Aerobic and Anaerobic Metabolism During Monofin Swimming in Trained Breath-Hold Divers
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Variables
2.3. Procedures
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Limitations and Strengths
4.2. Future Research Suggestions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patrician, A.; Dujić, Ž.; Spajić, B.; Drviš, I.; Ainslie, P.N. Breath-Hold Diving—The Physiology of Diving Deep and Returning. Front. Physiol. 2021, 12, 639377. [Google Scholar] [CrossRef] [PubMed]
- Bain, A.R.; Drvis, I.; Dujic, Z.; MacLeod, D.B.; Ainslie, P.N. Physiology of static breath holding in elite apneists. Exp. Physiol. 2018, 103, 635–651. [Google Scholar] [CrossRef] [PubMed]
- Winklewski, P.J.; Kot, J.; Frydrychowski, A.F.; Nuckowska, M.K.; Tkachenko, Y. Effects of diving and oxygen on autonomic nervous system and cerebral blood flow. Diving Hyperb. Med. 2013, 43, 148–156. [Google Scholar] [PubMed]
- Heusser, K.; Dzamonja, G.; Tank, J.; Palada, I.; Valic, Z.; Bakovic, D.; Obad, A.; Ivancev, V.; Breskovic, T.; Diedrich, A. Cardiovascular regulation during apnea in elite divers. Hypertension 2009, 53, 719–724. [Google Scholar] [CrossRef]
- Ackermann, S.P.; Raab, M.; Backschat, S.; Smith, D.J.C.; Javelle, F.; Laborde, S. The diving response and cardiac vagal activity: A systematic review and meta-analysis. Psychophysiology 2023, 60, e14183. [Google Scholar] [CrossRef]
- Andersson, J.P.A.; Linér, M.H.; Rünow, E.; Schagatay, E.K.A. Diving response and arterial oxygen saturation during apnea and exercise in breath-hold divers. J. Appl. Physiol. 2002, 93, 882–886. [Google Scholar] [CrossRef]
- Willie, C.K.; Ainslie, P.N.; Drvis, I.; MacLeod, D.B.; Bain, A.R.; Madden, D.; Maslov, P.Z.; Dujic, Z. Regulation of brain blood flow and oxygen delivery in elite breath-hold divers. J. Cereb. Blood Flow Metab. 2015, 35, 66–73. [Google Scholar] [CrossRef]
- Ferretti, G. Extreme human breath-hold diving. Eur. J. Appl. Physiol. 2001, 84, 254–271. [Google Scholar] [CrossRef]
- Asmussen, E.; Kristiansson, N.G. The “diving bradycardia” in exercising man. Acta Physiol. Scand. 1968, 73, 527–535. [Google Scholar] [CrossRef]
- Bergman, S.A.; Campbell, J.K.; Wildenthal, K. “Diving reflex” in man: Its relation to isometric and dynamic exercise. J. Appl. Physiol. 1972, 33, 27–31. [Google Scholar] [CrossRef]
- Smeland, E.B.; Owe, J.O.; Andersen, H.T. Modification of the ‘diving bradycardia’ by hypoxia or exercise. Respir. Physiol. 1984, 56, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Bjertnaes, L.; Hauge, A.; Kjekshus, J.; Søyland, E. Cardiovascular responses to face immersion and apnea during steady state muscle exercise. A heart catheterization study on humans. Acta Physiol. Scand. 1984, 120, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Schagatay, E. Predicting performance in competitive apnea diving, part II: Dynamic apnoea. Diving Hyperb. Med. 2010, 40, 11–22. [Google Scholar] [PubMed]
- Schagatay, E. Predicting performance in competitive apnea diving. Part III: Depth. Diving Hyperb. Med. 2011, 41, 216–228. [Google Scholar]
- Liner, M.H.; Linnarsson, D. Tissue oxygen and carbon dioxide stores and breath-hold diving in humans. J. Appl. Physiol. 1994, 77, 542–547. [Google Scholar] [CrossRef]
- Dujic, Z.; Breskovic, T. Impact of Breath Holding on Cardiovascular Respiratory and Cerebrovascular Health. Sports Med. 2012, 42, 459–472. [Google Scholar] [CrossRef]
- Bain, A.R.; Ainslie, P.N.; Hoiland, R.L.; Barak, O.F.; Drvis, I.; Stembridge, M.; MacLeod, D.M.; McEneny, J.; Stacey, B.S.; Tuaillon, E.; et al. Competitive apnea and its effect on the human brain: Focus on the redox regulation of blood-brain barrier permeability and neuronal-parenchymal integrity. FASEB J. 2018, 32, 2305–2314. [Google Scholar] [CrossRef]
