Development and Mechanical Evaluation of a Stent Graft for Endovascular Aneurysm Repair Using Finite Element Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. 3D Reconstruction of the Abdominal Aortic Aneurysm Model
2.2. Stent Graft 3D Design Process
2.3. FEA—Stent Graft Radial Expansion
3. Results
3.1. Evaluation of Aorta 3D Model
3.2. Stent Graft 3D Model
3.3. Stent Graft Expansion Assessment
4. Discussion
4.1. Validation and Reliability of FEA for Stent Graft Deployment
4.2. Potential Applications of Additive Manufacturing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haque, K.; Bhargava, P. Abdominal Aortic Aneurysm. Am. Fam. Physician 2022, 106, 165–172. [Google Scholar]
- Keisler, B.; Carter, C. Abdominal aortic aneurysm. Am. Fam. Physician 2015, 91, 538–543. [Google Scholar] [PubMed]
- Brewster, D.C.; Cronenwett, J.L.; Hallett, J.W., Jr.; Johnston, K.; Krupski, W.C.; Matsumura, J.S. Guidelines for the treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. J. Vasc. Surg. 2003, 37, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Bryce, Y.; Rogoff, P.; Romanelli, D.; Reichle, R. Endovascular Repair of Abdominal Aortic Aneurysms: Vascular Anatomy, Device Selection, Procedure, and Procedure-specific Complications. Radiographics 2015, 35, 593–615. [Google Scholar] [CrossRef]
- Kim, H.O.; Yim, N.Y.; Kim, J.K.; Kang, Y.J.; Lee, B.C. Endovascular Aneurysm Repair for Abdominal Aortic Aneurysm: A Comprehensive Review. Korean J. Radiol. 2019, 20, 1247. [Google Scholar] [CrossRef] [PubMed]
- England, A.; Mc Williams, R. Endovascular aortic aneurysm repair (EVAR). Ulst. Med. J. 2013, 82, 3–10. [Google Scholar]
- Demanget, N.; Avril, S.; Badel, P.; Orgéas, L.; Geindreau, C.; Albertini, J.-N.; Favre, J.-P. Finite Element Analysis of the Mechanical Performances of Eight Marketed Aortic Stent-Grafts. J. Endovasc. Ther. 2013, 20, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Vellaparambil, S.; Erne, O.; Lutz, D.; Büchler, P. Computational Comparison of the Mechanical Behavior of Stent Graft Limbs Derived from Auxetic Unit Cells and Commercial Stent Grafts. Cardiovasc. Eng. Technol. 2023, 14, 739–752. [Google Scholar] [CrossRef]
- De Bock, S.; Iannaccone, F.; De Beule, M.; Van Loo, D.; Van Impe, R.; Verhegghe, B. Virtual Evaluation of Stent Graft Deployment: A Validated Modeling and Simulation Study. J. Mech. Behav. Biomed. Mater. 2012, 13, 129–139. [Google Scholar] [CrossRef]
- Mouktadiri, H.; Bou-Saïd, B.; Walter-Le-Berre, H. Aortic Endovascular Repair Modeling Using the Finite Element Method. J. Biomed. Sci. Eng. 2013, 6, 651–659. [Google Scholar] [CrossRef]
- Emendi, M.; Støverud, K.H.; Tangen, G.A.; Ulsaker, H.; Manstad-H, F.; Di Giovanni, P.; Dahl, S.K.; Langø, T.; Prot, V. Prediction of Guidewire-Induced Aortic Deformations during Endovascular Aneurysm Repair: An In Vitro and Computational Study. Front. Physiol. 2023, 14, 1098867. [Google Scholar] [CrossRef]
- Corvo, F.; Avril, S.; Aliseda, A.; Haulon, S.; Chassagne, F. Computational Simulation of Respiration-Induced Deformation of Renal Arteries After EVAR. Ann. Biomed. Eng. 2025. [Google Scholar] [CrossRef]
- Welch-Phillips, A.; Gibbons, D.; Ahern, D.P.; Butler, J.S. What Is Finite Element Analysis? Clin. Spine Surg. 2020, 33, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Erhunmwun, I.; Ikponmwosa, U. Review on finite element method. J. Appl. Sci. Environ. Manag. 2017, 21, 999. [Google Scholar] [CrossRef]
- Kyparissis, K.; Kladovasilakis, N.; Daraki, M.S.; Raptis, A.; Tsantrizos, P.; Moulakakis, K.; Kakisis, J.; Manopoulos, C.; Stavroulakis, G.E. Numerical Evaluation of Abdominal Aortic Aneurysms Utilizing Finite Element Method. Diagnostics 2025, 15, 697. [Google Scholar] [CrossRef] [PubMed]
- Manopoulos, C.; Raptis, A.; Plavoukos, C.; Krini, E.; Perivolioti, V.; Karageorgou, V.D.; Moulakakis, K.; Kakisis, I.; Vaxevanidis, N. Segmentation and Reconstruction of Abdominal Aortic Aneurysm Surface Models Towards the Creation of In Silico Patient Cohorts. Acta Tech. Napoc.-Ser. Appl. Math. Mech. Eng. 2023, 66, 585–591. Available online: https://atna-mam.utcluj.ro/index.php/Acta/article/view/2334 (accessed on 28 August 2025).
