A Case Study on the Development of a High-Intensity Interval Training Set for a National-Level Middle-Distance Swimmer: The Conception of the Faster-than-Race Pace Test Set
Abstract
1. Introduction
2. Methodology
2.1. Participant
2.2. Study Design
2.2.1. Periodization
2.2.2. Training Intensity Distribution (TID)
2.2.3. Faster-than-Race Pace Test Set (FRPtS)
2.3. Statistics
3. Results
3.1. Sessions
3.2. Total Training Volume
3.3. TID
3.4. FRPtS Volume
3.5. FRPtS Progression
3.6. Performance Progression
4. Discussion
4.1. The Conceptualization of FRPtS
4.2. FRPtS Volume, Intensity, and Interval
4.3. Can We Consider Its Effectiveness as a Test Set? Crucial Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gastin, P.B. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001, 31, 725–741. [Google Scholar] [CrossRef]
- Duffield, R.; Dawson, B.; Goodman, C. Energy system contribution to 100-m and 200-m track running events. J. Sci. Med. Sport 2004, 7, 302–313. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Papadimitriou, N.; Gourgoulis, V.; Barkoukis, V.; Loupos, D. Assessment of young swimmers’ technique with Tec Pa Tool. Cent. Eur. J. Sport Sci. Med. 2021, 34, 39–51. [Google Scholar] [CrossRef]
- Strzala, M.; Stanula, A.; Głab, G.; Glodzik, J.; Ostrowski, A.; Kaca, M.; Nosiadek, L. Shaping physiological indices, swimming technique, and their influence on 200 m breaststroke race in young swimmers. J. Sports Sci. Med. 2015, 14, 110–117. [Google Scholar] [PubMed]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef]
- Olstad, B.H.; Bjørlykke, V.; Olstad, D.S. Maximal Heart Rate for Swimmers. Sports 2019, 7, 235. [Google Scholar] [CrossRef]
- Nagle, E.F.; Nagai, T.; Beethe, A.Z.; Lovalekar, M.T.; Zera, J.N.; Connaboy, C.; Abt, J.P.; Beals, K.; Nindl, B.C.; Robertson, R.J.; et al. Reliability and Validity of a Pool-Based Maximal Oxygen Uptake Test to Examine High-Intensity Short-Duration Freestyle Swimming Performance. J. Strength Cond. Res. 2019, 33, 1208–1215. [Google Scholar] [CrossRef]
- Kabasakalis, A.; Nikolaidis, S.; Tsalis, G.; Mougios, V. Response of Blood Biomarkers to Sprint Interval Swimming. Int. J. Sports Physiol. Perform. 2020, 15, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Kabasakalis, A.; Papadopoulos, A.; Mavridis, G.; Tsalis, G. Comparison of Ultra-Short Race Pace and High-Intensity Interval Training in Age Group Competitive Swimmers. Sports 2023, 11, 186. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Savvoulidis, S. The effects of two different HIIT resting protocols on children’s swimming efficiency and performance. Cent. Eur. J. Sports Sci. Med. 2020, 30, 15–24. [Google Scholar] [CrossRef]
- Sperlich, B.; Zinner, C.; Heilemann, I.; Kjendlie, P.-L.; Holmberg, H.-C.; Mester, J. High-Intensity Interval Training Improves VO2peak, Maximal Lactate Accumulation, Time Trial and Competition Performance in 9–11-Year-Old Swimmers. Eur. J. Appl. Physiol. 2010, 110, 1029–1036. [Google Scholar] [CrossRef]
