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Abstract: Past attempts to define an anaerobic threshold (AnT) have relied upon gas exchange
kinetics, lactate testing and field-based evaluations. DFA a1, an index of heart rate (HR) variability
(HRV) fractal correlation properties, has been shown to decrease with exercise intensity. The intent
of this study is to investigate whether the AnT derived from gas exchange is associated with the
transition from a correlated to uncorrelated random HRV pattern signified by a DFA a1 value of 0.5.
HRV and gas exchange data were obtained from 15 participants during an incremental treadmill
run. Comparison of the HR reached at the second ventilatory threshold (VT2) was made to the HR
reached at a DFA a1 value of 0.5 (HRVT2). Based on Bland–Altman analysis and linear regression,
there was strong agreement between VT2 and HRVT2 measured by HR (r = 0.78, p < 0.001). Mean
VT2 was reached at a HR of 174 (±12) bpm compared to mean HRVT2 at a HR of 171 (±16) bpm.
In summary, the HR associated with a DFA a1 value of 0.5 on an incremental treadmill ramp was
closely related to that of the HR at the VT2 derived from gas exchange analysis. A distinct numerical
value of DFA a1 representing an uncorrelated, random interbeat pattern appears to be associated
with the VT2 and shows potential as a noninvasive marker for training intensity distribution and
performance status.

Keywords: autonomic nervous system; HRV; intensity distribution; endurance training

1. Introduction

The identification of physiologic indicators representing breakpoints involved in
endurance exercise intensity is of vital importance for both performance monitoring and
exercise intensity distribution [1,2]. In the classic three-zone model, the intensity boundaries
are defined by either certain gas exchange parameters or blood lactate determination [3,4].
The lowest intensity zone is felt to be delimited by the first ventilatory (VT1) or lactate
threshold (LT1) and is described as representing an aerobic threshold (AeT). The highest
intensity zone, encompassing work rates above the second ventilatory (VT2) or lactate
thresholds (LT2), is described as an anaerobic threshold (AnT) and is felt to be unsustainable
for long durations [5]. Although the VT2 appears to be characterized as the first systematic
increase in the ventilatory equivalent of CO2 or the first decrease in the expiratory fraction
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of CO2 during heavy exercise, the LT2 has had several alternate definitions [4,6]. These
include the exercise intensity associated with reaching a fixed lactate of 4 mmol/l, various
calculations and exponential computations models and a maximal lactate steady state
(MLSS) [4,6]. To complicate matters further, many of these concepts can yield different
results depending on incremental ramp progression, stage protocol or even expert visual
interpretation [2,6,7]. In addition, both gas exchange and lactate testing require specialized
equipment, operators, can be invasive and are costly. An initially promising approach
to AnT measurement, the identification of deoxyhemoglobin breakpoints of locomotor
muscle [8,9], has unfortunately been hindered by the abandonment of commercial products
due to poor financial outcomes. In an effort to identify the AnT noninvasively, field-based
tests have been devised with the functional threshold power (FTP) evaluation being a
popular example [10]. However, results have been shown to vary depending on warmup
protocol and test procedures [11–13]. In addition, the FTP is dependent on motivation,
individual pacing strategy [14] and by its definition, physically exhausting. Another
maximal effort test, critical power (CP) has also received attention as a means of AnT
delineation [15]. However, discrepancy between the CP, FTP, VT2 and MLSS [5,14,16] has
been debated and concordance is unclear. Therefore, agreement of performance based tests
of the AnT can be variable, and each has a potential detrimental impact on an athlete’s
training intensity distribution strategy. Given these considerations, a search for alternative,
objective, noninvasive methods for determining the AnT seems reasonable.

