i d 0 k ! i 0 ! i 1 ! i d ! B i 0 j = 1 d B j i j t j = 1 d i j ϑ j + k α + β 1 Γ ( k α + β ) .
For any h i > 0 and i j 0 , we obtain
Y α , β ( t ) k = 0 i 0 + i 1 + + i d = k i 0 , i 1 , , i d 0 k ! i 0 ! i 1 ! i d ! B i 0 j = 1 d B j i j ( t ) + k α + β 1 Γ ( k α + β ) k = 0 ( B + j = 1 d B j ) k t k α + β 1 Γ ( k α + β ) = t β 1 E α , β ( λ t α ) .
The proof is completed. □
Remark 1.
Let β = 1 , one has Y α , 1 ( t )   E α , 1 ( λ t α ) . Let 1 2 α = β < 1 , one has Y α , α ( t )   t α 1 E α , α ( λ t α ) .
Lemma 2.
For any t > 0 and 1 2 α < 1 , one has
0 t Y α , α ( t ) d t α E α , α + 1 ( λ t α ) , ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) d t α E α , α + 1 ( λ t α ) ( t ϑ i ) α E α , α + 1 ( λ ( t ϑ i ) α ) , t ϑ i , t α E α , α + 1 ( λ t α ) , t < ϑ i .
Proof. 
Let 0 t and 0 t < t , we have
0 t Y α , α ( t ) d 0 t k = 0 λ k ( t ) + k α + α 1 Γ ( k α + α ) d 0 t k = 0 λ k ( t ) k α + α 1 Γ ( α k + α ) d k = 0 λ k Γ ( k α + α ) 0 t ( t ) k α + α 1 d k = 0 λ k t k α + α Γ ( k α + α + 1 ) t α E α , α + 1 ( λ t α ) .
Let t ϑ i , we have min ( t ϑ i , 0 ) = 0 , which deduce 0 t ϑ i t ϑ i t . Thus
ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) d = ϑ i 0 Y α , α ( t ϑ i ) d ϑ i 0 k = 0 λ k ( t ϑ i ) k α + α 1 Γ ( k α + α ) d k = 0 λ k Γ ( k α + α ) ϑ i 0 ( t ϑ i ) k α + α 1 d = k = 0 λ k t k α + α Γ ( k α + α + 1 ) k = 0 λ k ( t ϑ i ) k α + α Γ ( k α + α + 1 ) = t α E α , α + 1 ( λ t α ) ( t ϑ i ) α E α , α + 1 ( λ ( t ϑ i ) α ) .
Similarly, when t < ϑ i , we gain
ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) d = ϑ i t ϑ i Y α , α ( t ϑ i ) d t α E α , α + 1 ( λ t α ) .
The proof is completed. □
Lemma 3
(See [31]). For any α ( 0 , 1 ) , the following propositions hold.
(i)
For all z > 0 , we have
E α ( z ) = 1 α exp ( z 1 α ) + 0 K α ( r , z ) d r ,
where
K α ( r , z ) = sin ( π α ) π α z exp ( r 1 α ) r 2 2 r z c o s ( π α ) + z 2 .
(ii)
For all z > 0 , we have
E α , α ( z ) = 1 α z 1 α 1 exp ( z 1 α ) + 0 K α , α ( r , z ) d r .
(iii)
For all z < 0 , we have
E α , α ( z ) = 0 K α , α ( r , z ) d r ,
where
K α , α ( r , z ) = sin ( π α ) π α r 1 α exp ( r 1 α ) r 2 2 r z cos ( π α ) + z 2 .
Proof. 
For the proof process, please refer to the reference [32]. □
Lemma 4.
Let λ > 0 , for any α ( 0 , 1 ) and t > 0 , we have
| t α 1 E α , α ( λ t α ) 1 α λ 1 α 1 exp ( λ 1 α t ) | Γ ( α + 1 ) λ 2 π sin ( π α ) t α 1 .
Proof. 
According to Lemma 3, we have
t α 1 E α , α ( λ t α ) = 1 α λ 1 α 1 e λ 1 α t + t α 1 0 sin ( π α ) π α r 1 α exp ( r 1 α ) r 2 2 r λ t α cos ( π α ) + z 2 d r .
Utilizing the following inequality
r 2 2 r λ t α cos ( π α ) + λ 2 t 2 α ( 1 cos 2 ( π α ) ) λ 2 t 2 α = sin 2 ( π α ) λ 2 t 2 α ,
we have
| t α 1 E α , α ( λ t α ) 1 α λ 1 α 1 e λ 1 α t | = t α 1 0 | sin ( π α ) π α r 1 α exp ( r 1 α ) r 2 2 r λ t α cos ( π α ) + t 2 | d r t α 1 sin ( π α ) π α 0 | r 1 α exp ( r 1 α ) sin 2 ( π α ) λ 2 t 2 α | d r t α 1 sin ( π α ) π α sin 2 ( π α ) λ 2 t 2 α 0 r 1 α exp ( r 1 α ) d r = Γ ( α + 1 ) λ 2 π sin ( π α ) t α 1 .
Lemma 5.
For any t > 0 and 1 2 α < 1 , we have
0 t Y α , α ( t ) d 1 α λ e λ 1 α t .
Proof. 
For 0 t , we can deduce 0 t < t . By using Lemma 4, we obtain
0 t Y α , α ( t ) d 0 t ( t ) α 1 E α , α ( λ ( t ) α ) d 0 t | ( t ) α 1 E α , α ( λ ( t ) α ) 1 α λ 1 α 1 e λ 1 α ( t ) + 1 α λ 1 α 1 e λ 1 α ( t ) | d 0 t Γ ( α + 1 ) λ 2 π sin ( π α ) ( t ) α 1 + 1 α λ 1 α 1 e λ 1 α ( t ) d t α Γ ( α + 1 ) λ 2 π α sin ( π α ) + 1 α λ e λ 1 α t 1 α λ 1 α λ e λ 1 α t .