- Kilen, A.; Larsson, T.H.; Jørgensen, M.; Johansen, L.; Jørgensen, S.; Nordsborg, N.B. Effects of 12 Weeks High-Intensity & Reduced-Volume Training in Elite Athletes. PLoS ONE 2014, 9, e95025. [Google Scholar] [CrossRef]
- Mohr, M.; Nordsborg, N.B.; Lindenskov, A.; Steinholm, H.; Nielsen, H.P.; Mortensen, J.; Weihe, P.; Krustrup, P. High-Intensity Intermittent Swimming Improves Cardiovascular Health Status for Women with Mild Hypertension. BioMed Res. Int. 2014, 2014, 728289. [Google Scholar] [CrossRef]
- Elbe, A.M.; Rasmussen, C.P.; Nielsen, G.; Nordsborg, N.B. High Intensity and Reduced Volume Training Attenuates Stress and Recovery Levels in Elite Swimmers. Eur. J. Sport Sci. 2016, 16, 344–349. [Google Scholar] [CrossRef]
- Karabıyık, H.; Gülü, M.; Yapici, H.; Iscan, F.; Yagin, F.H.; Durmuş, T.; Gürkan, O.; Güler, M.; Ayan, S.; Alwhaibi, R. Effects of 12 Weeks of High-, Moderate-, and Low-Volume Training on Performance Parameters in Adolescent Swimmers. Appl. Sci. 2023, 13, 11366. [Google Scholar] [CrossRef]
- Alansare, A.; Alford, K.; Lee, S.; Church, T.; Jung, H.C. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Heart Rate Variability in Physically Inactive Adults. Int. J. Environ. Res. Public Health 2018, 15, 1508. [Google Scholar] [CrossRef]
- Kabasakalis, A.; Nikolaidis, S.; Tsalis, G.; Christoulas, K.; Mougios, V. Effects of Sprint Interval Exercise Dose and Sex on Circulating Irisin and Redox Status Markers in Adolescent Swimmers. J. Sports Sci. 2019, 37, 827–832. [Google Scholar] [CrossRef]
- Rushall, B.S. Understanding a USRPT Set. Swim. Sci. Bull. 2013, 45, 1–4. Available online: https://coachsci.sdsu.edu/swim/bullets/45e%20UNDERSTANDING.pdf (accessed on 11 June 2023).
- Cuenca-Fernández, F.; Boullosa, D.; Ruiz-Navarro, J.J.; Gay, A.; Morales-Ortíz, E.; López-Contreras, G.; Arellano, R. Lower Fatigue and Faster Recovery of Ultra-Short Race Pace Swimming Training Sessions. Res. Sports Med. 2021, 31, 21–34. [Google Scholar] [CrossRef]
- Williamson, D.; McCarthy, E.; Ditroilo, M. Acute Physiological Responses to Ultra Short Race-Pace Training in Competitive Swimmers. J. Hum. Kinet. 2020, 75, 95–102. [Google Scholar] [CrossRef]
- Papadimitriou, K. Intensity and Pace Calculation of Ultra Short Race Pace Training (USRPT) in Swimming—Take-Home Messages and Statements for Swimming Coaches. Sports 2024, 12, 227. [Google Scholar] [CrossRef]
- Papadimitriou, K. Ultra Short Race Pace Training (USRPT) in Swimming. Do the Volume and Interval Matter? A Scoping Review. Physiologia 2024, 4, 506–516. [Google Scholar] [CrossRef]
- Rodríguez, F.; Mader, A. Energy Metabolism During 400 m and 100 m Crawl Swimming: Computer Simulation Based on Free Swimming Measurement. In Biomechanics and Medicine in Swimming IX; Chatard, J.C., Ed.; Jean Monnet University: Saint-Etienne, France, 2003; pp. 373–378. [Google Scholar]
- Maglischo, E.W. Swimming Fastest; Human Kinetics: Champaign, IL, USA, 2003. [Google Scholar]
- Fernandes, R.J.; Keskinen, K.L.; Colaço, P.; Querido, A.J.; Machado, L.J.; Morais, P.A.; Novais, D.Q.; Marinho, D.A.; Boas, J.V. Time Limit at VO2max Velocity in Elite Crawl Swimmers. Int. J. Sports Med. 2008, 29, 145–150. [Google Scholar] [CrossRef]