Previous analysis of the dynamic change in heart rate (HR) variability (HRV) during
exercise has also shown potential for demarcation of threshold boundaries, particularly the
AeT [17]. The mechanism affecting HRV during exercise is felt to be related to alteration
in autonomic balance to the cardiac sinoatrial pacemaker center. As intensity rises, there
is a withdrawal of parasympathetic influence and augmentation of sympathetic stimula-
tion [18]. Conventional HRV indexes such as standard deviation of normal-to-normal RR
intervals (SDNN), high-frequency (HF) power and standard deviation 1 from Poincaré
plot analysis (SD1) can be used to identify the AeT during incremental exercise ramps
by observing at what exercise intensity a nadir HRV value occurs [19–21]. Since these
particular indexes reach their lowest value at the AeT, they are not felt to be helpful for
AnT delineation given the loss of any further dynamic range. In contrast, a nonlinear
index of fractal correlation properties called alpha1 of Detrended Fluctuation Analysis
(DFA a1) possesses a much wider dynamic range [22,23]. This index is based on both the
fractal nature and “correlation pattern” of a series of cardiac beat to beat intervals over
time [17]. Fractal behavior in relation to HRV can be described as degrees of self-similarity
between RR interval fluctuations over different time scales and allows a distinction of the
fractal character of the physiological signal between fractional Brownian motion (fBm:
DFA a1 > 1.0) and fractional Gaussian noise (fGn: DFA a1 < 1.0) [24,25]. Analogously,
this conception allows the determination of different alterations of complexity in HR time
series, either toward rigid order with increasing correlation properties or toward disorder
with decreasing correlation properties [26]. At low exercise intensity, DFA a1 values are
usually in a well-correlated fractal range near or above 1.0. As intensity rises, DFA a1
passes 0.75 at the AeT [27] and continues to drop through the 0.5 range associated with
uncorrelated random behavior of interbeat pattern, finally to drop below 0.5 representing
an anticorrelated range at the very highest work rates, which could be seen as a protective
feedback and stabilizing mechanism where interactions and/or coordination of subsystems
fail before the whole system fails [23,26,28]. Advantages of DFA a1 for intensity monitoring
also revolve around its dimensionless nature, which makes calibration to other internal
load parameters such as gas exchange or lactate unnecessary. In other words, a HR or VO2
associated with a DFA a1 value of 0.75 corresponds to an intensity near the AeT/VT1 in
a wide spectrum of individuals and was referred to as the HRVT (heart rate variability
threshold) [27].

Since DFA a1 still possesses reasonable dynamic range at intensities above the AeT,
the question arises whether another numerical threshold exists corresponding to the AnT.
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From a mathematical standpoint, a DFA a1 value of 0.5 is of interest as a breakpoint for
a high-intensity physiologic process. A value of 0.5 denotes a loss of correlation and
fractal patterns in the beat to beat cardiac time series. To better understand the concept of
“correlation properties”, a comparison to a random walk can be used [25,28,29]. During a
hypothetical random walk, at each advancing step, the walker can choose to go either left
or right. If the choice the walker makes is not random but based on the pattern (series of
left or right choices) of what went beforehand, the pattern is described as being correlated
(DFA a1 about 1.0), since the future pattern is based on the past sequence. However, if
each new step is taken with equal, random chances of left or right, an “uncorrelated”
pattern exists (DFA a1 about 0.5). Additionally, from an observational perspective, DFA
a1 values well below 0.5 occur at the termination of maximal exercise ramps, leading to
the suspicion that the 0.5 value may have significance as a high-intensity boundary near
the AnT [23]. Therefore, the intent of this study is to investigate whether reaching a DFA
a1 of 0.5 during an incremental exercise ramp is associated with the VT2, a ventilatory
marker of the AnT. Since both artifact correction and recording device bias could be an
issue with DFA a1 precision [30], high quality ECG tracings will be utilized for HRV
interpretation. In addition, given practical considerations for training prescription in sports
and rehabilitation, only HR measurements will be compared given the excellent agreement
between the HR and VO2 relationship during exercise [31].

2. Methods
2.1. Participants

Seventeen male recreational runners aged 19 to 52, without previous medical history,
current medications or physical difficulties were tested. Participants were informed of
the possible testing risks and institutionally approved consent was given. Approval for
the research was granted by the University of Derby, UK (LSREC_1415_02) and followed
the principles of the Declaration of Helsinki. Runners did not consume caffeine, alcohol
or any stimulant for the 24 h before testing. There was no tobacco usage. Background
data for each participant including, age, body weight, and training volume in hours per
week are presented in Table 1 and were also published in an earlier work [27]. Testing was
performed in the afternoon and at least 3 h after food (with no set diet). No intense activity
was performed the day prior to the test. Two participants with excessive cardiac ectopy
(frequent atrial premature beats and atrial trigeminy) during testing were excluded from
HRV analysis.

Table 1. Age, training volume (TV), bodyweight (BW), maximal oxygen uptake (VO2MAX), Oxynet-
derived HR at VT2 and HR at HRVT2 for all participants.

