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Abstract: Atmospheric ozone (O3) concentration is impacted by a number of factors, such as the
amount of solar radiation, the composition of nitrogen oxides (NOx) and hydrocarbons, the transport
of pollutants and the amount of particulate matter in the atmosphere. The oxidative potential of
the atmosphere and the formation of secondary organic aerosols (SOAs) as a result of atmospheric
oxidation are influenced by the prevalent O3 concentration. The formation of secondary aerosols
from O3 depends on several meteorological, environmental and chemical factors. The relationship
between PM2.5 and O3 in different urban environmental regimes of India is investigated in this study
during the summer and winter seasons. A relationship between PM2.5 and O3 has been established
for many meteorological and chemical variables, such as RH, WS, T and NOx, for the selected study
locations. During the winter season, the correlation between PM2.5 and O3 was found to be negative
for Delhi and Bengaluru, whereas it was positive in Ahmedabad. The city of Bengaluru was seen
to have a positive correlation between PM2.5 and O3 during summer, coinciding with the transport
of marine air masses with high RH and low wind speed (as evident from FLEXPART simulations),
leading to the formation of SOAs. Further, O3 concentrations are predicted using a Recurrent Neural
Network (RNN) model based on the relation obtained between PM2.5 and O3 for the summer season
using NOx, T, RH, WS and PM2.5 as inputs.

Keywords: PM2.5; ozone; SOA; FLEXPART; RNN

1. Introduction

It is well known that the photochemical production of tropospheric O3 is determined
by the ambient levels of its precursors, such as the oxides of nitrogen (NOxs) and volatile
organic compounds (VOCs). The rate of photolysis depends on the meteorological parame-
ters (such as temperature and solar radiation) as well as the chemical parameters [1]. O3,
being an atmospheric oxidant, can also lead to the formation/growth of particles in the
atmosphere. Aerosols also play an important role in O3 production as they interact with
radiation through scattering and absorption and, therefore, affect atmospheric radiation
and temperature. The aerosol-induced reduction in solar irradiance was estimated to result
in lower photolysis rates and less production of O3 in the Eastern Mediterranean region [2].

The relationship between O3 and PM2.5 in the summer and winter seasons was studied
over Nanjing–Jiangsu Province’s capital city in eastern China, and it was observed that O3
and PM2.5 showed inverse relations during the summer and winter seasons [3]. Analysis of
environmental and meteorological measurements for three years over Nanjing shows that
the two dominant processes have identified basic pathways for interactions between two
important atmospheric pollutants, viz., PM2.5 and O3.
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1. Secondary particle production gets enhanced by high O3 concentrations and strong
atmospheric oxidation, raising ambient PM2.5 levels.

2. Increased PM2.5 concentrations might lower the ambient O3 levels by reducing atmo-
spheric radiation.

The formation of secondary particles is promoted in the summer season due to en-
hanced solar radiation and strong atmospheric oxidation. During winter, high concen-
trations of PM2.5 reduces solar radiation, which inhibits the synthesis of O3, which may
result in a negative relationship between ambient PM2.5 and O3. Seasonally altering inter-
actions between PM2.5 and O3 could be determining factors in the seasonal variations in air
pollution. The interaction between PM2.5 and O3 is mainly affected by photochemical reac-
tions [4] and secondary organic and inorganic aerosols generated from oxidation reactions
consisting of a significant fraction of particulate matter, with substantial implications for
air pollution [5].

The relationship between O3 and PM2.5 depends on many meteorological factors,
such as temperature, relative humidity (RH) and wind speed (WS). RH plays an impor-
tant role in secondary particle formation and related chemical and physical properties [6].
Kaul et al. (2011) [7] observed enhancement in secondary organic aerosol (SOA) concen-
trations under high RH conditions. The effects of RH on the formation of SOAs have
been investigated through both chamber studies and ambient measurements [6], yet the
knowledge of SOA formation under different RH conditions is rather limited. Zang et al.
(2014) [8] examined the reaction of aerosol pollution in Wuhan city in China during win-
tertime and found that aerosol pollution in Wuhan is dominated by PM2.5 on wet days
(RH 60%). The aqueous chemistry is favoured by enhanced RH. Increased RH also aids in
new molecule development and the deliquescence development of pre-existing particles,
which may prompt an increment in aerosol concentration. While studying the changes in
the AOD due to the lockdown imposed in India to restrict the spread of the coronavirus
disease (COVID-19), it was found that the area-average AOD increased with increasing RH
in central India during the lockdown period [9,10].

SOA is mostly formed by the oxidation of volatile organic compounds (VOCs),
the products of which present sufficiently low volatility to partition into the particle
phase, according to the gas-particle partitioning theory [11], and, afterwards, nucleate
and form organic particles. Hydroxyl (OH) radicals, O3, and nitrate (NO3) radicals are
the three major oxidants in the atmosphere that react with organic gases to form SOAs.
Among these, data for O3 is easily available over wide geographic areas, including India.
Guo et al. (2017) [12] observed that SOAs contributed a minuscule of 7% and 3% to PM2.5
over Jaipur and Delhi, respectively, in 2015. Behera and Sharma (2010) [13] calculated that
the SOAs in Kanpur city in the Indo-Gangetic Plain (IGP) account for around 18% of PM2.5
in the winter and 12% of PM2.5 in the summer. In Delhi and nearby regions, SOAs were
found to contribute 16 ± 6 µgm−3, which accounts for up to 5.8 ± 2.6% of the PM2.5 mass
in summer [14].

In this study, we make an attempt to find the relationship between PM2.5 and O3 under
different meteorological and chemical factors such as RH, WS, temperature and NOx over
climatically contrasting urban environmental regimes in India, viz., Delhi in north India,
Ahmedabad in western India and Bengaluru in south India (Section 1.1). An attempt is
made here to predict the ozone concentrations over the selected study locations using the
Recurrent Neural Network (RNN) model.