- Barbosa, A.C.; Valadão, P.F.; Wilke, C.F.; Martins, F.D.S.; Silva, D.C.P.; Volkers, S.A.; Lima, C.O.V.; Ribeiro, J.R.C.; Bittencourt, N.F.; Barroso, R. The Road to 21 Sonds: A Case Report of a 2016 Olympic Swimming Sprinter. Int. J. Sports Sci. Coach. 2019, 14, 393–405. [Google Scholar] [CrossRef]
- Papadimitriou, K. The Influence of Aerobic Type Exercise on Active Crohn’s Disease Patients: The Incidence of an Elite Athlete. Healthcare 2022, 10, 713. [Google Scholar] [CrossRef]
- Ostojic, S.M.; Markovic, G.; Calleja-Gonzalez, J.; Jakovljevic, D.G.; Vucetic, V.; Stojanovic, M.D. Ultra Short-Term Heart Rate Recovery After Maximal Exercise in Continuous Versus Intermittent Endurance Athletes. Eur. J. Appl. Physiol. 2010, 108, 1055–1059. [Google Scholar] [CrossRef]
- Manfredi, O. Urbanchek’s Training Color System: The Palette of Swimming. SwimWarrior. 2023. Available online: https://www.swimwarrior.com/post/urbanchek-s-training-color-system-the-palette-of-swimming (accessed on 25 June 2025).
- Psycharakis, S.G. A Longitudinal Analysis on the Validity and Reliability of Ratings of Perceived Exertion for Elite Swimmers. J. Strength Cond. Res. 2011, 25, 420–426. [Google Scholar] [CrossRef]
- Arsoniadis, G.G.; Toubekis, A.G. Progression of Sprint Interval Training Set Performance and Physiological Responses during a Six-Week Training Period. Appl. Sci. 2024, 14, 2097. [Google Scholar] [CrossRef]
- Ruiz-Navarro, J.J.; Santos, C.C.; Born, D.P.; López-Belmonte, Ó.; Cuenca-Fernández, F.; Sanders, R.H.; Arellano, R. Factors Relating to Sprint Swimming Performance: A Systematic Review. Sports Med. 2025, 55, 899–922. [Google Scholar] [CrossRef]
- Wiesinger, H.P.; Stöggl, T.L.; Haller, N.; Blumkaitis, J.; Strepp, T.; Kilzer, F.; Schmuttermair, A.; Hopkins, W.G. Meta-Analyses of the Effects of High-Intensity Interval Training in Elite Athletes—Part I: Mean Effects on Various Performance Measures. Front. Physiol. 2025, 15, 1486526. [Google Scholar] [CrossRef]
Event (m) | Proposed Sets and Intervals During a USRPT (s) |
---|---|
200 | 20 × 25 m, @ 1:1 or 10 × 50 m, @ 1:1 |
400 | 60 × 25 m, @ 10 s or 30 × 50 m, @ 20 s or 15 × 100 m, @ 40–60 s |
800 | 60 × 50 m, @ 5–10 s or 30 × 100 m, @ 20 s or 15 × 200 m, @ 40 s |
1500 | 90 × 50 m, @ 5–10 s or 45 × 100 m, @ 10–15 s or 20 × 200 m, @ 20–30 s or 10 × 400 m, @ 40–50 s |
10,000 | 100 × 100 m, @ 5–10 s or 50 × 200 m, @ 10–20 s or 25 × 400 m, @ 20–30 s or 10 × 1000 m, @ 30–40 s |
Zones | Zone 1a | Zone 1b | Zone 1c | Zone 2 | Zone 3 | Zone 4 | Zone 5 | |
---|---|---|---|---|---|---|---|---|
Stimulus | Aerobic | Aerobic | Aerobic | Threshold | VO2max | LP | Sprint | |
FRPtS | RS | |||||||
HR (beats/10 s) | 20–22 | 23–24 | 25–26 | 27–28 | ≥29 | ≥29 | 23–24 |
Stimulus | HR (beats/10 s) | Training Set (m) | When | Why |
---|---|---|---|---|
Aerobic | 20–22 | 2–4 × 400 m @30 s | During the initial period 24 h after the Lactate set | Aerobic endurance Recovery |
