Seasonal Pattern and Age-Specific Detection of Eight Respiratory Viruses Causing Acute Respiratory Infection in 2024, Bangkok, Thailand
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Sample Collection and Ethical Approvals
2.2. Real-Time RT-PCR
2.3. Statistical Analysis
3. Results
3.1. Overall Prevalence of Respiratory Viruses and Co-Infection Patterns
3.2. Seasonal Distribution of Viral Prevalence
3.3. Age-Associated Viral Pathogen Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; You, Y.; Du, Y.; Zhou, W.; Jiang, D.; Cao, K.; Yang, M.; Wu, X.; Chen, M.; Qi, J.; et al. Global epidemiological trends in the incidence and deaths of acute respiratory infections from 1990 to 2021. Heliyon 2024, 10, e35841. [Google Scholar] [CrossRef]
- Bender, R.G.; Sirota, S.B.; Swetschinski, L.R.; Dominguez, R.M.V.; Novotney, A.; Wool, E.E.; Ikuta, K.S.; Vongpradith, A.; Rogowski, E.L.B.; Doxey, M.; et al. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Infect. Dis. 2024, 24, 974–1002. [Google Scholar] [CrossRef]
- Kesson, A.M. Respiratory virus infections. Paediatr. Respir. Rev. 2007, 8, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Reeves, R.M.; Wang, X.; Bassat, Q.; Brooks, W.A.; Cohen, C.; Moore, D.P.; Nunes, M.; Rath, B.; Campbell, H.; et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: A systematic analysis. Lancet Glob. Health 2019, 7, e1031–e1045. [Google Scholar] [CrossRef]
- Suntronwong, N.; Vichaiwattana, P.; Klinfueng, S.; Korkong, S.; Thongmee, T.; Vongpunsawad, S.; Poovorawan, Y. Climate factors influence seasonal influenza activity in Bangkok, Thailand. PLoS ONE 2020, 15, e0239729. [Google Scholar] [CrossRef]
- Bull, J.J.; Koelle, K.; Antia, R. Waning immunity drives respiratory virus evolution and reinfection. Evol. Med. Public Health 2025, 13, 101–110. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Tao, F.; Chen, Y.; Zhou, Y.; Cheng, J.; Wang, X. Global analysis of influenza epidemic characteristics in the first two seasons after lifting the nonpharmaceutical interventions for COVID-19. Int. J. Infect. Dis. 2025, 151, 107372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, Y.; Wang, J.; Li, Y.; Wang, Y.; Gao, Y.; Zhao, M.; Zhao, M.; Tan, H.; Tie, Y.; et al. Epidemiology of respiratory pathogens in patients with acute respiratory infections during the COVID-19 pandemic and after easing of COVID-19 restrictions. Microbiol. Spectr. 2024, 12, e01161-24. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.J.; Uyeki, T.M.; Chu, H.Y. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat. Rev. Microbiol. 2023, 21, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Suntronwong, N.; Thongpan, I.; Chuchaona, W.; Budi Lestari, F.; Vichaiwattana, P.; Yorsaeng, R.; Pasittungkul, S.; Kitphati, R.; Vongpunsawad, S.; Poovorawan, Y. Impact of COVID-19 public health interventions on influenza incidence in Thailand. Pathog. Glob. Health 2020, 114, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Del Riccio, M.; Caini, S.; Bonaccorsi, G.; Lorini, C.; Paget, J.; van der Velden, K.; Meijer, A.; Haag, M.; McGovern, I.; Zanobini, P. Global analysis of respiratory viral circulation and timing of epidemics in the pre–COVID-19 and COVID-19 pandemic eras, based on data from the Global Influenza Surveillance and Response System (GISRS). Int. J. Infect. Dis. 2024, 144, 107052. [Google Scholar] [CrossRef]
- Lu, C.; Barr, I.G.; Lambert, S.; Mengersen, K.; Wang, L.; Yang, W.; Li, Z.; Vardoulakis, S.; Bambrick, H.; Hu, W. Shifts in seasonal influenza patterns in Australia during and after COVID-19: A comprehensive analysis. J. Infect. Public Health 2025, 18, 102620. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef]
- Inma, P.; Suntronwong, N.; Sinsulpsiri, S.; Srimaneewiroon, S.; Poovorawan, Y. Viral Etiology Associated with Acute Respiratory Tract Infection Patients in Bangkok, Thailand. Cureus 2024, 16, e66897. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Research Uses Only 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Primers and Probes. 2020. Available online: https://stacks.cdc.gov/view/cdc/88834 (accessed on 17 May 2025).