1.1. Study Locations

Delhi: Delhi (28.70◦ N, 77.10◦ E), the capital of India, has severe air pollution issues.
In October 2018, the Ministry of Earth Science, India, issued a study attributing over 40%
of PM2.5 air pollution in Delhi to vehicle exhaust, 22% to dust/fire and 20% to industry.
From January to September, Delhi has records of air quality of Large Moderate (101–200)
levels, followed by a radical decrease between the months of October and December to
Very Poor (301–400), Severe (401–500) and Hazardous (500+) levels because of several
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variables, including stubble consumption, Diwali fireworks and other festivals and a chilly
climate. As indicated by a study on Delhi air contamination by Rizwan et al. (2013) [15], the
rising air pollution level has increased the number of cases related to respiratory diseases
(particularly asthma and cellular breakdown in the lungs), hypertension, chronic headache,
eye irritation and skin irritation. In Delhi, during wintertime, the dense brown haze and
murkiness constantly cause major problems in aviation and train transport.

Ahmedabad: Ahmedabad (23.02◦ N, 72.57◦ E), situated on the bank of river Sabarmati,
is a prominent city in Gujarat. There has been a fast development of enterprises in the city;
in particular, drugs, petrol and petrochemical ventures, steel reuse, car parts fabrication,
drinks creation, and material creation are the major contaminating businesses concerning
air pollution. Ahmedabad city is growing quickly, and vehicular traffic and enterprises
are additionally expanding. These advancements are increasing the atmospheric aerosol
concentration, which, in turn, increases ambient air pollution substantially. This increase in
air pollution has a negative impact on the environment as well as on the health of people
living in Ahmedabad.

Bengaluru: Bengaluru (12.97◦ N, 77.59◦ E) is one of the principal information technol-
ogy (IT) centres of India. Bengaluru is known for its wonderful and consistent climate. The
city is situated 920 m above sea level, and it is the most elevated city among the significant
urban areas in India. The coolest month is January, with a normal low temperature of
15.1 ◦C, and the hottest month is April, with a normal high temperature of 35 ◦C. Bangalore
gets precipitation from both upper-east and southwest storms. Bengaluru is broadly viewed
as the “Silicon Valley” of India. Fast urbanisation has altered the city’s land use and land
cover features, particularly in the eastern sections, which are home to major IT parks such
as Whitefield and Electronic City. The city’s economic development has resulted in an
increase in population and the number of vehicles on the road. Guttikunda et al. (2019) [16]
assessed the emissions for the year 2015 in Bengaluru city to be 31,500 tons of PM2.5,
67,000 tons of PM10, 5500 tons of SO2, 57,000 tons of NOx, 335,600 tons of CO, and
84,000 tons of non-methane volatile organic compounds (NMVOCs).

1.2. Emissions

Emissions of pollutants comprising particulate matter (aerosols) and gases (NO2 and
CO) play a vital role in the environment and human health [17]. The most commonly
identified sources of primary air pollutants comprising particulate matter (aerosols) and
gases (NO2 and CO) are vehicular emissions, power generation, manufacturing industries,
construction, road dust, open waste burning, oil and coal combustion, and household
activities. Figure 1 shows the source apportionment of PM2.5 for three cities in India
based on data from URBAN emissions.info sourced from APnA “Air Pollution Knowledge
Assessment” city program [16]. In Delhi, a major source of PM2.5 is open waste burning
(27%), followed by emissions from vehicles (23%). Emissions from industries dominate
the PM2.5 sources in Ahmedabad (63%), whereas vehicular emission is one of the major
sources of PM2.5 in Bengaluru, contributing 40%.

In India, 45% of the total NOx emissions come from coal burning in thermal power
plants and 32% comes from road transport. [18]. However, O3 being a secondary pollutant,
changes in O3 would be much more difficult to unravel from direct observations, and the
dependency on hydrocarbons, NOx and meteorological factors needs to be investigated.
Coincidentally, xylenes were found to be the largest contributor to O3 formation, followed
by toluene in Delhi [19]. Chen et al. (2020) [20] pointed out that O3 production is less
sensitive to solar radiation in summer compared to winter. Reducing NOx by itself raises O3,
thus reducing NOx emissions by 50% leads to a 10–5% rise in surface O3, and, conversely,
decreasing VOC emissions can lessen O3 effectively, to such an extent that a half decrease
in VOC emissions will lead to a 60% decrease in O3 in Delhi [20].
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2. Materials and Methods
2.1. Data

For this study, based on long-term data availability and contrasting climatic conditions,
three stations were selected: Ahmedabad, Delhi and Bengaluru. The air quality data for
the selected cities have been taken from the Central Pollution Control Board (CPCB) of
India. The PM2.5, O3 and NOx data were downloaded from the CPCB website. With
the aid of State Pollution Control Boards and other organisations under the National Air
Quality Monitoring Programme (NAMP), the CPCB monitors air quality across 233 stations
throughout the Indian region (http://cpcb.nic.in/air.php, accessed on 10 March 2021).
Daily metrological data (relative humidity (RH), temperature (T) and wind speed (WS))
from the years 2010 to 2020 was taken from the NASA/POWER (Prediction of World-
wide Energy Resource) project (https://power.larc.nasa.gov/data-access-viewer, accessed
on 10 March 2021). The POWER Data Archive provides global data at a resolution of
0.5 × 0.5 degrees in CSV, ASCII and NetCDF. Data used in this study were downloaded
in CSV format. For the POWER project, NASA’s Modern-Era Retrospective Analysis for
Research and Applications version 2 (MERRA-2) assimilation model and GEOS 5.12.4
FP-IT were used to determine meteorological parameters [21]. MERRA-2 is based on the
Goddard Earth Observing System (GEOS) Data Assimilation System, while GEOS 5.12.4
has similar grid resolution and model physics to MERRA-2, with some exceptions [22]. The
POWER project team processes GEOS 5.12.4 data on a daily basis and combines it with
the MERRA-2 daily time series to create low-latency products that are usually available
within two days in real-time. The air mass trajectory was calculated using web-based
HYSPLIT. The planetary boundary layer (PBL) height was extracted from the HYSPLIT
model simulation results.

The data for 6 parameters were extracted for this study (also available as Supplemen-
tary Material).

(i) Particular matter (PM) of aerodynamic diameter less than 2.5 µm (PM2.5);
(ii) Ozone (O3);
(iii) Nitrogen oxides (NOx);
(iv) Relative humidity (RH);
(v) Temperature (T); and
(vi) Wind speed (WS).

