Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know
Abstract
1. Introduction
2. Research Strategy
2.1. What We Know
2.1.1. External Load
2.1.2. Type of External Resistance
2.1.3. Movement Velocity
2.1.4. ROM
2.2. What We Do Not Know
2.2.1. Eccentric-Only vs. Concentric-Only vs. Traditional Eccentric–Concentric Training
2.2.2. External vs. Internal Focus
2.2.3. Sets to Failure/Non-Failure
2.2.4. Total Number of Repetitions (Volume)
2.2.5. Inter-Set Rest
2.2.6. Exercise Selection
3. Limitations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silva, J.R.; Nassis, G.P.; Rebelo, A. Strength training in soccer with a specific focus on highly trained players. Sports Med. Open 2015, 1, 17. [Google Scholar] [CrossRef]
- Oliver, J.L.; Ramachandran, A.K.; Singh, U.; Ramirez-Campillo, R.; Lloyd, R. The Effects of Strength, Plyometric and Combined Training on Strength, Power and Speed Characteristics in High-Level, Highly Trained Male Youth Soccer Players: A Systematic Review and Meta-Analysis. Sports Med. 2024, 54, 623–643. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Bishop, C.; Turner, A.; Haff, G. Optimal Training Sequences to Develop Lower Body Force, Velocity, Power, and Jump Height: A Systematic Review with Meta-Analysis. Sports Med. 2021, 51, 1245–1271. [Google Scholar] [CrossRef]
- Murphy, A.; Burgess, K.; Hall, A.J.; Aspe, R.R.; Swinton, P. The Effects of Strength and Conditioning Interventions on Sprinting Performance in Team Sport Athletes: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2023, 37, 1692–1702. [Google Scholar] [CrossRef] [PubMed]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding change of direction ability in sport: A review of resistance training studies. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef] [PubMed]
- Nygaard Falch, H.; Guldteig Rædergård, H.; van den Tillaar, R. Effect of Different Physical Training Forms on Change of Direction Ability: A Systematic Review and Meta-analysis. Sports Med. Open 2019, 5, 53. [Google Scholar] [CrossRef]
- Chaabene, H.; Prieske, O.; Moran, J.; Negra, Y.; Attia, A.; Granacher, U. Effects of Resistance Training on Change-of-Direction Speed in Youth and Young Physically Active and Athletic Adults: A Systematic Review with Meta-Analysis. Sports Med. 2020, 50, 1483–1499. [Google Scholar] [CrossRef]
- Ferrete, C.; Requena, B.; Suarez-Arrones, L.; de Villarreal, E.S. Effect of strength and high-intensity training on jumping, sprinting, and intermittent endurance performance in prepubertal soccer players. Journal of strength and conditioning research. Natl. Strength Cond. Assoc. 2014, 28, 413–422. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Schena, F. The specificity of the Loughborough Intermittent Shuttle Test for recreational soccer players is independent of their intermittent running ability. Res. Sports Med. 2016, 24, 363–374. [Google Scholar] [CrossRef]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationship between strength, sprint and jump performance in well trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef]
- de Villarreal, E.S.; Requena, B.; Cronin, J.B. The effects of plyometric training on sprint performance: A meta-analysis. J. Strength Cond. Res. 2012, 26, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sports Med. 2007, 41, 349–355, discussion 355. [Google Scholar] [CrossRef]
- Asadi, A.; Arazi, H.; Young, W.B.; de Villarreal, E.S. The Effects of Plyometric Training on Change-of-Direction Ability: A Meta-Analysis. Int. J. Sports Physiol. Perform. 2016, 11, 563–573. [Google Scholar] [CrossRef]
- Stojanovic, E.; Ristic, V.; McMaster, D.T.; Milanovic, Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2016, 47, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G. Appropriate reporting of exercise variables in resistance training protocols: Much more than load and number of repetitions. Sports Med. Open 2022, 8, 99. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chueh, T.-Y.; Hung, T.-M. Preferred Reporting Items for Resistance Exercise Studies (PRIRES): A Checklist Developed Using an Umbrella Review of Systematic Reviews. Sports Med. Open 2023, 9, 114. [Google Scholar] [CrossRef]
- Fuentes-García, M.A.; Malchrowicz-Mośko, E.; Castañeda-Babarro, A. Effects of variable resistance training versus conventional resistance training on muscle hypertrophy: A systematic review. Sport Sci. Health 2024, 20, 37–45. [Google Scholar] [CrossRef]