Aerobic | 23–24 | 4–6 × 200 @20 s | During the initial period 48 h after the Lactate set | Aerobic endurance |
Aerobic | 24–26 | 6–8 × 100 m @15 s | During the initial period 48 h after the Lactate set Preparation for an intensive training | Aerobic endurance |
Threshold | 27–28 | 4–6 × 100 or 8–12 × 50 @15 or 10 s | After the initial period As a pre-lactate set | Aerobic endurance/capacity Faster muscle contraction of Type I switch |
VO2max | ≥29 | FRPtS: 4–8 × 100 m @ 1 min or RS: 100 + 200 m all out @5 min | During the racing period i.e., one session FRPT, one RS | Aerobic capacity Aerobic capacity Lactate Tolerance Faster muscle contraction of Type I & II switches |
LP | ≥29 | 4–6 × 25 or 50 m @1.30 min | During the racing period i.e., one session FRPT, one RS, and one LP | Anaerobic endurance Faster muscle contraction of Type II switch |
Sprint | 23–24 | 6–8 × 15 or 20 m @30 s | Throughout the whole macrocycle | Alactic power Faster muscle contraction of Type II switch |
FRPtS | |||||
---|---|---|---|---|---|
February | March | April | May | June | |
Duration (Weeks) | − | 2 | 4 | 4 | 1 |
Volume (m) | − | 3000 | 7900 | 4700 | 1500 |
Practice sets for 200 m (n) | 2 | 8 | 5 | 3 | |
Practice sets for 400 m (n) | − | 2 | 8 | 3 | 2 |
Meeting Dates | 24–25 April 2021 | 15–16 May 2021 | 28–30 May 2021 | 9–11 June 2021 National Championship | |||
---|---|---|---|---|---|---|---|
Events | Final heats | Final heats | Preliminaries | Finals | Preliminaries | Finals | Relay |
200 m freestyle | 2:00.54 | 1:59.02 | 2:00.43 | 2:00.07 | 1:57.44 | 1:58.18 | 1:57.01 |
400 m freestyle | 4:22.91 | 4:17.47 | 4:15.65 | 4:15.36 | 4:12.34 | 4:11.48 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadimitriou, K.; Papadopoulou, S.K.; Psara, E.; Giaginis, C. A Case Study on the Development of a High-Intensity Interval Training Set for a National-Level Middle-Distance Swimmer: The Conception of the Faster-than-Race Pace Test Set. J. Funct. Morphol. Kinesiol. 2025, 10, 291. https://doi.org/10.3390/jfmk10030291
Papadimitriou K, Papadopoulou SK, Psara E, Giaginis C. A Case Study on the Development of a High-Intensity Interval Training Set for a National-Level Middle-Distance Swimmer: The Conception of the Faster-than-Race Pace Test Set. Journal of Functional Morphology and Kinesiology. 2025; 10(3):291. https://doi.org/10.3390/jfmk10030291
Chicago/Turabian StylePapadimitriou, Konstantinos, Sousana K. Papadopoulou, Evmorfia Psara, and Constantinos Giaginis. 2025. "A Case Study on the Development of a High-Intensity Interval Training Set for a National-Level Middle-Distance Swimmer: The Conception of the Faster-than-Race Pace Test Set" Journal of Functional Morphology and Kinesiology 10, no. 3: 291. https://doi.org/10.3390/jfmk10030291
APA StylePapadimitriou, K., Papadopoulou, S. K., Psara, E., & Giaginis, C. (2025). A Case Study on the Development of a High-Intensity Interval Training Set for a National-Level Middle-Distance Swimmer: The Conception of the Faster-than-Race Pace Test Set. Journal of Functional Morphology and Kinesiology, 10(3), 291. https://doi.org/10.3390/jfmk10030291