The measurement techniques for O3, NOx and PM2.5 are available from the technical
specifications for Continuous Ambient Air Quality Monitoring (CAAQM) (CPCB, 2019,
https://cpcb.nic.in, accessed on 10 March 2021). The ultraviolet photometric O3 gas
analysers work on Beer Lambert’s principle on the absorption of radiation at 254.7 nm by

http://cpcb.nic.in/air.php
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atmospheric O3. With a response time of 30 s or less, the instrument’s detection limit is
1 ppb. For the measurement of NOx, nitric oxide (NO) is oxidised by O3 molecules to
produce chemiluminescence, which peaks at 630 nm radiation [23]. With the aid of a
molybdenum converter, NO2 is converted into NO, which is then used to calculate the
total amount of NOx. Unfortunately, other nitrogen species are also reduced to NO and
interfere with the measurement of NO2 because the reduction of NO2 to NO is not unique
to NO2. These instruments have detection limits of approximately 1 ppb at response times
of 120 s or less. The PM10 measurements are based on the principle of β-ray attenuation.
At a flow rate of 16 l/min, the instrument samples ambient air for particulate matter,
which is then collected on fibreglass filter tape. The amount of PM10 is determined by
comparing scintillation/G.M. counter measurements of β -ray radiation taken before and
after sampling. The particle size cut-off for PM2.5 is in the range of 0–2.5 µm, but the
measurements are similar to those for PM10.

The raw data (CPCB data) were filtered station-wise and species-wise to remove values
above and below 3 standard deviations from the mean at every one-month interval. Since
we are concerned with the average variation of the pollutants, this kind of filtering helps
to remove bias due to extreme events (meteorological or chemical) and errors related to
instruments, sampling and human effects. Additionally, data were also checked manually
for inconsistencies. This paper studies the relationship between O3 and PM2.5 during
the summer and winter seasons. The winter days selected here are from 1 December to
14 February and the summer days are from 1 March to 31 May. Table 1 presents the basic
statistical measures, including the mean, median, and standard deviation, as well as other
statistical parameters for the data during the summer and winter seasons. At first, the
relationship between O3 and PM2.5 was observed by finding the regression between them
during the summer and winter seasons. Additionally, the regression for the different
ranges of meteorological (RH, WS and T) and chemical parameters (NOx) were studied
to find the dependence of PM2.5 and O3 on those meteorological parameters during both
winter and summer seasons. The dependence was tested for different levels of signifi-
cance using a two-tailed Student’s t-test. For better and improvised results, the binning
average for O3 was calculated for each station and the regression was observed for all the
above-mentioned conditions.

2.2. Lagrangian Particle Dispersion Model: FLEXPART

We used the Lagrangian particle dispersion model (LPDM) FLEXPART v10.4 [24–26]
for this study. There are different varieties of dispersion models in use in the scientific
community. The best model for a given problem depends on factors such as spatial and
temporal scales, computational efficiency, and the representation of complex processes such
as the effect of topography, chemistry, meteorology, etc. Leelossy et al. (2014) [27] discussed
the merits and demerits of different types of dispersion models under different conditions,
e.g., in the ground-level air pollution model (GLAMP), the local surface airflows differ
significantly from the general meteorological dataset as wind speed less than 6 m/s is set
to 6 m/s, rendering it unacceptable for many cities. Lagrangian dispersion models stand
out for their applicability in a wide range of situations, computational efficiency and low
numerical diffusion. They are used to simulate source–receptor relationships from the scale
of a city to the continents [28–32]. FLEXPART is an open-source model that allows several
publicly available reanalysis meteorological data products or model outputs as input to
compute the trajectories of a large number of particles (infinitesimally small air parcels).
FLEXPART incorporates several particle dispersion and removal mechanisms, such as
diffusion by turbulence, dry deposition, wet deposition, and deep convective mixing [33].
The fact that FLEXPART involves chemistry gives it an edge over GRAL, which does not
support chemical reactions and transformations between substances [28]. FLEXPART can
run in both forward and backward in-time modes. When used in backward mode, unlike
simple back-trajectory models, it provides quantitative values that represent the source–
receptor (S-R) relationship and are related to the residence time of particles in output grid
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cells. Thus, the S-R relationship, so calculated, is simply a matrix describing the sensitivity
of a receptor to geographically distributed sources, also known as potential emission
sensitivity (PES). A more thorough explanation of PES values and the S-R relationship can
be found in Seibert and Frank (2004) [33].

Table 1. Statistics of the winter and summer data from NASA/POWER and CPCB.

Winter
O3 (ppbv) PM2.5(µg m−3) T (◦C) RH (%) WS (ms−1) NOx(ppbv)

Del Ahm Ben Del Ahm Ben Del Ahm Ben Del Ahm Ben Del Ahm Ben Del Ahm Ben

Mean 12.3 22.1 12.6 181.0 75.6 37.4 14.0 20.1 21.6 42.0 32.9 61.5 2.7 3.1 3.4 87.0 45.6 29.3

Sigma 8.2 8.9 7.1 80.0 22.6 16.9 2.5 2.4 1.6 13.9 13.9 13.3 0.9 0.7 0.8 44.0 26.1 19.9

Median 10.4 21.3 11.9 165.0 73.9 35.1 13.8 20.1 21.6 40.5 30.5 60.9 2.7 3.1 3.4 76.9 39.4 26.1

Max 49.4 46.8 30.8 424.0 164.7 87.9 20.4 27.1 26.3 93.0 80.6 92.8 6.1 5.7 7.9 225.0 133.5 205.9

Min 3.2 2.5 2.6 20.0 18.1 1.7 6.9 13.8 16.9 13.5 6.9 22.4 0.8 1.1 1.3 18.4 7.2 2.4

95 percentile 30.7 37.5 26.1 339.0 113.2 66.8 18.4 24.1 24.4 67.5 62.3 84.6 4.4 4.4 4.9 173.0 96.2 59.8

5 percentile 4.3 9.4 3.0 74.0 41.8 14.0 10.1 16.1 18.9 21.6 14.4 41.9 1.3 2.1 2.1 29.9 11.2 6.4

n 360 244 323 348 222 335 836 836 836 836 836 836 836 836 836 578 425 539

Summer
O3 (ppbv) PM2.5(µg m−3) T (◦C) RH (%) WS (ms−1) NOx(ppbv)