- Kjeld, T.; Stride, N.; Gudiksen, A.; Hansen, E.G.; Arendrup, H.C.; Horstmann, P.F.; Zerahn, B.; Jensen, L.T.; Nordsborg, N.; Bejder, J.; et al. Oxygen conserving mitochondrial adaptations in the skeletal muscles of breath hold divers. PLoS ONE 2018, 13, e0201401. [Google Scholar] [CrossRef]
- Batinic, T.; Utz, W.; Breskovic, T.; Jordan, J.; Schulz-Menger, J.; Jankovic, S.; Dujic, Z.; Tank, J. Cardiac magnetic resonance imaging during pulmonary hyperinflation in apnea divers. Med. Sci. Sports Exerc. 2011, 43, 2095–2101. [Google Scholar] [CrossRef]
- Bailey, D.M.; Willie, C.K.; Hoiland, R.L.; Bain, A.R.; MacLeod, D.B.; Santoro, M.A.; DeMasi, D.K.; Andrijanic, A.; Mijacika, T.; Barak, O.F.; et al. Surviving Without Oxygen: How Low Can the Human Brain Go? High Alt. Med. Biol. 2017, 18, 73–79. [Google Scholar] [CrossRef]
- Rodríguez-Zamora, L.; Engan, H.K.; Lodin-Sundstrom, A.; Schagatay, F.; Iglesias, X.; Rodríguez, F.A.; Schagatay, E. Blood lactate accumulation during competitive freediving and synchronized swimming. Undersea Hyperb. Med. 2018, 45, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Schagatay, E. Human breath-hold diving ability and the underlying physiology. Hum. Evol. 2014, 29, 125–140. [Google Scholar]
- Kyhl, K.; Drvis, I.; Barak, O.; Mijacika, T.; Engstrøm, T.; Secher, N.H.; Dujic, Z.; Buca, A.; Madsen, P.L. Organ perfusion during voluntary pulmonary hyperinflation; a magnetic resonance imaging study. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H444–H451. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Shida, K.K.; Hong, S.K. Effects of hypercapnia, hypoxia, and rebreathing on heart rate response during apnea. J. Appl. Physiol. 1983, 54, 166–171. [Google Scholar] [CrossRef]
- Fitz-Clarke, J.R. Breath-hold diving. Compr. Physiol. 2018, 8, 585–630. [Google Scholar] [CrossRef]
- Ferrigno, M.; Hickey, D.D.; Liner, M.H.; Lundgren, C.E. Cardiac performance in humans during breath holding. J. Appl. Physiol. 1986, 60, 1871–1877. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Lea: Hillsdale, NJ, USA, 1988; Volume 56, p. 102. [Google Scholar]
- Foster, G.E.; Sheel, A.W. The human diving response, its function, and its control. Scand. J. Med. Sci. Sports 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Gooden, B.A. Mechanism of the human diving response. Integr. Physiol. Behav. Sci. 1994, 29, 6–16. [Google Scholar] [CrossRef]
- Breskovic, T.; Uglesic, L.; Zubin, P.; Kuch, B.; Kraljevic, J.; Zanchi, J.; Ljubkovic, M.; Sieber, A.; Dujic, Z. Cardiovascular changes during underwater static and dynamic breath-hold dives in trained divers. J. Appl. Physiol. (1985) 2011, 111, 673–678. [Google Scholar] [CrossRef]
- Dujic, Z.; Uglesic, L.; Breskovic, T.; Valic, Z.; Heusser, K.; Marinovic, J.; Ljubkovic, M.; Palada, I. Involuntary breathing movements improve cerebral oxygenation during apnea struggle phase in elite divers. J. Appl. Physiol. (1985) 2009, 107, 1840–1846. [Google Scholar] [CrossRef]
- Ponganis, P.J.; Kreutzer, U.; Stockard, T.K.; Lin, P.-C.; Sailasuta, N.; Tran, T.-K.; Hurd, R.; Jue, T. Blood flow and metabolic regulation in seal muscle during apnea. J. Exp. Biol. 2008, 211, 3323–3332. [Google Scholar] [CrossRef] [PubMed]
- Palada, I.; Obad, A.; Bakovic, D.; Valic, Z.; Ivancev, V.; Dujic, Z. Cerebral and peripheral hemodynamics and oxygenation during maximal dry breath-holds. Respir. Physiol. Neurobiol. 2007, 157, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Baković, D.; Eterović, D.; Valic, Z.; Saratlija-Novaković, Ž.; Palada, I.; Obad, A.; Dujić, Ž. Increased pulmonary vascular resistance and reduced stroke volume in association with CO2 retention and inferior vena cava dilatation. J. Appl. Physiol. 2006, 101, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Steinback, C.D.; Salmanpour, A.; Breskovic, T.; Dujic, Z.; Shoemaker, J.K. Sympathetic neural activation: An ordered affair. J. Physiol. 2010, 588, 4825–4836. [Google Scholar] [CrossRef]