- Gunson, R.; Collins, T.; Carman, W. Real-time RT-PCR detection of 12 respiratory viral infections in four triplex reactions. J. Clin. Virol. 2005, 33, 341–344. [Google Scholar] [CrossRef]
- Jiang, X.W.; Huang, T.S.; Xie, L.; Chen, S.Z.; Wang, S.D.; Huang, Z.W.; Li, X.Y.; Ling, W.P. Development of a diagnostic assay by three-tube multiplex real-time PCR for simultaneous detection of nine microorganisms causing acute respiratory infections. Sci. Rep. 2022, 12, 13306. [Google Scholar] [CrossRef] [PubMed]
- Suwannakarn, K.; Payungporn, S.; Chieochansin, T.; Samransamruajkit, R.; Amonsin, A.; Songserm, T.; Chaisingh, A.; Chamnanpood, P.; Chutinimitkul, S.; Theamboonlers, A.; et al. Typing (A/B) and subtyping (H1/H3/H5) of influenza A viruses by multiplex real-time RT-PCR assays. J. Virol. Methods 2008, 152, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Thermofisher. Parainfluenza Virus Research Using a Multiplex Real-Time RT-PCR Method and the ViiA™ 7 Real-Time PCR System. Available online: https://documents.thermofisher.com/TFS-Assets/LSG/brochures/cms_088565.pdf (accessed on 17 September 2025).
- Thongpan, I.; Suntronwong, N.; Vichaiwattana, P.; Wanlapakorn, N.; Vongpunsawad, S.; Poovorawan, Y. Respiratory syncytial virus, human metapneumovirus, and influenza virus infection in Bangkok, 2016–2017. PeerJ 2019, 7, e6748. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, Y.; Zhang, D.; Li, G.; Gao, H.; Zeng, X.; Tie, Y.; Wu, Y.; Dai, E.; Feng, Z. Establishment and evaluation of a quadruple quantitative real-time PCR assay for simultaneous detection of human coronavirus subtypes. Virol. J. 2022, 19, 67. [Google Scholar] [CrossRef]
- World Health Organization. Global Trends in Infectious Respiratory Diseases. Available online: https://apps.who.int/gb/MSPI/pdf_files/2024/12/Item1_19-12.pdf (accessed on 17 September 2025).
- Liu, Y.N.; Zhang, Y.F.; Xu, Q.; Qiu, Y.; Lu, Q.B.; Wang, T.; Zhang, X.A.; Lin, S.H.; Lv, C.L.; Jiang, B.G.; et al. Infection and co-infection patterns of community-acquired pneumonia in patients of different ages in China from 2009 to 2020: A national surveillance study. Lancet Microbe 2023, 4, e330–e339. [Google Scholar] [CrossRef]
- Thongpan, I.; Vongpunsawad, S.; Poovorawan, Y. Respiratory syncytial virus infection trend is associated with meteorological factors. Sci. Rep. 2020, 10, 10931. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Msosa, T.; de Wit, F.; Murdock, J.; Nair, H. The impact of the 2009 influenza pandemic on the seasonality of human respiratory syncytial virus: A systematic analysis. Influenza Other Respir. Viruses 2021, 15, 804–812. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, T.; Guo, L.; Sun, S.; Miao, Y.; Yung, C.F.; Tomlinson, J.; Stolyarov, K.; Shchomak, Z.; Poovorawan, Y.; et al. Characterising the asynchronous resurgence of common respiratory viruses following the COVID-19 pandemic. Nat. Commun. 2025, 16, 1610. [Google Scholar] [CrossRef]
- World Health Organization. WHO COVID-19 Dashboard. 2025. Available online: https://data.who.int/dashboards/covid19/variants (accessed on 17 September 2025).