Del Ahm Ben Del Ahm Ben Del Ahm Ben Del Ahm Ben Del Ahm Ben Del Ahm Ben

Mean 17.3 21.7 15.9 107.7 67.8 32.4 29.3 31.7 27.9 26.7 25.3 48.3 3.3 3.7 3.2 59.5 34.6 23.9

Sigma 8.0 7.2 7.1 47.0 36.3 17.4 5.8 3.7 1.8 12.5 8.9 13.6 1.1 1.1 1.0 40.0 24.2 14.8

Median 16.8 21.9 15.5 96.8 60.7 29.7 30.1 32.6 27.0 24.5 24.9 45.9 3.1 3.6 3.2 47.5 26.3 20.6

Max 45.8 42.8 30.5 240.7 220.0 85.9 39.6 39.5 33.6 84.2 60.6 84.3 6.4 8.7 7.6 242.6 120.8 107.8

Min 3.6 5.3 2.5 18.1 6.7 7.0 15.4 20.3 22.7 5.9 3.7 21.3 0.9 1.4 0.7 5.6 5.2 1.6

95 percentile 32.9 32.5 29.0 199.1 132.0 65.2 37.3 36.3 30.7 49.5 40.9 72.0 5.2 5.6 5.1 145.0 83.5 53.1

5 percentile 6.4 9.0 5.4 44.9 24.0 9.9 18.9 24.6 24.9 10.7 11.1 29.0 1.7 2.3 1.7 16.7 10.3 8.8

n 491 285 365 474 291 393 1012 1012 1012 1012 1012 1012 1012 1012 1012 712 482 645

In our study, we employed FLEXPART backward modelling to simulate the transport
and dispersion of secondary organic aerosol (SOA). The receptors are 24 h averaged
SOA concentration observations in Bengaluru for different days, and the sources are area-
averaged SOA emissions from various grid boxes at different intervals. The model was
run using NCEP FNL (Final) Operational Global Analysis data. The spatial resolution of
FNL input files is 1◦ × 1◦, with 26 vertical levels, ranging from the surface to 10 millibars,
and a time resolution of 6 h. For each date and the receptor sites, 40,000 particles were
released. Assuming no direct emissions at higher altitudes, potential emission sensitivity is
calculated for the bottom 100 m layer, known as the footprint layer, for a backward time of
10 days.

2.3. Recurrent Neural Network (RNN)

To predict the O3 concentration, a Recurrent Neural Network (RNN) model has
been used. RNNs [34–36] are a class of artificial neural networks that have an internal
state or short-term memory due to their recurrent feedback connections. Therefore, these
networks are suitable for sequential problems such as speech classification and prediction
and generation. The Recurrent Neural Network (RNN) [37] model has been successfully
applied to sequence learning and pattern recognition [38] and scene labelling [39]. In
contrast to feed-forward networks such as CNNs, RNNs have recurrent connections in
which the previous hidden state informs subsequent hidden states.

ht = σ (Wxt + Uht−1 + b) (1)

where xt ∈ RM and ht ∈ RN are the entry and hidden states, accordingly, at step t. The
weights for the present and recurrent inputs and the bias of the neurons are W ∈ RN ×M,
U ∈ RN × N and b ∈ RN. An RNN layer consists of N neurons, and σ is an element-level
activation function of the neurons.

Its structure is seen in Figure 2. Each time frame is made up of three layers: three input
word levels w, one recurrent layer r and one output layer y. The activation of the input,
recurrent, and output layers at time t is represented by W(t), r(t) and y(t), respectively.
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Mikolov et al. (2010) [40] defined w(t) as the current word vector, which can be a simple
1-of-N coding representation h(t) (i.e., the binary one-hot representation with the same
dimension as the vocabulary size but only one non-zero element). The following formula
may be used to calculate y(t):

x(t) = [w(t) r(t − 1)];

r(t) = f1(U · x(t));

y(t) = g1(V · r(t));

where x(t) is a vector formed by concatenating w(t) and r(t1), f1(.) and g1(.) are sigmoid
and softmax functions, respectively, and U, V are learned weights. The RNN’s size adjusts
to the length of the input sequence. In various time frames, the recurrent layers connect the
sub-networks. As a result, we must propagate the mistake back in time using recurrent
connections [41]. Figure 2 depicts the recurrent neural network design. A loss function
related to MSE was minimised by optimising the model parameters. Keras was used to do
the optimisation, utilising ADAM. We experimented with several RNN designs, changing
the number of layers, filters per layer, the kind of layer (hidden or dense), and the filter size.
The models were trained throughout 50 epochs using an early-stopping set. RNN model
architecture and configurations are shown in Figure 3.
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Figure 3. Model architecture and configuration parameters.

Figure 3 shows the architecture of our RNN model and the associated configuration
parameters. The RNN model architecture consists of four SimpleRNN layers, four dropout
layers, and one dense layer. SimpleRNN is a fully connected RNN where the output from
the previous timestep is to be fed to the next time step. The input image is (638 × 30),
and the image first goes to the first SimpleRNN layer. The first layer has four inputs, a
50-dimensional output space, an activation function called Swish, a return sequence called
True, and an input shape. Then, a dropout with a probability of 0.2 is applied. Its function
is to reduce the spatial size of the incoming entities and, thus, contribute to reducing the
number of parameters and calculations in the network, thus helping to reduce over-learning.
The second, third, and fourth SimpleRNN layers also have 50 dimensionalities of the output
space and a dropout of 0.2. The architecture ends with a dense layer. Table 2 includes
information about the hyperparameter, which we used to tune the performance of this
model, such as learning rate, hidden layers, dropout value, batch size, epochs, activation
functions, and optimiser.

Table 2. Parameters details of RNN.