Nr. Age [yrs] TV
[hrs/wk] BW [kg] VO2MAX

[mL/kg/min]
VT2

[bpm]
HRVT2
[bpm]

1 19 3–6 82 58 179 180
2 19 3–6 82 57 183 183
3 20 3–6 82 47 194 187
4 22 1–3 73 45 170 188
5 23 >6 77 71 148 160
6 24 3–6 69 64 166 144
7 24 >6 65 54 177 173
8 24 3–6 76 47 182 176
9 25 >6 78 54 169 170

10 26 >6 69 72 192 194
11 30 1–3 92 46 160 143
12 30 >6 73 74 172 161
13 32 1–3 65 49 186 182
14 36 >6 75 57 180 171
15 50 3–6 94 41 159 150

Mean (SD) 27 (±8) - 77 (±8) 56 (±10) 174 (±12) 171 (±16)
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2.2. Exercise Protocol

A motorized treadmill (Woodway, Birmingham, UK) was used for an incremental
maximal cardiopulmonary exercise test for all runners. The treadmill was set for the
Bruce protocol with increases in speed and inclination from 2.7 km/h at ten percent grade,
increasing by 1.3 km/h and two percent grade every 3 min until exhaustion. A fan was
used for cooling. Room temperature was approximately 24 ◦C for all tests.

Gas Exchange Testing and Calculation of the AnTGas exchange kinetics were recorded
continuously using a breath to breath metabolic cart (Metalyzer; Cortex Biophysik GmbH,
Leipzig, Germany), with a Polar H7 (Polar Electro Oy, Kempele, Finland) wirelessly paired
to the Metalyzer cart for the purpose of HR recording concurrent with gas exchange
data. Heart rate corresponded to each reported breath to breath data point. Assessment
of the VO2 over time relationship was performed to determine any significant plateau
of the VO2 curve for estimation of VO2 linearity. VT2 associated HR was determined
by Oxynet [32,33], a convolutional neural network previously shown to have excellent
agreement (average mean absolute error = 6.1%, r = 0.99) with manually derived results
especially in individuals with medium to high aerobic fitness levels. Raw gas exchange data
were uploaded to the Oxynet web app (http://oxynetresearch.promfacility.eu (accessed on
20 February 2021)) followed by a download of results.

2.3. RR Measurements and Calculation of DFA a1 Derived Threshold

Each participant’s ECG/RR times series was recorded with a 3-lead ECG (MP36;
Biopac Systems Ltd., Essen, Germany) with a sampling rate of 1000 Hz. Electrodes were
placed in the CM5 distribution after appropriate skin cleaning. MP36 test data were saved
as acq files. ECG data for each participant were imported into Kubios HRV Software
(Version 3.4.3, Biosignal Analysis and Medical Imaging Group, Department of Physics,
University of Kuopio, Kuopio, Finland). Kubios preprocessing settings were set to the
default values including the RR detrending method which was kept at “Smoothn priors”
(Lambda = 500). For DFA a1 estimation, the root mean square fluctuation of the integrated
and detrended data is measured in observation windows of different sizes. The data
are then plotted against the size of the window on a log–log scale [34]. The scaling
exponent represents the slope of the line, which relates (log) fluctuation to (log) window
size. DFA a1 window width was set to 4 ≤ n ≤ 16 beats. Visual inspection of the entire
test recording was done to determine sample quality, noise, arrhythmia, and missing beat
artifact. As mentioned above, two participants with excessive atrial ectopy were excluded
from analysis. The RR series of the included participants was then corrected by the Kubios
“automatic method” [35] and relevant HRV results exported as text files for further analysis.
Percent artifact occurring during threshold interpretation segments was below 5%.

The following procedure was used to indicate at what level of running intensity HR
the DFA a1 would cross a value of 0.5: DFA a1 was calculated from the incremental exercise
test RR series using 2 min time windows with a recalculation every 5 s throughout the
test. Two-minute time windowing was chosen based on the minimal required RR interval
calculations by Chen et al. [36]. Plotting of DFA a1 vs. HR was then performed. Inspection
of the DFA a1 relationship with HR generally showed a reverse sigmoidal curve, with a
stable area above 1.0 at low work rates, a rapid, near linear drop reaching below 0.5 at
higher intensity, then flattening without major change. Linear regression was done on the
subset of data consisting of the rapid, near linear decline from values close to 1.0 (correlated)
to approximately 0.5 (uncorrelated) or below if the values continued in a straight fashion.
The HR where DFA a1 reached 0.5 was calculated based on the regression equation from
that linear section (Figure 1).

http://oxynetresearch.promfacility.eu
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Figure 1. Individual examples of calculation methods for both HRVT and HRVT2. A line is drawn through the straight
section of the plot of DFA a1 vs. HR. HRVT is at the intersection of DFA a1 = 0.75 and HRVT2 is at the intersection of DFA
a1 = 0.5. (A) Participant with a VO2MAX of 72 mL/kg/min, VT2 at 192 bpm and HRVT2 at 194 bpm. (B) Participant with a
VO2MAX of 58 mL/kg/min, VT2 at 179 bpm and HRVT2 at 180 bpm. Points with X are used for linear regression.
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3. Statistics