3. Existence and Uniqueness Results

In this section, we mainly prove the existence and uniqueness of the solution of the system in C γ space. For every t [ ϑ , T ] , we define
Ψ ( t ) = i = 1 d B i t α E α , α + 1 ( λ t α ) , t < ϑ i , i = 1 d B i ( t α E α , α + 1 ( λ t α ) ( t ϑ i ) α E α , α + 1 ( λ ( t ϑ i ) α ) ) , t ϑ i .
Consider the following assumptions:
[ H 1 ] There exists a constant L > 0 such that
g ( t , y ) g ( t , z ) L y z , t ( 0 , T ] , y , z R n .
[ H 2 ]   η = L T α E α , α ( λ T α ) B [ 1 γ , α ] < 1 .
Let B r = { y C γ ( ( 0 , T ] , R n ) : y C γ r , r μ 1 η } , where μ = T α + γ 1 E α , α ( λ T α ) y 0 + T γ Ψ ( T ) φ + T α + γ E α , α ( λ T α ) g ˜ and g ˜ : = sup t > 0 g ( t , 0 ) < . Now, we use Schauder fixed point theorem to establish an existence theorem.
Theorem 1.
If α + γ > 1 , [ H 1 ] and [ H 2 ] are held, then (3) has at least one solution y C γ ( ( 0 , ] , R n ) .
Proof. 
Define an operator F on B r as follows:
( F y ) ( t ) = Y α , α ( t ) y 0 + i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d + 0 t Y α , α ( t ) g ( , y ( ) ) d ,
Step 1.
We show that F ( B r ) B r . For any t ( 0 , T ] and y B r , by Lemmas 1 and 2, we have
t γ ( F y ) ( t ) t γ Y α , α ( t ) y 0 + i = 1 d ϑ i min ( t ϑ i , 0 ) t γ Y α , α ( t ϑ i ) B i φ ( ) d + 0 t t γ Y α , α ( t ) g ( , y ( ) ) d t γ Y α , α ( t ) y 0 + i = 1 d ϑ i min ( t ϑ i , 0 ) t γ Y α , α ( t ϑ i ) B i φ ( ) d + 0 t t γ Y α , α ( t ) g ( , y ( ) ) d t α + γ 1 E α , α ( λ t α ) y 0 + t γ Ψ ( t ) φ + 0 t t γ Y α , α ( t ) ( g ( , y ( ) ) g ( t , 0 ) + g ( , 0 ) ) d t α + γ 1 E α , α ( λ t α ) y 0 + t γ Ψ ( t ) φ + 0 t t γ Y α , α ( t ) ( L y ( ) + g ˜ ) t α + γ 1 E α , α ( λ t α ) y 0 + t γ Ψ ( t ) φ + L t γ E α , α ( λ t α ) 0 t ( t ) α 1 γ γ y ( ) d + t α + γ E α , α ( λ t α ) g ˜ t α + γ 1 E α , α ( λ t α ) y 0 + t γ Ψ ( t ) φ + L t α E α , α ( λ t α ) B [ 1 γ , α ] y C γ + t α + γ E α , α ( λ t α ) g ˜ T α + γ 1 E α , α ( λ T α ) y 0 + T γ Ψ ( T ) φ + T α + γ E α , α ( λ T α ) g ˜ + L T α E α , α ( λ T α ) B [ 1 γ , α ] y C γ μ + η r r .
Step 2.
We prove F is continuous.
Let y n be a Cauchy sequence with y n y in B r . For each t ( 0 , T ] ,
t γ ( ( F y n ) ( t ) ( F y ) ( t ) ) 0 t t γ Y α , α ( t ) g ( , y n ( ) ) g ( t , y ( ) ) d 0 t t γ Y α , α ( t ) L y n ( ) y ( ) d L t γ E α , α ( λ t α ) 0 t ( t ) α 1 γ γ ( y n ( ) y ( ) ) d L t α E α , α ( λ t α ) B [ 1 γ , α ] y n y C γ L T α E α , α ( λ T α ) B [ 1 γ , α ] y n y C γ .
This implies that F is continuous.
Step 3.
We show F ( B r ) is equicontinuous.
Without loss of generality, let 0 < t 1 < t 2 < T . For any y B r , we have
t γ ( ( F y ) ( t 2 ) ( F y 1 ) ( t ) ) t γ Y α , α ( t 2 ) Y α , α ( t 1 ) y 0 + i = 1 d ϑ i min ( t 1 ϑ i , 0 ) t γ Y α , α ( t 2 ϑ i ) Y α , α ( t 1 ϑ i ) B i φ ( ) d + i = 1 d min ( t 1 ϑ i , 0 ) min ( t 2 ϑ i , 0 ) t γ Y α , α ( t 2 ϑ i ) B i φ ( ) d + 0 t 1 t γ Y α , α ( t 2 ) Y α , α ( t 1 ) g ( , y ( ) ) d + t 1 t 2 t γ Y α , α ( t 2 ) g ( , y ( ) ) d : = I 1 + I 2 + I 3 + I 4 + I 5 .