- Troisi, N.; Torsello, G. Endurant® stent graft: A new-generation device for complex endovascular aortic aneurysm repair. Interv. Cardiol. 2012, 4, 319–324. [Google Scholar] [CrossRef]
- Toledo, J.P.; Martínez-Castillo, J.; Cardenas, D.; Delgado-Alvarado, E.; Vigueras-Zuñiga, M.O.; Herrera-May, A.L. Simplified Models to Assess the Mechanical Performance Parameters of Stents. Bioengineering 2024, 11, 583. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Guidoin, R.; Du, J.; Wang, L.; Douglas, G.; Zhu, D.; Nutley, M.; Perron, L.; Zhang, Z.; Douville, Y. An in Vitro Twist Fatigue Test of Fabric Stent-Grafts Supported by Z-Stents vs. Ringed Stents. Materials 2016, 9, 113. [Google Scholar] [CrossRef]
- Jayendiran, R.; Nour, B.; Ruimi, A. Fluid-structure interaction (FSI) analysis of stent-graft for aortic endovascular aneurysm repair (EVAR): Material and structural considerations. J. Mech. Behav. Biomed. Mater. 2018, 87, 95–110. [Google Scholar] [CrossRef]
- Jia, H.; Lalande, F.; Rogers, C. Review of Constitutive Modeling of Shape Memory Alloys. ASME Int. Mech. Eng. Congr. Expo. 2023, 15373, 585–591. [Google Scholar] [CrossRef]
- Duerig, T.W.; Pelton, A.R.; Stöckel, D. An overview of nitinol medical applications. Mater. Sci. Eng. A 1999, 273–275, 149–160. [Google Scholar] [CrossRef]
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- ANSYS Inc. Release 2025 R1. Available online: https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/corp/v251/en/ans_mat/elemdatatblpor.html?q=sma (accessed on 3 July 2025).
- Barrett, P.; Fridline, D. User Implemented Nitinol Material Model in ANSYS Shape Memory Alloy Unique Behavior User Materials in ANSYS. 2004. Available online: https://www.researchgate.net/publication/273435350_User_Implemented_Nitinol_Material_Model_in_ANSYS_Shape_Memory_Alloy_Unique_Behavior_User_Materials_in_ANSYS (accessed on 28 August 2025).
- Love, B. (Ed.) Polymeric Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 9; pp. 205–238. [Google Scholar] [CrossRef]
- Faturechi, R.; Hashemi, A.; Abolfathi, N.; Solouk, A. Mechanical guidelines on the properties of human healthy arteries in the design and fabrication of vascular grafts: Experimental tests and quasi-linear viscoelastic model. Acta Bioeng. Biomech. 2019, 21, 13–21. [Google Scholar]
- Xenos, M.; Labropoulos, N.; Rambhia, S.; Alemu, Y.; Einav, S.; Tassiopoulos, A.; Sakalihasan, N.; Bluestein, D. Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method. Ann. Biomed. Eng. 2014, 43, 139–153. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, S.M.; Zhou, W.; Wu, J.G. Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta. J. Vasc. Surg. 2008, 48, 189–195. [Google Scholar] [CrossRef]
- Medtronic Plc. Endurant II/IIs Stent Graft Systems. Available online: https://europe.medtronic.com/xd-en/healthcare-professionals/products/cardiovascular/aortic-stent-grafts/endurantii.html (accessed on 4 July 2025).