Statistical analyses were performed for the variables HR at VT2 derived from gas ex-
change testing and HR at DFA a1 of 0.5 (HRVT2). Standard statistical methods were used
for the calculation of means and standard deviations (SD). Normal distribution of data was
checked by Shapiro–Wilk’s test. The agreement against the VT2 HR was assessed using linear
regression, Pearson’s r correlation coefficient, coefficient of determination (R2), standard error
of estimate (SEE) and Bland–Altman plots with limits of agreement [37]. The size of Pearson’s
r correlations were evaluated as follows: 0.3 ≤ r < 0.5 low; 0.6 ≤ r < 0.8 moderate and r ≥ 0.8
high [38]. The paired t-test was used for comparison of VT2 HR vs. HRVT2 HR. For all tests,
the statistical significance was accepted as p ≤ 0.05. Analysis was performed using Microsoft
Excel 365 with Real Statistics Resource Pack software (Release 6.8) and Analyse-it software
(Version 5.66).

4. Results

VO2MAX varied considerably among participants, ranging between 41 and 74 mL/kg/min.
VT1 was reached at HRs between 108 and 183 bpm [27]. Oxynet-derived HR at VT2 showed a
mean value of 174 (±12) bpm compared with a mean HRVT2 HR of 171 (±16) bpm (p = 0.18)
for all participants (Table 1). Regression analysis for VT2 HR vs. HRVT2 HR showed signifi-
cant correlation (p < 0.001) with Pearson’s r = 0.78, R2 = 0.60 and SEE = 10.5 bpm (Figure 2).
Bland–Altman evaluation of VT2 HR vs. HRVT2 HR is shown in Figure 3 with a mean bias of
−4 (±10) bpm and LOA from −24 to +16 bpm.

Figure 2. Regression plot analysis VT2 HR vs. HRVT2 HR for all participants. Bisection line in light gray. SEE: standard
error of estimate; r: Pearson’s correlation coefficient.
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Figure 3. Bland–Altman analysis VT2 HR vs. HRVT2 HR for all participants. Center line represents the mean difference
between each paired value, the top and bottom lines are 1.96 standard deviations from the mean difference.

5. Discussion

The purpose of this study was to examine whether DFA a1, a HRV index of fractal
correlation properties would exhibit an uncorrelated pattern at the AnT derived by gas
exchange data, a boundary separating sustainable from unsustainable exercise intensity [5].
In a previous investigation, it was shown that a DFA a1 value of 0.75, which represents
a midpoint between well-correlated and uncorrelated patterns, was associated with the
AeT as measured by VT1 [27]. In the present report, the HR reached at a DFA a1 of 0.5 was
closely related to the HR reached at the AnT as measured by the VT2 during a treadmill
running ramp. Multiple prior studies have shown similar behavior during incremental
exercise with DFA a1, declining past the 0.75 mark with mild to moderate intensity then
surpassing 0.5 during the highest work rates attained [23]. Prior to this report no attempt
has been made to determine if the AnT is associated with a particular DFA a1 value using
a method validation comparison. Strengths of this study include RR recording done by
a research-grade ECG device containing few artifacts and the inclusion of recreational
runners with a wide age range and performance spectrum. In addition, VT2 was computed
by a validated neural network system utilizing the raw gas exchange data, eliminating any
observer error or bias [32,33].

The results obtained here show good agreement between the HR derived from the
HRVT2 and the HR associated with VT2 obtained through Oxynet analysis. This was
supported by comparison of mean HR parameters by paired t testing, Pearson’s correlation
coefficient and Bland–Altman analysis. Although participants had variable differences
in HR concordance, the results are clinically meaningful in the context of the reported
agreement of other surrogate markers. Both the mean difference of −4 bpm and the LOA
seen here are of similar magnitudes to that of a comparison of the MLSS and FTP [12] as
well as the muscle oxygen desaturation breakpoint association to the MLSS [8].