Let t 2 t 1 , we obtain
Y α , α ( t 2 ) Y α , α ( t 1 ) , Y α , α ( t 2 ϑ i ) Y α , α ( t 1 ϑ i ) , Y α , α ( t 2 ) Y α , α ( t 1 ) ,
this yields that I 1 0 , I 2 0 and I 4 0 as t 2 t 1 . For I 5 , one can get
I 5 = t 1 t 2 t γ Y α , α ( t 2 ) g ( , y ( ) ) d t γ g t 1 t 2 k = 0 λ k ( t 2 ) k α + α 1 Γ ( k α + α ) d t γ ( t 2 t 1 ) α E α , α + 1 ( λ ( t 2 t 1 ) α ) g 0 a s t 2 t 1 ,
For
I 3 = i = 1 d min ( t 1 ϑ i , 0 ) min ( t 2 ϑ i , 0 ) t γ Y α , α ( t 2 ϑ i ) B i φ d ,
we need to consider the following three cases:
(i)
When T > t 2 > t 1 > ϑ i > 0 , We have min ( t 2 ϑ i , 0 ) = min ( t 1 ϑ i , 0 ) = 0 . Thus J 3 = 0 .
(ii)
When T > t 2 > ϑ i > t 1 > 0 , We have min ( t 2 ϑ i , 0 ) = 0 , min ( t 1 ϑ i , 0 ) = t 1 ϑ i . So t 1 ϑ i < < 0 , which deduce 0 < t 2 ϑ i < t 2 ϑ i < t 2 t 1 . Thus,
I 3 = i = 1 d t 1 ϑ i 0 t γ Y α , α ( t 2 ϑ i ) B i φ d t γ φ i = 1 d B i t 1 ϑ i 0 k = 0 λ k ( t 2 ϑ i ) k α + α 1 Γ ( k α + α ) d t γ φ i = 1 d B i ( t 2 t 1 ) α E α , α + 1 ( λ ( t 2 t 1 ) α ) ( t 2 ϑ i ) α E α , α + 1 ( λ ( t 2 ϑ i ) α ) t γ φ i = 1 d B i ( t 2 t 1 ) α E α , α + 1 ( λ ( t 2 t 1 ) α ) 0 a s t 2 t 1 .
(iii)
When T > ϑ i > t 2 > t 1 > 0 , we have min ( t 2 ϑ i , 0 ) = t 2 ϑ i , min ( t 1 ϑ i , 0 ) = t 1 ϑ i . So t 1 ϑ i < < t 2 ϑ i , which deduce 0 < t 2 ϑ i < t 2 t 1 . Thus,
I 3 = i = 1 d t 1 ϑ i t 2 ϑ i t γ Y α , α ( t 2 ϑ i ) B i φ d = t γ φ i = 1 d B i t 1 ϑ i t 2 ϑ i Y α , α ( t 2 ϑ i ) d t γ φ i = 1 d B i t 1 ϑ i t 2 ϑ i ( t 2 ϑ i ) α 1 E α , α ( λ ( t 2 ϑ i ) α ) d t γ φ i = 1 d B i ( t 2 t 1 ) α E α , α + 1 ( λ ( t 2 t 1 ) α ) 0 a s t 2 t 1 .
As a result, we immediately obtain that t γ ( ( F y ) ( t 2 ) ( F y 1 ) ( t ) ) 0 as t 2 t 1 . Thus, F ( B r ) is equicontinuous. From the Arzela-Ascoli theorem, F ( B r ) is relatively compact. Schauder fixed point theorem guarantees that F has a fixed point in B r .
Next, we use the Banach fixed point theorem to establish an uniqueness result.
Theorem 2.
If α + γ > 1 , [ H 1 ] and [ H 2 ] are satisfied, then (3) has a unique solution y C γ ( ( 0 , T ] , R n ) .
Proof. 
Consider the operator F defined in (6) on C γ ( ( 0 , T ] , R n ) . For y , z C γ ( ( 0 , T ] , R n ) and each t ( 0 , T ] , one has
t γ ( ( F y ) ( t ) ( F z ) ( t ) ) 0 t t γ Y α , α ( t ) g ( , y ( ) ) g ( t , z ( ) ) d 0 t t γ Y α , α ( t ) L y ( ) z ( ) d L t γ E α , α ( λ t α ) 0 t ( t ) α 1 γ γ ( y ( ) z ( ) ) d L t α E α , α ( λ t α ) B [ 1 γ , α ] y z C γ L T α E α , α ( λ T α ) B [ 1 γ , α ] y z C γ .
From [ H 2 ] , we know that F y F z C γ η y z C γ < y z C γ . Applying the contraction mapping principle, the operator F has one and only one fixed point which is the solution of system (3). □