- Daneshmand, S.; Farahmand, E.; Abedi, E.; Abdolhosseini, M. Influence of Machining Parameters on Electro Discharge Machining of NiTi Shape Memory Alloys. Int. J. Electrochem. Sci. 2013, 8, 3095–3104. [Google Scholar] [CrossRef]
- Pelton, A. Nitinol Fatigue: A Review of Microstructures and Mechanisms. J. Mater. Eng. Perform. 2011, 20, 613–617. [Google Scholar] [CrossRef]
- Ferraro, M.; Auricchio, F.; Boatti, E.; Scalet, G.; Conti, M.; Morganti, S.; Reali, A. An Efficient Finite Element Framework to Assess Flexibility Performances of SMA Self-Expandable Carotid Artery Stents. J. Funct. Biomater. 2015, 6, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wang, S.; Wang, Y.; Li, X.; Mao, Y.; Wang, X.; Han, Q. Finite element analysis and animal test verification of nitinol alloy iliac vein stent performance. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 6197–6208. [Google Scholar] [CrossRef]
- Roy, D.; Lerouge, S.; Inaekyan, K.; Kauffmann, C.; Mongrain, R.; Soulez, G. Experimental validation of more realistic computer models for stent-graft repair of abdominal aortic aneurysms, including pre-load assessment. Int. J. Numer. Method Biomed. Eng. 2016, 32, e2769. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: New York, NY, USA, 2015; pp. 345–378. [Google Scholar] [CrossRef]
- Zamani, A.M.M.; Etemadi, E.; Bodaghi, M.; Hu, H. Conceptual design and analysis of novel hybrid auxetic stents with superior expansion. Mech. Mater. 2023, 187, 104813. [Google Scholar] [CrossRef]
- Kladovasilakis, N.; Kyriakidis, I.F.; Tzimtzimis, E.K.; Pechlivani, E.M.; Tsongas, K.; Tzetzis, D. Development of 4D-Printed Arterial Stents Utilizing Bioinspired Architected Auxetic Materials. Biomimetics 2025, 10, 78. [Google Scholar] [CrossRef]
Gender | Age | Aneurysm Diameter | Proximal Neck Diameter | Left Iliac Diameter | Right Iliac Diameter |
---|---|---|---|---|---|
Male | 75 | 50 mm | 15 mm | 10 mm | 7.5 mm |
Property | Value | Unit |
---|---|---|
Young Modulus | 60,000 | MPa |
Poisson ratio | 0.36 | - |
σSAS | 520 | MPa |
σFAS | 600 | MPa |
σSSA | 300 | MPa |
σFSA | 200 | MPa |
Epsilon (ε) | 0.07 | mm mm−1 |
Alpha (α) | 0 | - |
Es | 60,000 | MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantakopoulos, A.; Kladovasilakis, N.; Stavroulakis, G.E. Development and Mechanical Evaluation of a Stent Graft for Endovascular Aneurysm Repair Using Finite Element Modeling. Designs 2025, 9, 103. https://doi.org/10.3390/designs9050103
Konstantakopoulos A, Kladovasilakis N, Stavroulakis GE. Development and Mechanical Evaluation of a Stent Graft for Endovascular Aneurysm Repair Using Finite Element Modeling. Designs. 2025; 9(5):103. https://doi.org/10.3390/designs9050103
Chicago/Turabian StyleKonstantakopoulos, Athanasios, Nikolaos Kladovasilakis, and Georgios E. Stavroulakis. 2025. "Development and Mechanical Evaluation of a Stent Graft for Endovascular Aneurysm Repair Using Finite Element Modeling" Designs 9, no. 5: 103. https://doi.org/10.3390/designs9050103
APA StyleKonstantakopoulos, A., Kladovasilakis, N., & Stavroulakis, G. E. (2025). Development and Mechanical Evaluation of a Stent Graft for Endovascular Aneurysm Repair Using Finite Element Modeling. Designs, 9(5), 103. https://doi.org/10.3390/designs9050103