Parameter Value

Input shape (30,50)

Learning rate 0.001

Hidden layers 50

Dropout 0.2

Batch size 10

Epochs 50

Output channels 50

FC layer 50

Activation function Swish

Optimiser ADAM
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3. Result and Discussion

Figure 4a shows the overall relationship between PM2.5 and O3 during the summer and
winter seasons for all three selected locations. It was observed that there is no significant
correlation between PM2.5 and O3 during the summer season in both Delhi and Ahmedabad.
Ahmedabad is a dust-dominated area, and Delhi has very high local emissions; hence, SOAs
would only be a small fraction of the atmosphere of these cities during summer. Bengaluru
shows a positive relation between PM2.5 and O3 during the summer with R2 = 0.55, which
is significant at the 90% confidence level (p = 0.0577). Due to maximum insolation during
the summer in Bengaluru, the increase in O3 concentration due to photochemical reactions
may also increase the oxidative capacity of the atmosphere, thus encouraging the formation
of SOAs.

During winter, Delhi experiences high PM pollution and reduced solar radiation due
to foggy and hazy conditions. These conditions restrict O3 formation and also reduce
SOA formation. Additionally, the lower boundary layer height during winter increases
aerosol loading, and O3 formation is reduced due to fewer sunshine hours. Therefore,
during the winter season, the relationship between PM2.5 and O3 in Delhi and Bengaluru is
negative, with R-squared values of 0.73 and 0.64, respectively. This negative relationship
for Delhi and Bengaluru is significant at 99% (p = 0.0072) and 95% (p = 0.031) confidence
levels, respectively. Ahmedabad, however, shows a positive relation between PM2.5 and O3
during winter, where R2 = 0.47 is significant at the 90% confidence level (p = 0.0606)). The
negative correlation between PM2.5 and O3 over Delhi in winter points to the combined
impact of physical O3 destruction and the inhibition of photochemical production.

During the summer months in Delhi, no significant correlation was observed
(Figure 4a), but when a regression analysis of second order was performed between PM2.5
and O3 (Figure 4b), a positive correlation was observed, with R2 = 0.52. The negative
quadratic term explains that the nonlinear increase in PM2.5 concentrations with O3 is less
than the linear increase. Additionally, the quadratic curve fits better for the regression
of summer months in Bengaluru, with an improved R2 of 0.63. The negative quadratic
term here shows that the linear increase dominates the nonlinear increase; therefore, the
increase in PM2.5, with increasing O3 concentrations, is less than linear. However, Delhi
during winter shows a negative correlation, but the quadratic term is positive here, which
explains that the nonlinear relationship between PM2.5 and O3 dominates over the linear
relationship. For Ahmedabad during winter, not much change in R2 is seen for both linear
and quadratic regression, but the negative quadratic term in the quadratic regression ex-
plains that the increase in PM2.5 with increasing O3 is less than linear. Additionally, the
quadratic curve fits better, with improved R2 (0.94), for Bengaluru during winters. In short,
the dependence of PM2.5 and O3 on each other is not fully linear and consists of some
nonlinear relationships due to additional dependencies, which need to be explored.

The fate of reactive pollutants can be significantly influenced by wind-borne transport
(wind speed and wind direction) by low-level prevailing winds [42,43]. The HYSPLIT
trajectories at 300 m above ground level are shown in Figure 5 (https://www.ready.noaa.
gov/HYSPLIT.php, accessed on 20 March 2021). The three plots show 10-day backward
trajectories at the three selected cities, Delhi, Ahmedabad and Bengaluru, for the year 2020.
Winds in Delhi and Ahmedabad during summer originate from the southwest region. Dust
storms, occurring every year between March and June in the summer months, represent
one of the primary pollutant sources originating from the Arabian Peninsula and the Thar
Desert in northwestern India [44]. In summer, Bengaluru is influenced by long-range
transportation from the Arabian Sea as well as the north Indian Ocean, which brings lots
of humidity to the region. During winter, the backward trajectory shows that air masses
from the western part of India and the bordering Pakistan region can influence the level
of pollutants in Ahmedabad and Delhi, while Bengaluru is influenced by the air masses
mostly from the IGP, eastern India and the Bay of Bengal.

https://www.ready.noaa.gov/HYSPLIT.php
https://www.ready.noaa.gov/HYSPLIT.php
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3.1. Dependence of PM2.5 on O3 for Different Meteorological and Chemical Parameters in Delhi
during Winter and Summer

Figure 6 shows the relation between PM2.5 and O3 in Delhi during the winter season.
The regression between PM2.5 and O3 was observed for different ranges of meteorological
parameters, viz., RH, WS and T. Delhi experiences very high levels of aerosol concen-
tration during winters due to high particulate pollution. Throughout wintertime, the
meteorological conditions over Delhi and other parts of the IGP are represented by low
boundary layer height, calm winds, frequent temperature inversions, and high RH [45].
Ram et al. (2010) [46] explained that these conditions favour the accumulation of aerosols
and also the formation of SOAs. At the same time, calm and stable conditions with high
PM2.5 favour the dry depositional loss of O3.

Delhi experiences severe foggy conditions during winter. Tiwari et al. (2011) [47]
studied the influence of increased aerosol content on fog formation during winters in Delhi.
Due to high aerosol content and hazy conditions, the amount of incoming solar radiation
is decreased. The relationship between PM2.5 and O3 during wintertime is negative for
both RH ≤ 40% and RH > 40% (significant at the 95% confidence level, p = 0.010 for
RH ≤ 40% and p = 0.015 for RH > 40%). Irrespective of the RH levels, the R2 between PM2.5
and O3 does not show much difference, but the increase of the slope from
−4.52 for RH ≤ 40% to −2.29 for RH > 40% indicates that the negative relationship weak-
ens when the RH increases in Delhi. Hence, it can be said that the increased RH favours
aqueous chemistry and the formation of new particles. A strong negative relationship, with
R2 = 0.81 (p = 0.0025), is observed for WS ≤ 4 m/s. However, when WS increases, i.e., when
WS > 4 m/s, no significant relation is observed. For all temperature ranges, the PM2.5 and
O3 levels show a significant negative relationship, R2 = 0.69 for T ≤ 15 ◦C (significant at
the 95% confidence level, p = 0.010) and R2 = 0.85 for T > 15 ◦C (significant at the 99.9%
confidence level, p = 0.0029).