4. Ulam-Type Stability Analysis

In this part, we first prove the theorem of existence and uniqueness by the Banach fixed point theorem in C ω . Then, we establish the Ulam-type stability results of nonlinear fractional multi-delay differential system on the infinite time interval.

4.1. Uniqueness of the Solution for System (3)

Now, the Banach fixed point theorem is utilized to establish the theorem of existence and uniqueness. For the sake of convenience, the following assumptions are given:
[ H 3 ] Let g C ( J × R n , R n ) , there exists a constant L g > 0 such that
g ( t , y ) g ( t , z ) L g e λ 1 α t y z , t > 0 , y , z R n .
[ H 4 ]   L g < α λ .
Theorem 3.
If [ H 3 ] and [ H 4 ] are held, then (3) has a unique solution y C ω ( J , R n ) , where ω = λ 1 α .
Proof. 
For all t > 0 , the operator T : C ω ( J , R n ) C ω ( J , R n ) can be written as:
( T y ) ( t ) = Y α , α ( t ) y 0 + i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d + 0 t Y α , α ( t ) g ( , y ( ) ) d ,
Putting ω = λ 1 α . For y , y * C ω ( J , R n ) , t J , by Lemma 5, we have
( T y * ) ( t ) ( T y ) ( t ) 0 t t γ Y α , α ( t ) g ( , y * ( ) ) g ( , y ( ) ) d 0 t ( t ) α 1 E α , α ( λ ( t ) α ) L g e λ 1 α y * ( ) y ( ) ) d L g 0 t | ( t ) α 1 E α , α ( λ ( t ) α ) 1 α λ 1 α 1 e λ 1 α t + 1 α λ 1 α 1 e λ 1 α t | d y * y C ω L g 0 t Γ ( α + 1 ) λ 2 π α sin ( π α ) t α 1 + 1 α λ 1 α 1 e λ 1 α t d y * y C ω L g t α Γ ( α + 1 ) λ 2 π α 2 sin ( π α ) + 1 α λ e λ 1 α t 1 α λ y * y C ω L g α λ e λ 1 α t y * y C ω .
Thus,
e λ 1 α t ( T y * ) ( t ) ( T y ) ( t ) L g α λ y * y C ω , t > 0 .
According to [ H 4 ] , the mapping T : C ω ( J , R n ) C ω ( J , R n ) is a contraction mapping. Therefore, there exists a unique fixed point of T in C ω ( J , R n ) , which corresponds to the solution of system (3). □

4.2. Ulam-Hyers Stablity

Let ε > 0 and J ˜ = [ ϑ , 0 ] J . Consider (3) and the following inequalities:
B y ^ ( t ) + i = 1 d B i y ^ ( t ϑ i ) + g ( t , y ^ ( t ) ) ε , t > 0 , D 0 + α 1 y ^ ( t ) | t = 0 = φ ( 0 ) = y 0 , y ^ ( t ) = φ ( t ) , ϑ t < 0 .
Definition 6.
The system (3) is UHS if there exists a constant K > 0 , such that for some sufficiently small ε > 0 and for each solution y ^ C ( J ˜ , R n ) of inequality (8), there exists a unique solution y C ω ( J ˜ , R n ) of (3) such that
y ^ ( t ) y ( t ) C ω K ε , t J ˜ .
Remark 2.
If the function y ^ C ( J ˜ , R n ) satisfies the inequality (8), then there exists Z C ( J , R n ) such that the following holds:
(i)
Z ( t ) ε , t > 0 ;
(ii)
( R L D 0 + α y ^ ) ( t ) = B y ^ ( t ) + i = 1 d B i y ^ ( t ϑ i ) + g ( t , y ^ ( t ) ) + Z ( t ) , t > 0 ;
(iii)
D 0 + α 1 y ^ ( t ) | t = 0 = y 0 ;
(iv)
y ^ ( t ) = φ ( t ) , t [ ϑ , 0 ) .
Lemma 6.
If the function y ^ C ( J ˜ , R n ) satisfies the inequality (8), then the following inequality holds:
y ^ ( t ) Y α , α ( t ) y 0 i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d 0 t Y α , α ( t ) g ( , y ^ ( ) ) d ε α λ e λ 1 α t , t J .
Proof. 
Suppose that y ^ C ( J , R n ) satisfies inequality (8). By Remark 2, it follows that satisfies the following fractional differential system:
( R L D 0 + α y ^ ) ( t ) = B y ^ ( t ) + i = 1 d B i y ^ ( t ϑ i ) + g ( t , y ^ ( t ) ) + Z ( t ) , t > 0 , D 0 + α 1 y ^ ( t ) | t = 0 = φ ( 0 ) = y 0 , y ^ ( t ) = φ ( t ) , ϑ t < 0 ,
From Equation (4), it follows that the solution of the system is:
y ^ ( t ) = Y α , α ( t ) y 0 + i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d + 0 t Y α , α ( t ) ( g ( , y ^ ( ) ) + Z ( ) ) d .
By Lemma 5, for t J , we obtain
y ^ ( t ) Y α , α ( t ) y 0 i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d 0 t Y α , α ( t ) g ( , y ^ ( ) ) d 0 t Y α , α ( t ) Z ( ) d 0 t Y α , α ( t ) Z ( ) d ε 0 t ( t ) α 1 E α , α ( λ ( t ) α ) d ε α λ e λ 1 α t .
Theorem 4.
Assume that [ H 3 ] and [ H 4 ] are satisfied, then (3) is UHS on J ˜ .
Proof. 
Let y ^ C ( J , R n ) satisfy inequality (8) and y C ( J ˜ , R n ) be the unique solution of (3), that is,
y ( t ) = Y α , α ( t ) y 0 + i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d + 0 t Y α , α ( t ) g ( , y ( ) ) d .
For all t [ ϑ , 0 ) , we have
y ^ ( t ) y ( t ) = φ ( t ) φ ( t ) = 0 < K ε ,
and when t = 0 , we have
D 0 + α 1 y ^ ( t ) | t = 0 D 0 + α 1 y ( t ) | t = 0 = φ ( 0 ) φ ( 0 ) = 0 < K ε .
By Lemma 6, for any t J , one has
y ^ ( t ) y ( t ) y ^ ( t ) Y α , α ( t ) y 0 i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d 0 t Y α , α ( t ) g ( , y ^ ( ) ) d + 0 t Y α , α ( t ) g ( , y ^ ( ) ) g ( , y ( ) ) d ε 0 t ( t ) α 1 E α , α ( λ ( t ) α ) d + 0 t ( t ) α 1 E α , α ( λ ( t ) α ) e λ 1 α y ^ ( ) y ( ) d ε α λ e λ 1 α t + L g α λ e λ 1 α t y ^ y C ω .
Multiply both sides of the above equation by e λ 1 α t , we obtain
e λ 1 α t y ^ ( t ) y ( t ) ε α λ L g K ε , t J ,
where
K = 1 α λ L g .