- Stromme, S.B.; Kerem, D.; Elsner, R. Diving bradycardia during rest and exercise and its relation to physical fitness. J. Appl. Physiol. 1970, 28, 614–621. [Google Scholar] [CrossRef]
- Butler, P.J.; Woakes, A.J. Heart rate in humans during underwater swimming with and without breath-hold. Respir. Physiol. 1987, 69, 387–399. [Google Scholar] [CrossRef]
- Baković, D.; Eterović, D.; Saratlija-Novaković, X.; Palada, I.; Valic, Z.; Bilopavlović, N.; Dujić, X. Effect of Human Splenic Contraction on Variation in Circulating Blood Cell Counts. Clin. Exp. Pharmacol. Physiol. 2005, 32, 944–951. [Google Scholar] [CrossRef]
- Baković, D.; Valic, Z.; Eterović, D.; Vuković, I.; Obad, A.; Marinović-Terzić, I.; Dujić, Z.e. Spleen volume and blood flow response to repeated breath-hold apneas. J. Appl. Physiol. 2003, 95, 1460–1466. [Google Scholar] [CrossRef]
- McKenzie, D.C.; Parkhouse, W.S.; Rhodes, E.C.; Hochochka, P.W.; Ovalle, W.K.; Mommsen, T.P.; Shinn, S.L. Skeletal muscle buffering capacity in elite athletes. In Biochemistry of Exercise; Human Kinetics Publisher: Champaign, IL, USA, 1983; pp. 134–151. [Google Scholar]
- Sharp, R.L.; Costill, D.L.; Fink, W.J.; King, D.S. Effects of Eight Weeks of Bicycle Ergometer Sprint Training on Human Muscle Buffer Capacity. Int. J. Sports Med. 1986, 7, 13–17. [Google Scholar] [CrossRef]
- Vinetti, G.; Taboni, A.; Fagoni, N.; Tam, E.; Lundby, C.; Ferretti, G. Energetics of Underwater Swimming in Apnea. Med. Sci. Sports Exerc. 2025; ahead of print. [Google Scholar] [CrossRef]
Variables | Intermediate (N = 9) | Elite (N = 6) | t | p | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Age (years) | 25.44 | 2.74 | 26.50 | 3.45 | −0.66 | 0.52 |
Training age (years) | 2.89 | 1.76 | 4.33 | 1.86 | −1.52 | 0.15 |
Body height (cm) | 181.78 | 8.01 | 177.87 | 10.49 | 0.82 | 0.43 |
Body weight (kg) | 79.68 | 9.43 | 69.30 | 13.34 | 1.77 | 0.10 |
Effect | SS | df | MS | F-Value | p-Value |
---|---|---|---|---|---|
Elite | |||||
Lactate (mmol/L) | 21.34 | 2 | 10.67 | 39.19 | 0.00 * |
SpO2 (%) | 1143.00 | 2 | 571.50 | 7.65 | 0.01 * |
Moderate | |||||
Lactate (mmol/L) | 100.11 | 2 | 50.06 | 36.37 | 0.00 * |
SpO2 (%) | 2500.07 | 2 | 1250.04 | 5.87 | 0.01 * |
Effect | Wilks Lambda | F-Value | Effect (df) | Error (df) | p |
---|---|---|---|---|---|
Intercept | 0.01 | 705.62 | 4 | 23 | 0.00 * |
Group | 0.64 | 3.27 | 4 | 23 | 0.03 * |
Type | 0.27 | 15.53 | 4 | 23 | 0.00 * |
Group * type | 0.79 | 1.54 | 4 | 23 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drviš, I.; Vrdoljak, D.; Dujić, G.; Foretić, N.; Dujić, Ž. Aerobic and Anaerobic Metabolism During Monofin Swimming in Trained Breath-Hold Divers. J. Funct. Morphol. Kinesiol. 2025, 10, 218. https://doi.org/10.3390/jfmk10020218
Drviš I, Vrdoljak D, Dujić G, Foretić N, Dujić Ž. Aerobic and Anaerobic Metabolism During Monofin Swimming in Trained Breath-Hold Divers. Journal of Functional Morphology and Kinesiology. 2025; 10(2):218. https://doi.org/10.3390/jfmk10020218
Chicago/Turabian StyleDrviš, Ivan, Dario Vrdoljak, Goran Dujić, Nikola Foretić, and Željko Dujić. 2025. "Aerobic and Anaerobic Metabolism During Monofin Swimming in Trained Breath-Hold Divers" Journal of Functional Morphology and Kinesiology 10, no. 2: 218. https://doi.org/10.3390/jfmk10020218
APA StyleDrviš, I., Vrdoljak, D., Dujić, G., Foretić, N., & Dujić, Ž. (2025). Aerobic and Anaerobic Metabolism During Monofin Swimming in Trained Breath-Hold Divers. Journal of Functional Morphology and Kinesiology, 10(2), 218. https://doi.org/10.3390/jfmk10020218