Hama et al. (2020) [48] reported that the O3 concentration is lower during the winter
months in Delhi and stated that it is because of meteorological conditions and secondary
chemical factors such as variations in NOx and VOC. Guo et al. (2017) [49] explained that
the low levels of O3 in winter may be because of lower solar radiation and fewer sunshine
hours. Hama et al. (2020) [48] also found that NOx levels in Delhi showed the highest
levels during winter. For NOx > 50 ppb, a strong negative relationship is observed with
R2 = 0.86, which is significant at the 99.9% confidence level (p = 0.0009). However, for NOx
< 50 ppb, no significant correlation is seen.
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meteorological parameters.

Figure 7 shows the relation between PM2.5 and O3 during the summer season in Delhi.
Delhi experiences a very high temperature, with increased boundary layer height and
higher WS, during the summer seasons. The maximum temperature during summer in
Delhi is 45± 3 ◦C [50]. Thus, the emissions are diluted into a deeper atmospheric boundary
layer. Therefore, a negative relationship between PM2.5 and O3 is observed for T > 30 ◦C,
with R2 = 0.53 (significant at the 95% confidence level, p = 0.040). The ventilation effect
also comes into play and lowers the pollution in Delhi. Hama et al. (2020) [12] observed
that the O3 concentration starts increasing in the summer seasons. Higher temperatures
and solar radiation enhance the photochemical oxidation of precursors, leading to a higher
concentration of O3 during summer [50].

The PM2.5 concentration decreases due to the ventilation effect, but there is an in-
crease in O3 concentration due to atmospheric oxidation. Hence, we observed a negative
relationship between PM2.5 and O3 during summer in Delhi due to lower WS and higher
temperatures. Additionally, the HYSPLIT trajectory (Figure 5) over Delhi shows that during
summertime, the winds come from the southwest, which can transport dust particles from
the desert region in Rajasthan, increasing the particle concentration in the region. The
dominance of natural dust in total PM2.5 loading over the anthropogenic precursors may
reduce SOA yield. As primary particles will be overwhelmingly larger compared to SOAs,
the increase in aerosol content due to SOA formation will not dominate in summer over
Delhi. Figure 1 shows that 99% of particles over Delhi are primary emissions. Additionally,
the prevailing wind speeds are higher, providing less scope for SOA formation by the
accumulation of precursors. PM2.5 and O3 in Delhi are less interdependent, and their
production/loss processes are governed by independent factors. In the case of O3, it is
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more due to photochemistry, while in the case of PM2.5, it is more due to the atmospheric
transport of desert dust as well as local emissions.
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3.2. Dependence of PM2.5 on O3 for Different Meteorological and Chemical Parameters in
Ahmedabad during Winter and Summer

Lal et al. (2000) [51] observed that due to increased levels of precursor gases, O3
concentrations are the greatest in the fall and winter months in Ahmedabad. The massive
transports from land masses and lower boundary layer heights are the most important
causes for the increase in precursor levels during the pre-winter and winter months. Ad-
ditionally, wind pattern change over the Indian landmass takes place in the autumn; it
turns out to be northeasterly during the pre-winter months [51]. The wind flow from the
northeast leads the air towards Ahmedabad, which is rich in air pollutants and increases
the levels of O3 and its precursor gases [52]. In winter seasons, like O3, NOx also attains
higher levels as local emissions are confined in shallower boundaries. Therefore, NOx
levels become sufficiently high during winter to create O3 during the daytime.

Additionally, in cold weather, the pollutants from different sources get trapped in the
boundary layer by frequent temperature inversions. In this manner, the concentration of
PM2.5 is typically higher during cold weather months. NO2 is the only chemical source
of tropospheric O3, and because of higher NOx concentrations in the atmosphere during
the winter months, the production of O3 is favoured. Hence, a positive relationship is
observed between PM2.5 and O3 for higher NOx, with R2 = 0.76, significant at the 95%
confidence level (p = 0.010) (Figure 8). Higher O3 can increase oxidation capacity and
recycling efficiency, leading to higher OH, and SOA formation can be favoured, leading
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to an increase in PM2.5. A positive relationship can be seen for temperatures below 20 oC
(R2 = 0.58, p = 0.0281). This dependence is significant at the 95% confidence level. Rengara-
jan et al. (2011) [53] studied aerosol acidity during wintertime in Ahmedabad and found
that the enhancement of SOA formation during winter in Ahmedabad was favoured due to
the high level of aerosol acidity.
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Figure 9 shows the relation between PM2.5 and O3 in Ahmedabad during the summer
season. The meteorological conditions in Ahmedabad favour the production of O3 from
photochemical reactions [54]. However, in Ahmedabad, being a dust-dominated area, the
oxidative capacity of the atmosphere can be considerably reduced due to HO2 uptake by
dust affecting the SOA formation [55,56]. Sudheer et al. (2015) [57] studied the role of RH in
SOA formation in Ahmedabad and observed a negative correlation between atmospheric
water vapour and secondary organic carbon in PM2.5 and PM10. The authors explained
that the possible reasons could be either the local wind bringing air masses with higher
atmospheric water vapour and low VOCs or the variation of oxidising species such as
OH radicals in the ambient atmosphere. The PM2.5 concentration is also reduced during
summer due to higher PBL, leading to a dilution effect [10]. No significant correlation is
observed between PM2.5 and O3 during the summer season (Figure (9)).
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3.3. Dependence of PM2.5 on Ozone for Different Meteorological and Chemical Parameters in
Bengaluru during Winter and Summer

Figure 10 shows the relation between PM2.5 and O3 for Bengaluru during wintertime.
During the winter, the aerosol concentration increases due to emissions accumulating in
a lower PBL, and due to this, there is a reduction in the incoming solar radiation. Thus,
O3 formation due to photochemical reaction is reduced. Therefore, during the winter, a
negative correlation between PM2.5 and O3 is observed. The R-squared is 0.96 for RH below
60% (p = 0.0001), 0.92 for NOx > 30 ppb (p = 0.00054), 0.57 for T > 30 oC (p = 0.049) and
0.69 for WS < 4 m/s (p = 0.020). The dependence is significant at the 99.9% confidence
level for RH below 60% and for NOx > 30 ppb. Additionally, for T > 30 oC and for
WS < 4 m/s, the dependence is significant at the 95% confidence level. Thus, calm wind,
less humidity, and high NOx conditions result in an inverse relationship between PM2.5 and
O3. These conditions lead to less O3 production and promote O3 destruction (physical as
well as chemical) on one hand, while favouring new particle formation and accumulation
on the other hand. However, for WS > 4 m/s, no significant correlation could be found.
This is due to the ventilation effect; the PM2.5 concentration reduces because of dilution
due to wind conditions.
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Figure 10. Dependence of PM2.5 concentrations on O3 in Bengaluru during the winter season for
different meteorological parameters.