4.3. Ulam-Hyers-Rassias Stability

Let ε > 0 , J ˜ = [ ϑ , 0 ] J and let ψ C ( J , R + : = ( 0 , + ) ) is a bounded function. Consider the system (3) and the following inequalities:
B y ˜ ( t ) + i = 1 d B i y ˜ ( t ϑ i ) + g ( t , y ˜ ( t ) ) ε ψ ( t ) , t > 0 , D 0 + α 1 y ˜ ( t ) | t = 0 = φ ( 0 ) = y 0 , y ˜ ( t ) = φ ( t ) , ϑ t < 0 .
Definition 7.
The system (3) is UHRS with respect to ψ ( · ) if there exists K ˜ > 0 and function ψ ( · ) , such that for some sufficiently small ε > 0 and for each solution y ˜ C ( J ˜ , R n ) of (9), there exists a unique solution y C ω ( J ˜ , R n ) of (3) such that
y ˜ ( t ) y ( t ) C ω K ˜ ε ψ ( t ) , t J ˜ ,
Remark 3.
If the function y ˜ C ( J ˜ , R n ) satisfies the inequality (9), then there exists Z ˜ C ( J , R n ) such that the following holds:
(i)
Z ˜ ( t ) ε ψ ( t ) , t > 0 ;
(ii)
( R L D 0 + α y ˜ ) ( t ) = B y ˜ ( t ) + i = 1 d B i y ˜ ( t ϑ i ) + g ( t , y ˜ ( t ) ) + Z ˜ ( t ) , t > 0 ;
(iii)
D 0 + α 1 y ˜ ( t ) | t = 0 = y 0 ;
(iv)
y ˜ ( t ) = φ ( t ) , t [ ϑ , 0 ) .
Lemma 7.
If the function y ˜ C ( J ˜ , R n ) satisfies the inequality (9), then the following inequality holds:
y ˜ ( t ) Y α , α ( t ) y 0 i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d 0 t Y α , α ( t ) g ( , y ˜ ( ) ) d λ 1 α α e λ 1 α t ε 0 t e λ 1 α ψ ( ) d , t J .
Proof. 
Suppose that y ˜ C ( J , R n ) satisfies inequality (9). By Remark 3, it follows that satisfies the following fractional differential system:
( R L D 0 + α y ˜ ) ( t ) = B y ˜ ( t ) + i = 1 d B i y ˜ ( t ϑ i ) + g ( t , y ˜ ( t ) ) + Z ˜ ( t ) , t > 0 , D 0 + α 1 y ˜ ( t ) | t = 0 = φ ( 0 ) = y 0 , y ˜ ( t ) = φ ( t ) , ϑ t < 0 ,
From Equation (4), we have
y ˜ ( t ) = Y α , α ( t ) y 0 + i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d + 0 t Y α , α ( t ) ( g ( , y ˜ ( ) ) + Z ˜ ( ) ) d .
For all t J , we have
y ˜ ( t ) Y α , α ( t ) y 0 i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d 0 t Y α , α ( t ) g ( , y ˜ ( ) ) d 0 t Y α , α ( t ) Z ˜ ( ) d 0 t Y α , α ( t ) Z ˜ ( ) d 0 t ( t ) α 1 E α , α ( λ ( t ) α ) ε ψ ( ) d 0 t | ( t ) α 1 E α , α ( λ ( t ) α ) 1 α λ 1 α 1 e λ 1 α ( t ) + 1 α λ 1 α 1 e λ 1 α ( t ) | ε ψ ( ) d 0 t Γ ( α + 1 ) ( t ) α 1 λ 2 π α sin ( π α ) ε ψ ( ) d + 0 t 1 α λ 1 α 1 e λ 1 α ( t ) ε ψ ( ) d ε 0 t Γ ( α + 1 ) ( t ) α 1 λ 2 π α sin ( π α ) d sup t J ψ ( t ) + ε α λ 1 α 1 e λ 1 α t 0 t e λ 1 α ψ ( ) d ε Γ ( α + 1 ) t α λ 2 π α 2 sin ( π α ) sup t J ψ ( t ) + λ 1 α 1 α e λ 1 α t ε 0 t e λ 1 α ψ ( ) d λ 1 α 1 α e λ 1 α t ε 0 t e λ 1 α ψ ( ) d .
[ H 5 ] For all t > 0 , there exists a function ψ ( · ) C ( J , R + ) such that
0 t e λ 1 α ψ ( ) d M ψ ( t ) , M > 0 .
Theorem 5.
Assume that [ H 3 ] [ H 5 ] are satisfied, then (3) is UHRS on J ˜ .
Proof. 
Let y ˜ C ( J , R n )  satisfy inequality (9) and y C ( J ˜ , R n ) be the unique solution of (3), that is
y ( t ) = Y α , α ( t ) y 0 + i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d + 0 t Y α , α ( t ) g ( , y ( ) ) d .
Let t [ ϑ , 0 ) , we obtain
y ˜ ( t ) y ( t ) = φ ( t ) φ ( t ) = 0 < K ˜ ε ψ ( t ) ,
and when t = 0 , we have
D 0 + α 1 y ˜ ( t ) | t = 0 D 0 + α 1 y ( t ) | t = 0 = φ ( 0 ) φ ( 0 ) = 0 < K ˜ ε ψ ( t ) .
By Lemma 7, for any t J , one has
y ˜ ( t ) y ( t ) y ˜ ( t ) Y α , α ( t ) y 0 i = 1 d ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d 0 t Y α , α ( t ) g ( , y ˜ ( ) ) d + 0 t Y α , α ( t ) g ( , y ˜ ( ) ) g ( , y ( ) ) d 0 t Y α , α ( t ) Z ˜ ( ) d + 0 t Y α , α ( t ) L g e λ 1 α y ˜ ( ) y ( ) d 0 t ( t ) α 1 E α , α ( λ ( t ) α ) ε ψ ( ) d + L g 0 t ( t ) α 1 E α , α ( λ ( t ) α ) d y ˜ y C ω λ 1 α 1 α e λ 1 α t ε 0 t e λ 1 α ψ ( ) d + L g α λ e λ 1 α t y ˜ y C ω M λ 1 α 1 α e λ 1 α t ε ψ ( t ) + L g α λ e λ 1 α t y ˜ y C ω ,
multiplying both sides of the above equation by e λ 1 α t , we have
e λ 1 α t y ˜ ( t ) y ( t ) M λ 1 α α λ L g ε ψ ( t ) K ˜ ε ψ ( t ) , t J ,
where
K ˜ = M λ 1 α α λ L g .