The question as to why a DFA a1 of 0.5 could be the area of interest for an anaerobic
breakpoint should be discussed. Prior studies have shown DFA a1 to drop past the uncor-
related value of 0.5 to an anticorrelated range at near maximal attained work rates [23].
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Recently, a study by Naranjo-Orellana et al. [39] showed that during constant-intensity
exercise performed over a 5 min span at the VT2, a DFA a1 value of 0.48 (±0.11) was
seen, very similar to our results. Therefore, from an observational perspective, it is not
unreasonable to look for the AnT to occur near the 0.5 value. Perhaps most importantly,
a DFA a1 of 0.5 specifically represents a transition from an uncorrelated random to an
anticorrelated pattern in HR time series [28]. Viewpoints regarding the significance of cor-
relation properties can revolve around practical aspects (empirically validated breakpoints
such as 0.75) but can also be considered from a network physiology standpoint [26]. The
later concept entails the notion that fractal correlation properties of HRV depend upon
“organismic demand”, a model of multiple neuromuscular, biochemical, peripheral and
central nervous system inputs [17]. In this framework, hypothetical acute physiologic
responses and cardiocirculatory advantages may lie behind the changes seen in correlation
patterns due to increasing exercise intensity and/or overall organismic demands. Depend-
ing on the internal load situation, the correlation properties of HR time series change to
best suit the current and perhaps even the anticipated requirements as an optimization
and/or stabilization strategy [28,40,41]. Therefore, the anticorrelated behavior during very
high-intensity exercise could be interpreted in the sense of progressive segregation and
centralization or “mechanization” of a complex (open) biological system as proposed by
von Bertalanffy [42,43] and could indicate a maximum energy flux at the cost of cardio-
vascular self-regulation, which may reduce the adaptability to further perturbations and
ultimately endangers the integrity of the overall system [44–46]. Thus, every fluctuation is
corrected immediately in the opposite direction by a dominant attractor [29], e.g., perfor-
mance attracter, as stated by Gronwald et al. [17], which results in an anticorrelated signal
pattern [28]. This organismic regulatory withdrawal may also be interpreted as a loss of
systemic integrity in the sense of a hazardous situation for homeostasis [47], which may
only be tolerated for a short period of time.

6. Limitations and Future Directions

A potential problem with using HRV-related indexes to determine a physiologic
threshold boundary involves the quality and precision of the RR time series [30,48]. Since
the rate of missed beat artifact rises with increasing exercise intensity [49], excess amounts of
artifact correction can affect DFA a1 resulting in bias and erroneous estimation of threshold
values. Common methods of artifact correction may produce a positive proportional bias
in DFA a1, predominantly affecting values 0.5 and below, especially at artifact rates above
5% [30]. No participant in the cohort examined here exceeded that limit. In addition, it
is also possible that recording device bias may occur leading to results that differ from
those of high resolution ECG monitoring. In view of these issues, further validation of this
approach is recommended with commonly used consumer monitoring devices and typical
artifact levels. However, if these issues can be resolved, analysis of DFA a1 over the course
of an exercise ramp may provide both aerobic and anerobic threshold boundaries for the
purpose of endurance sport training intensity distribution. Since all participants in this
study were male, evaluation in females is important for widespread future usage. It is also
unclear what the effects of athlete status (elite, recreational, inactive), ramp protocol (short
vs. long, slope), exercise type (cycling vs. running vs. XC skiing), food intake, caffeine
and recent high-intensity exercise would have on the HRVT2. Future use of this approach
in the study of exercise training interventions may also be of interest. Though no data
currently exist, following DFA a1 over the course of an intervention protocol could be of
interest as a surrogate marker for AnT-related performance improvement. An intriguing
thought centers on the methods used to obtain each AnT-related metric in this study, one
from a convolutional neural network of gas exchange parameters and the other from a
relatively simple mathematical relationship of HRV. Although at this time Oxynet relies
purely on respiratory parameters, it could be of interest to determine whether adding DFA
a1 HRVT-related measurements would improve final accuracy. Lastly, as a DFA a1 reaching



J. Funct. Morphol. Kinesiol. 2021, 6, 38 9 of 11

0.5 is sufficient for boundary determination, exercise efforts to exhaustion such as the FTP
or CP can be avoided, both for health-related and exercise intensity distribution purposes.

7. Conclusions

Nonlinear heart rate variability analysis during an incremental treadmill run demon-
strated that the heart rate reached at the second ventilatory threshold was closely associated
with that of the heart rate associated with a DFA a1 of 0.5 in a population of recreational
athletes. This DFA a1 value represents a distinct mathematical breakpoint in the cardiac
interbeat series, from a correlated pattern seen with light to moderate exercise intensity
to an uncorrelated, random pattern of heart rate time series occurring at the point of
an unsustainable work rate. Although promising, additional study and verification in
females, other exercise modalities, recording devices and disease states are recommended.
Since this method may not require testing to exhaustion, application to athletes avoiding
maximal stress during a given training cycle and to those unable/unsuitable to undergo
maximal intensity exercise may be possible. In combination with evidence of a DFA a1 of
0.75 representing the aerobic threshold boundary, a comprehensive solution for training
boundary demarcation using only heart rate variability may soon be achieved.
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