Figure 11 shows the relation between PM2.5 and O3 during summertime in Bengaluru.
The R-squared is 0.78 for RH > 60% (p = 0.0083), 0.79 for WS > 4 m/s (p = 0.007) and
0.59 for NOx < 25 ppb (p = 0.045), and this relation is significant at the 99% confidence
level for RH > 60% and WS > 4 m/s and the 95% confidence level for NOx < 25 ppb.
Thus, a humid, ventilated, low NOx atmosphere is conducive to a positive relationship
between O3 and PM2.5. Ventilated conditions allow NOx levels to be below titration lim-
its, favouring O3 build-up, while increased RH and oxidant levels promote new particle
formation. Higher wind speed supports the optimum moisture levels from oceanic air
masses. O3 production is enhanced during summertime due to longer day hours and
maximum insolation. This positive relation between PM2.5 and O3 in summer can be
strengthened by the increased lifetime of oxidants in the atmosphere that reacts with the
organic gases and forms SOAs [58]. Additionally, the effect of the transport of pollu-
tants can also be seen during summertime in Bengaluru as the R2 increases from 0.44 for
WS < 4 m/s to 0.79 for WS > 4 m/s.
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3.4. Role of Atmospheric Transport Inferred from FLEXPART

The positive correlation between PM2.5 and O3 in summer over Bengaluru creates
an important prospect to analyse the interdependence of SOA formation through the
presence of atmospheric oxidants under various meteorological regimes. Figure 12 shows
the backward trajectory of FLEXPART for the 2019 summer days in Bengaluru. Some
days saw a rise in both PM2.5 and O3 concentrations; the air mass backward trajectory is
displayed for those days (encircled points in Figure 12). The RH was quite low (below the
25th percentile) during the first few weeks of summer 2019, and the air mass trajectory
revealed that winds were predominantly from the Bay of Bengal. In addition, the wind
speed throughout that time period was between 3 and 4 m/s. However, no significant
relationship between O3 and PM2.5 was observed in these air masses. The air masses came
predominantly from the Arabian Sea side in the later part of the summer of 2019. The
RH was above the 75th percentile on the days when both PM2.5 and O3 levels increased
at the same time. Furthermore, when the air masses arrived from the Arabian Sea, the
wind speed was below the 25th percentile (<3 m/s). The slower wind speed and high
RH offered favourable conditions for the production of SOAs in Bengaluru during the
summer days of 2019. FLEXPART images (e.g., on 28 May 2019) clearly show the greater
influence of close-by regions due to slow winds, leading to enhancements in PM2.5. The
rise in PM2.5 concentrations with the increase in O3 is likely due to the formation of SOAs
in moist air masses. Further, during periods of convergence of air masses from the Arabian
Sea and the Bay of Bengal, a sharp enhancement was observed in both O3 and PM2.5
(e.g., 18 April 2019). The PBL height in March, April and May of 2019 was 2511, 2686, and
2125 m, respectively. In March, April and May, the PM2.5 concentrations were 48.0, 52.3,
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and 46.6 µg/m3, respectively. The PBL height rose by 7% in April compared to March,
while the PM2.5 concentration increased by 9%. Normally, particle concentrations fall as
PBL height increases; however, in this case, the PM2.5 concentration increases. Additionally,
Prabhu et al. (2022) [59] observed an overall weak positive correlation between O3 and
PM2.5 on an hourly and daily basis in Bengaluru, where a 1 µg/m3 increase in hourly PM2.5
was associated with an increase of ~ 0.2 ppb of hourly O3, while a 1 µg/m3 increase in daily
PM2.5 was associated with an increase of ~ 0.6 ppb of daily O3. This clearly indicates the
role of secondary chemistry.
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From the above observations, it is understood that Bengaluru and Delhi behave in
completely opposite ways when it comes to secondary chemistry. The formation of sec-
ondary particles is significantly impacted by the local climate and prevailing meteorological
conditions in these places. Additionally, the effect of RH in different emission regimes
on SOA formation is different, and it needs to be studied for a better understanding of
secondary chemistry.

3.5. Predicting the Ozone Concentration Using Recurrent Neural Networks (RNNs)

The above analysis shows that the concentration of O3 for a particular region de-
pends on different meteorological and chemical parameters, such as PM2.5, WS, T, RH
and NOx. Furthermore, the production of SOAs due to oxidation during the summer
months is the link between aerosols and O3. The observed dependencies are not always
linear, as evinced by Figure 4b. Despite PM and O3 posing serious threats to the Earth’s
climate and human health at elevated levels [60], there are no long-term measurements
of atmospheric pollutants in several places of significant urban populace. It is, therefore,
of great importance to conduct studies to fill this gap, as chemistry–climate models have
a tendency to reproduce already scarce measurements but with a considerable bias. The
uncertainties surrounding emission inventories and the parameterizations of physical and
chemical processes also contribute to the biases present in these models. In addition to
these biases, conventional models also require significant computing resources, which can
be a limiting factor in conducting high-resolution simulations [61]. Artificial intelligence
(AI) and machine learning (ML) have emerged as powerful alternative tools for modelling
in various fields, including Earth system science. The use of ML in climate modelling is an
active area of research and has the potential to improve our understanding of the climate



Urban Sci. 2023, 7, 9 19 of 25

system and enable more accurate projections of future climate change. Particularly, due
to very complex chemistry involving NOx and multiple hydrocarbons through a plethora
of photochemical reactions, reliable predictions of surface O3, specifically over the Indian
region, have still eluded the atmospheric modelling community. While the first part of this
study has elucidated the various important meteorological and photochemical dependen-
cies of surface O3, the possibilities of using these observed dependencies for the prediction
of O3 create an interesting prospect that needs to be tested. Therefore, an attempt is made
to predict the value of O3 if other factors are known through artificial intelligence. Here,
Recurrent Neural Network models (RNNs) predict the O3 concentrations for the summer
seasons of 2019 and 2020 using the parameters mentioned above.