5. An Example

In this section, we give some examples to illustrate the accuracy of our main results.
Example 1.
Set α = 0.6 , ϑ 1 = 0.2 , ϑ 2 = 0.3 , ϑ = max { ϑ 1 , ϑ 2 } = 0.3 and T = 0.8 . Consider
( R L D 0 + α y ) ( t ) = B y ( t ) + i = 1 2 B i y ( t ϑ i ) + g ( t , y ( t ) ) , t ( 0 , 0.8 ] , D 0 + α 1 y ^ ( t ) | t = 0 = y 0 = ( 0 , 0 ) , y ( t ) = φ ( t ) = ( t 3 , 0.5 t 2 ) , 0.3 t < 0 ,
where
B = 0.3 0.2 0.3 0.6 , B 1 = 0.1 0.2 0.3 0.4 , B 2 = 0.4 0.2 0.3 0.1 ,
y ( t ) = y 1 ( t ) y 2 ( t ) , g ( t , y ( t ) ) = t 80 y 1 ( t ) t 80 y 2 ( t ) .
Set γ = 0.5 . For any t ( 0 , 0.8 ] and y ( t ) ,   z ( t ) R 2 , one has
g ( t , y ) g ( t , z ) t 80 ( | y 1 ( t ) z 1 ( t ) | + | y 2 ( t ) z 2 ( t ) | ) 1 100 y z .
By calculation, one has B   = 0.8 , B 1   = 0.6 , B 2   = 0.7 , λ = B + B 1 + B 2   = 2.1 , L = 1 100 and η = L T α E α , α ( λ T α ) B [ 1 γ , α ] = 0.9548 < 1 . Hence, [ H 1 ] and [ H 2 ] are satisfied. From Theorem 1, we know that the system (10) has a unique solution y C γ ( ( 0 , 0.8 ] , R 2 ) as follows:
y ( t ) = Y α , α ( t ) y 0 + 0.2 min ( t 0.2 , 0 ) Y α , α ( t 0.2 ) B 1 φ ( ) d + 0.3 min ( t 0.3 , 0 ) Y α , α ( t 0.3 ) B 2 φ ( ) d + 0 t Y α , α ( t ) g ( , y ( ) ) d ,
where
Y α , α ( t ) = k = 0 B k ( t ) + k α + α 1 Γ ( k α + α ) + k = 1 k 1 B k 1 B 1 ( t 0.2 ) + k α + α 1 Γ ( k α + α ) + k = 1 k 1 B k 1 B 2 ( t 0.3 ) + k α + α 1 Γ ( k α + α ) + k = 2 k 1 k 1 1 B k 2 B 1 B 2 ( t 0.5 ) + k α + α 1 Γ ( k α + α ) + k = 2 k 2 B k 2 B 1 2 ( t 0.4 ) + k α + α 1 Γ ( k α + α ) + k = 2 k 2 B k 2 B 2 2 ( t 0.6 ) + k α + α 1 Γ ( k α + α ) + k = 3 k 2 k 2 1 B k 3 B 1 2 B 2 ( t 0.7 ) + k α + α 1 Γ ( k α + α ) + k = 3 k 3 B k 3 B 1 3 ( t 0.6 ) + k α + α 1 Γ ( k α + α ) .
The state of the system (10) solution is shown in Figure 1.
Example 2.
Set α = 0.5 , ϑ 1 = 3 , ϑ 2 = 7 and ϑ = max { ϑ 1 , ϑ 2 } = 7 . Consider the following fractional differential system with two delays:
( R L D 0 + α y ) ( t ) = B y ( t ) + i = 1 2 B i y ( t ϑ i ) + f ( t , y ( t ) ) , t > 0 , D 0 + α 1 y ^ ( t ) | t = 0 = y 0 = ( 0 , 1 ) , y ( t ) = φ ( t ) = ( t 2 , t + 1 ) , 7 t < 0 ,
where
y ( t ) = y 1 ( t ) y 2 ( t ) , B = 0.1 0.2 0.3 0.4 , B 1 = 0.5 0.1 0.3 0.2 ,
B 2 = 0.2 0.1 0.3 0.5 ,   f ( t , y ( t ) ) = 3 3 e 3 t s i n ( y 1 ( t ) ) 3 3 e 3 t s i n ( y 2 ( t ) ) .
For any t > 0 and y , z R 2 , one has