- Hirve, S.; Newman, L.P.; Paget, J.; Azziz-Baumgartner, E.; Fitzner, J.; Bhat, N.; Vandemaele, K.; Zhang, W. Influenza seasonality in the tropics and subtropics—When to vaccinate? PLoS ONE 2016, 11, e0153003. [Google Scholar] [CrossRef] [PubMed]
- Horwood, P.F.; Karlsson, E.A.; Horm, S.V.; Ly, S.; Heng, S.; Chin, S.; Darapheak, C.; Saunders, D.; Chanthap, L.; Rith, S.; et al. Circulation and characterization of seasonal influenza viruses in Cambodia, 2012–2015. Influenza Other Respir. Viruses 2019, 13, 465–476. [Google Scholar] [CrossRef]
- Wodniak, N.; Vilivong, K.; Khamphaphongphane, B.; Sengkeopraseuth, B.; Somoulay, V.; Chiew, M.; Ketmayoon, P.; Jiao, M.; Phimmasine, S.; Co, K.C.; et al. Epidemiologic and Virologic Characteristics of Influenza in Lao PDR, 2016–2023. Influenza Other Respir. Viruses 2024, 18, e13353. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Lamson, D.M.; St George, K.; Walsh, T.J. Human rhinoviruses. Clin. Microbiol. Rev. 2013, 26, 135–162. [Google Scholar] [CrossRef] [PubMed]
- Suntronwong, N.; Assawakosri, S.; Klinfueng, S.; Duangchinda, T.; Chantima, W.; Pakchotanon, P.; Nilyanimit, P.; Vichaiwattana, P.; Aeemjinda, R.; Wongsrisang, L.; et al. Age-associated SARS-CoV-2 immune responses provide insights into population immunity over four years since the COVID-19 pandemic. Sci. Rep. 2025, 15, 23183. [Google Scholar] [CrossRef] [PubMed]
- Pasittungkul, S.; Thongpan, I.; Vichaiwattana, P.; Thongmee, T.; Klinfueng, S.; Suntronwong, N.; Wanlapakorn, N.; Vongpunsawad, S.; Poovorawan, Y. High seroprevalence of antibodies against human respiratory syncytial virus and evidence of respiratory syncytial virus reinfection in young children in Thailand. Int. J. Infect. Dis. 2022, 125, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xu, L.; Wang, Y.; Hao, C. Exploring immunity debt: Dynamic alterations in RSV antibody levels in children under 5 years during the COVID-19 pandemic. J. Infect. 2024, 88, 53–56. [Google Scholar] [CrossRef]
- Stobart, C.; Nosek, J.; Moore, M. Rhinovirus biology, antigenic diversity, and advancements in the design of a human rhinovirus vaccine. Front. Microbiol. 2017, 8, 2412. [Google Scholar] [CrossRef] [PubMed]
- Schnyder Ghamloush, S.; Essink, B.; Hu, B.; Kalidindi, S.; Morsy, L.; Egwuenu-Dumbuya, C.; Kapoor, A.; Girard, B.; Dhar, R.; Lackey, R.; et al. Safety and immunogenicity of an mRNA-based HMPV/PIV3 combination vaccine in seropositive children. Pediatrics 2024, 153, e2023064748. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Vaccines and Immunizations. Available online: https://www.cdc.gov/vaccines/vpd/rsv/hcp/older-adults.html (accessed on 18 September 2025).
- Jones, J.M. Use of nirsevimab for the prevention of respiratory syncytial virus disease among infants and young children: Recommendations of the Advisory Committee on Immunization Practices—United States, 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 920–925. [Google Scholar] [CrossRef]




| Samples (%) (N = 7853) | |
|---|---|
| Age, year (mean, SD) | 28.1 (22.5) |
| Age group | |
| Infant (0–2 years) | 705 (9) |
| Pre-school children (3–5 years) | 971 (12.3) |
| School-age children (6–12 years) | 1228 (15.6) |
| Adolescents (13–18 years) | 399 (5.1) |
| Adults (19–60 years) | 3789 (48.3) |
| Older adults (>60 years) | 761 (9.7) |
| Gender | |
| Female | 4309 (54.9) |
| Male | 3544 (45.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suntronwong, N.; Vichaiwattana, P.; Puenpa, J.; Pasittungkul, S.; Aeemjinda, R.; Wongsrisang, L.; Poovorawan, Y. Seasonal Pattern and Age-Specific Detection of Eight Respiratory Viruses Causing Acute Respiratory Infection in 2024, Bangkok, Thailand. Trop. Med. Infect. Dis. 2025, 10, 339. https://doi.org/10.3390/tropicalmed10120339
Suntronwong N, Vichaiwattana P, Puenpa J, Pasittungkul S, Aeemjinda R, Wongsrisang L, Poovorawan Y. Seasonal Pattern and Age-Specific Detection of Eight Respiratory Viruses Causing Acute Respiratory Infection in 2024, Bangkok, Thailand. Tropical Medicine and Infectious Disease. 2025; 10(12):339. https://doi.org/10.3390/tropicalmed10120339
Chicago/Turabian StyleSuntronwong, Nungruthai, Preeyaporn Vichaiwattana, Jiratchaya Puenpa, Siripat Pasittungkul, Ratchadawan Aeemjinda, Lakkhana Wongsrisang, and Yong Poovorawan. 2025. "Seasonal Pattern and Age-Specific Detection of Eight Respiratory Viruses Causing Acute Respiratory Infection in 2024, Bangkok, Thailand" Tropical Medicine and Infectious Disease 10, no. 12: 339. https://doi.org/10.3390/tropicalmed10120339
APA StyleSuntronwong, N., Vichaiwattana, P., Puenpa, J., Pasittungkul, S., Aeemjinda, R., Wongsrisang, L., & Poovorawan, Y. (2025). Seasonal Pattern and Age-Specific Detection of Eight Respiratory Viruses Causing Acute Respiratory Infection in 2024, Bangkok, Thailand. Tropical Medicine and Infectious Disease, 10(12), 339. https://doi.org/10.3390/tropicalmed10120339