3.5.1. Experimental Setting

The experiment runs on an Ubuntu 18.04 Linux system with 16 GB of RAM, an Intel(R)
Core (TM) i7-8700 CPU running at 3.20 GHz, and RX RADEON Graphics Cards (4 GB).
Python 3.7 with Pandas, Numpy, Tensorflow, and Keras is used for data processing and
modelling. For reducing the errors between prediction and observation, we use mean
squared error (MSE) as the loss function and optimiser; 70% of the dataset was utilised
for training, and 30% was used for validation in this study. The model’s performance in
the validation set determines the hyper-parameters. For successful learning, the Early
Stopping method is used, in which a training process can be halted when the validation
loss stops reducing. Multiple approaches are used to assess the statistical significance of
model findings and discover differences between groups to undertake rigorous statistical
analysis. Several statistical indices are used to evaluate the effectiveness of the suggested
model, including the mean absolute error (MAE), the root mean square error (RMSE), and
the coefficient of determination (R2).

3.5.2. Experimental Results

To assess the proposed RNN deep learning model’s efficiency, we contrasted the
experimental results with other machine learning techniques, such as LSTM (Long Short-
Term Memory), KNN (K- Nearest Neighbor), SVR (Support Vector Regression), and GBR
(Gradient Boosted Regression). The LSTM model is an advanced RNN that is capable
of handling long-term dependencies and allowing information to persist [62]. KNN is a
machine learning algorithm that classifies the data based on its similarities and places the
new data in the category that matches the existing categories the closest [63]. SVR is a
regression algorithm that supports both linear and nonlinear regressions, and it is used
for predicting continuous ordered variables by fitting the error inside a certain threshold
instead of minimising the error, which is the case in simple regression [64]. GBR is a
machine learning algorithm in which each predictor corrects its predecessor’s error [65].
Figure 13 shows the prediction of O3 levels using RNN model during summer season over
the three study locations. The comparison of model performance can be found in Table 3
and Figure 14.
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Table 3. The performance comparison of data.

Delhi Ahmedabad Bengaluru

RMSE R2 RMSE R2 RMSE R2

RNN 0.0942 0.7745 0.1591 0.2782 0.1499 0.5097

LSTM 0.1166 0.7215 0.1841 −0.0530 0.1679 0.1340

SVR 0.2180 −0.3281 0.1748 −0.2968 0.2335 −0.3610

KNN 0.2197 −0.3495 0.1850 −0.4537 0.2711 −0.8348

GPR 0.2074 −0.2020 0.1771 −0.0486 0.2266 −0.2813
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The results indicate that an RNN’s primary method may efficiently learn the many
dynamic time scales present in the complex data. RNNs exhibit a high degree of gen-
eralisation for patterns not covered in the training phase. Other techniques attempted
here are sensitive to hidden neurons and have poor generalisation for new inputs due to
the over-training problem. These networks’ topological features enable them to analyse
temporal data. These networks also can reproduce nonlinear input–output mappings,
thanks to intrinsic nonlinear components and sets of trainable weights. Between the out-
put of the hidden layer and the input of the RNN, there is a time-delayed feedback loop.
This loop supplies memory to the network, enhancing its capacity to describe dynamical
systems significantly.

4. Summary and Conclusions

The present study focuses on finding the relationship between PM2.5 and O3 in dif-
ferent Indian cities during the summer and winter seasons. The locations were selected
based on long-term data availability, and the selected stations also represent contrasting
climatic conditions and varied emission, meteorological and air mass regimes. The sources
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of PM2.5 were identified for all the selected stations. To find the relation between PM2.5
and O3, regression analysis was performed during the winter and summer seasons for
different ranges of meteorological variables. It was found that the negative correlation in
Delhi during winter is due to the lower photochemical production of O3 as the incoming
solar radiation is reduced due to higher PM2.5 concentrations. The ventilation effect plays a
major role in the negative correlation between PM2.5 and O3 during the summer in Delhi.
A positive relation between O3 and PM2.5 was observed for higher WS during winter in
Ahmedabad due to transport from polluted areas. No significant correlation was observed
between PM2.5 and O3 during summer in both Delhi and Ahmedabad due to the high
background of primary particles, dominated by dust from the Arabian Peninsula during
summer. Thus, the effect of O3 on SOA formation becomes obscured, and no significant
relationship can be traced between PM2.5 and O3 during summer. Bengaluru shows a
positive correlation during summer, indicating the formation of SOA. Due to higher PM2.5
concentration and lesser insolation, O3 production is reduced in Bengaluru during winter;
hence, a negative relationship is observed between PM2.5 and O3 during winter. However,
there is very clear evidence for SOA formation during enhanced O3 periods, promoted
by humid marine air masses, mainly from travelling at low speed over to Bengaluru in
summer. The simultaneous enhancements in O3 and PM2.5 were more frequent when the
air masses came from the Arabian Sea side compared to the Bay of Bengal side. The de-
pendencies for O3 observed in this study are redirected towards the prediction of this very
important atmospheric chemical parameter through the use of Recurrent Neural Network
models (RNNs) as it poses a global threat to human health, ecosystems and climate. The
results indicated that RNNs are capable of effectively learning complex, dynamic data and
have strong generalisation capabilities and can be potentially useful to fill up gaps in the
prediction of O3. In contrast, other techniques struggle with generalising to new inputs
due to over-training and their sensitivity to hidden neurons. RNNs were able to analyse
temporal data and model nonlinear input–output relationships due to their topological
features and nonlinear components. The addition of a time-delayed feedback loop between
the hidden layer and the input of the RNN enhanced the network’s ability to describe dy-
namic systems. This study is an important step in understanding the relationships between
O3 and PM2.5 with regard to different meteorological conditions and SOA formation. The
dependency analysed in this study will provide important insight for design strategies for
air quality management in urban regions.
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used in this study.
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