f ( t , y ( t ) ) f ( t , z ( t ) ) 3 3 e 3 t ( | y 1 ( t ) z 1 ( t ) | + | y 2 ( t ) z 2 ( t ) | ) 3 3 e λ 1 α t y z , t 0 ,
Thus, [ H 4 ] is hold and L g = 3 3 . By calculation, one has λ = B + B 1 + B 2   = 2 . Therefore, L g < α λ , i.e., [ H 5 ] is hold. For ω = λ 1 α = 2 , using Theorem 3, we know that the system (11) has a unique solution y C ω ( J , R 2 ) which has the following from:
y ( t ) = Y α , α ( t ) y 0 + i = 1 2 ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d + 0 t Y α , α ( t ) g ( , y ( ) ) d .
Obviously, assumptions [ H 3 ] and [ H 4 ] hold. According to Theorem 4, the system (11) is UHS. Next, let ψ ( t ) = e t , M = 1 , one has
0 t e λ 1 α e d 0 t e d < e t .
Hence, the [ H 5 ] is satisfied. Therefore, all the assumptions of Theorem 5 were satisfied, the system (11) is UHRS.
Next, we will present an example of a differential system with three delays to prove the accuracy of the main results of this paper.
Example 3.
Set α = 0.5 , ϑ 1 = 2 , ϑ 2 = 4 , ϑ 3 = 9 and ϑ = max { ϑ 1 , ϑ 2 , ϑ 3 } = 9 . Consider the following fractional multi-delay differential system:
( R L D 0 + α y ) ( t ) = B y ( t ) + i = 1 3 B i y ( t ϑ i ) + f ( t , y ( t ) ) , t > 0 , D 0 + α 1 y ^ ( t ) | t = 0 = y 0 = ( 0 , 1 , 0 ) , y ( t ) = φ ( t ) = ( t 2 , t + 1 , 2 t ) , 9 t < 0 ,
where
y ( t ) = y 1 ( t ) y 2 ( t ) y 3 ( t ) , B = 0.1 0.1 0.1 0.2 0.3 0.1 0.5 0.2 0.3 , B 1 = 0.2 0.1 0.1 0.3 0.3 0.1 0.2 0.1 0.2 ,
B 2 = 0.2 0.3 0.2 0.1 0.1 0.4 0.1 0.1 0.3 ,   B 3 = 0.1 0.1 0.2 0.1 0.1 0.3 0.2 0.1 0.1 ,   f ( t , y ( t ) ) = 2 e 2 t y 1 ( t ) 2 e 2 t y 2 ( t ) 2 e 2 t y 3 ( t ) .
Note that for any y , z R 3 , we have
f ( t , y ( t ) ) f ( t , z ( t ) ) 2 e 2 t ( | y 1 ( t ) z 1 ( t ) | + | y 2 ( t ) z 2 ( t ) | + | y 3 ( t ) z 3 ( t ) | ) 2 e λ 1 α t y z , t 0 ,
Thus, [ H 4 ] is hold and L g = 2 . By calculation, one has λ = B + B 1 + B 2 + B 3   = 3 . Hence, L g < α λ , that is [ H 5 ] is hold. For ω = λ 1 α = 3 , by Theorem 3, we know that the system (12) has a unique solution y C ω ( J , R 3 ) which has the following from:
y ( t ) = Y α , α ( t ) y 0 + i = 1 3 ϑ i min ( t ϑ i , 0 ) Y α , α ( t ϑ i ) B i φ ( ) d + 0 t Y α , α ( t ) g ( , y ( ) ) d .
Obviously, assumptions [ H 3 ] and [ H 4 ] hold. According to Theorem 4, the system (12) is UHS. Next, let ψ ( t ) = e t , M = 1 , one has
0 t e λ 1 α e d 0 t e d < e t .
Therefore, the assumption [ H 5 ] holds. Thus, according to Theorem 5, the system (12) is UHRS.

6. Conclusions

This paper employs the fixed point theorem, fractional calculus, and properties of the multi-delayed perturbation of two parameter Mittag-Leffler type matrix function. Because the solution of the Riemann-Liouville type fractional multi-delay differential system has a singularity, we first prove the existence and uniqueness of system solutions in C γ ( ( 0 , T ] , R n ) . However, since the solution of the system is divergent when the time tends to infinite in C γ space, we prove the existence and uniqueness of the solution of the system over the infinite interval in the weighted space C ω . Subsequently, we investigate Ulam-type stability for the system on the infinite time interval in C ω space. Finally, three examples are provided to demonstrate the applicability of these results. In future, we could explore the extension of the stability theory for nonlinear systems, focusing on key issues like asymptotic stability and stability manifolds, and addressing the practical applications of these theoretical achievements in fields such as engineering control and biological systems.

Author Contributions

Formal analysis, X.Z. and M.L.; writing-original draft preparation, X.Z. and M.L.; writing-review and editing, X.Z. and M.L. All authors have read and agreed to the published version of the manuscript.

Funding

This work was funded by the National Natural Science Foundation of China (12201148).

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author(s).

Acknowledgments

The authors thank the help from the editor too.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
  2. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2001. [Google Scholar]
  3. Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Higher Education Press: Beijing, China, 2010. [Google Scholar]
  4. Monje, C.; Chen, Y.; Vinagre, B.; Xue, D.; Feliu, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
  5. Gu, K.; Kharitonov, V.; Chen, J. Stability of Time-Delay Systems; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
  6. Arino, O.; Hbid, M.; Dads, E. Delay Differential Equations and Applications; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
  7. Li, J.; Chen, Z.; Cai, D.; Zhen, W.; Huang, Q. Delay-dependent stability control for power system with multiple time-delays. IEEE Trans. Power Syst. 2016, 31, 2316–2326. [Google Scholar] [CrossRef]
  8. Nelson, P.W.; Perelson, A.S. Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 2002, 179, 73–94. [Google Scholar] [CrossRef] [PubMed]
  9. Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  10. Kisela, T. Fractional Differential Equations and Their Applications; Faculty of Mechanical Engineering Institute of Mathematics: Brno, Czech Republic, 2008. [Google Scholar]
  11. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
  12. Fečkan, M.; Marynets, K.; Wang, J. Periodic boundary value problems for higher-order fractional differential systems. Math. Methods Appl. Sci. 2019, 42, 3616–3632. [Google Scholar] [CrossRef]
  13. Li, M.; Fečkan, M.; Wang, J. Representation and finite time stability of solution and relative controllability of conformable type oscillating systems. Math. Methods Appl. Sci. 2023, 46, 3966–3982. [Google Scholar] [CrossRef]
  14. Chen, C.; Li, M. Existence and Ulam Type Stability for Impulsive Fractional Differential Systems with Pure Delay. Fractal Fract. 2022, 6, 742. [Google Scholar] [CrossRef]
  15. Mahmudov, N.I. Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations. Math. Methods Appl. Sci. 2019, 42, 5489–5497. [Google Scholar] [CrossRef]
  16. Medved, M.; Pospíšil, M. Sufficient conditions for the asymptotic stability of non-linear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. 2012, 75, 3348–3363. [Google Scholar] [CrossRef]
  17. Li, M.; Wang, J. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2017, 64, 170–176. [Google Scholar] [CrossRef]
  18. Li, M.; Wang, J. Representation of solution of a Riemann-Liouville fractional differential equation with pure delay. Appl. Math. Lett. 2018, 85, 118–124. [Google Scholar] [CrossRef]
  19. Mahmudov, N.I. Multi-delayed perturbation of Mittag-Leffler type matrix function. J. Math. Anal. Appl. 2022, 505, 125589. [Google Scholar] [CrossRef]
  20. Ulam, S.M. A Collection of Mathematical Problem; Hassell Street Press: New York, NY, USA, 1968. [Google Scholar]
  21. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
  22. Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
  23. Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 63, 1–10. [Google Scholar] [CrossRef]
  24. Ali, A.; Khalid, S.; Rahmat, G.; Kamran; Ali, G.; Nisar, K.S.; Alshahrani, B. Controllability and Ulam-Hyers stability of fractional order linear systems with variable coefficients. Alex. Eng. J. 2022, 61, 6071–6076. [Google Scholar] [CrossRef]
  25. Wen, Q.; Wang, J.; O’Regan, D. Stability Analysis of Second Order Impulsive Differential Equations. Qual. Theory Dyn. Syst. 2022, 21, 1–30. [Google Scholar] [CrossRef]
  26. Yang, M.; Fečkan, M.; Wang, J. Ulam’s Type Stability of Delayed Discrete System with Second-Order Differences. Qual. Theory Dyn. Syst. 2024, 23, 11. [Google Scholar] [CrossRef]
  27. Sousa, J.V.C.; Kucche, K.D.; Edmundo, C.O. On the Ulam-Hyers stabilities of the solutions of Ψ-Hilfer fractional differential equation with abstract Volterra operator. Math. Methods Appl. Sci. 2019, 42, 3021–3032. [Google Scholar] [CrossRef]
  28. Luo, D.; Wang, X.; Caraballo, T.; Zhu, Q. Ulam-Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay. Commun. Nonlinear Sci. Numer. Simul. 2023, 121, 107229. [Google Scholar] [CrossRef]
  29. Castro, L.P.; Silva, A.S. On the existence and stability of solutions for a class of fractional Riemann-Liouville initial value problems. Mathematics 2023, 11, 297. [Google Scholar] [CrossRef]
  30. Pu, W.; Li, M. Existence and Ulam-type stability for impulsive oscillating systems with pure delay. Math. Methods Appl. Sci. 2023, 46, 19018–19034. [Google Scholar] [CrossRef]
  31. Cong, N.D.; Doan, T.S.; Siegmund, S.; Tuan, H.T. On stable manifolds for planar fractional differential equations. Appl. Math. Comput. 2014, 226, 157–168. [Google Scholar] [CrossRef]
  32. Gorenflo, R.; Loutchko, J.; Luchko, Y.; Mainardi, D. Computation of the Mittag-Leffler function Eα,β(z) and its derivative. Fract. Calc. Appl. Anal. 2002, 5, 12–15. [Google Scholar]
Figure 1. This is the graph of the solution to system (10) over the interval [ 0.3 , 0.8 ] .
Figure 1. This is the graph of the solution to system (10) over the interval [ 0.3 , 0.8 ] .
Fractalfract 09 00288 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, X.; Li, M. Existence and Ulam-Type Stability for Fractional Multi-Delay Differential Systems. Fractal Fract. 2025, 9, 288. https://doi.org/10.3390/fractalfract9050288

AMA Style

Zhang X, Li M. Existence and Ulam-Type Stability for Fractional Multi-Delay Differential Systems. Fractal and Fractional. 2025; 9(5):288. https://doi.org/10.3390/fractalfract9050288

Chicago/Turabian Style

Zhang, Xing, and Mengmeng Li. 2025. "Existence and Ulam-Type Stability for Fractional Multi-Delay Differential Systems" Fractal and Fractional 9, no. 5: 288. https://doi.org/10.3390/fractalfract9050288

APA Style

Zhang, X., & Li, M. (2025). Existence and Ulam-Type Stability for Fractional Multi-Delay Differential Systems. Fractal and Fractional, 9(5), 288. https://doi.org/10.3390/fractalfract9050288

Article Metrics

Back to TopTop