- Cormier, P.; Freitas, T.T.; Seaman, K. A systematic review of resistance training methodologies for the development of lower body concentric mean power, peak power, and mean propulsive power in team-sport athletes. Sports Biomech. 2024, 23, 1229–1262. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and hypertrophy adaptations between low- vs. High-load resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J. Are the hypertrophic adaptations to high and low-load resistance training muscle fiber type specific? Front. Physiol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Mcquilliam, S.J.; Clark, D.R.; Erskine, R.M.; Brownlee, T.E. Effect of High-Intensity vs. Moderate-Intensity Resistance Training on Strength, Power, and Muscle Soreness in Male Academy Soccer Players. J. Strength Cond. Res. 2023, 37, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Papaspyrou, A.; Souglis, A.G.; Theos, A.; Sotiropoulos, A.; Maridaki, M. Effects of hypertrofhy and a maximal strength training programme on speed, force and power of soccer players. In Proceedings of the VI World Congress on Science and Football, Antalya, Turkey, 1–3 November 2009; pp. 290–295. [Google Scholar]
- Falces-Prieto, M.; Sáez de Villarreal-Sáez, E.; Raya-González, J.; González-Fernández, F.T.; Clemente, F.M.; Badicu, G.; Murawska-Ciałowicz, E. The Differentiate Effects of Resistance Training With or Without External Load on Young Soccer Players’ Performance and Body Composition. Front. Physiol. 2021, 12, 771684. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Beato, M.; Milanese, C.; Longo, S.; Limonta, E.; Rampichini, S.; Cè, E.; Bisconti, A.V.; Schena, F.; Esposito, F. Specific Adaptations in Performance and Muscle Architecture After Weighted Jump-Squat vs Body Mass Squat Jump Training in Recreational Soccer Players. J. Strength Cond. Res. 2018, 32, 921–929. [Google Scholar] [CrossRef]
- Nuñez, J.; Suarez-Arrones, L.; De Hoyo, M.; Loturco, I. Strength Training in Professional Soccer: Effects on Short-sprint and Jump Performance. Int. J. Sports Med. 2022, 43, 485–495. [Google Scholar] [CrossRef]
- Carvalho, L.; Junior, R.M.; Barreira, J.; Schoenfeld, B.J.; Orazem, J.; Barroso, R. Muscle hypertrophy and strength gains after resistance training with different volume-matched loads: A systematic review and meta-analysis. Appl. Physiol. Nutr. Metab. 2022, 47, 357–368. [Google Scholar] [CrossRef]
- Beato, M.; De Keijzer, K.L.; Muñoz-Lopez, A.; Raya-González, J.; Pozzo, M.; Alkner, B.A.; Dello Iacono, A.; Vicens-Bordas, J.; Coratella, G.; Maroto-Izquierdo, S.; et al. Current Guidelines for the Implementation of Flywheel Resistance Training Technology in Sports: A Consensus Statement. Sports Med. 2024, 54, 541–556. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; Pinto, M.D.; Nosaka, K.; Steele, J. The Eccentric:Concentric Strength Ratio of Human Skeletal Muscle In Vivo: Meta-analysis of the Influences of Sex, Age, Joint Action, and Velocity. Sports Med. 2023, 53, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Prieske, O.; Negra, Y.; Granacher, U. Change of Direction Speed: Toward a Strength Training Approach with Accentuated Eccentric Muscle Actions. Sports Med. 2018, 48, 1773–1779. [Google Scholar] [CrossRef]
- Allen, W.J.C.; de Keijzer, K.L.; Raya-González, J.; Castillo, D.; Coratella, G.; Beato, M. Chronic effects of flywheel training on physical capacities in soccer players: A systematic review. Res. Sports Med. 2023, 31, 228–248. [Google Scholar] [CrossRef]
- de Keijzer, K.L.; Gonzalez, J.R.; Beato, M. The effect of flywheel training on strength and physical capacities in sporting and healthy populations: An umbrella review. PLoS ONE 2022, 17, e0264375. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Cè, E.; Scurati, R.; Milanese, C.; Schena, F.; Esposito, F. Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol. Sport 2019, 36, 241–248. [Google Scholar] [CrossRef]
- Jarosz, J.; Królikowska, P.; Matykiewicz, P.; Aschenbrenner, P.; Ewertowska, P.; Krzysztofik, M. Effects of Flywheel vs. Free-Weight Squats and Split Squats on Jumping Performance and Change of Direction Speed in Soccer Players. Sports 2023, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Sagelv, E.H.; Pedersen, S.; Nilsen, L.P.R.; Casolo, A.; Welde, B.; Randers, M.; Pettersen, S. Flywheel squats versus free weight high load squats for improving high velocity movements in football. A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2020, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liu, J.; Clarke, C.V.; An, R. Effect of eccentric overload training on change of direction speed performance: A systematic review and meta-analysis. J. Sports Sci. 2020, 38, 2579–2587. [Google Scholar] [CrossRef]
- Coratella, G.; Chemello, A.; Schena, F. Muscle damage and repeated bout effect induced by enhanced eccentric squats. J. Sports Med. Phys. Fit. 2016, 56, 1540–1546. [Google Scholar]
- Lin, Y.; Xu, Y.; Hong, F.; Li, J.; Ye, W.; Korivi, M. Effects of Variable-Resistance Training Versus Constant-Resistance Training on Maximum Strength: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8559. [Google Scholar] [CrossRef] [PubMed]
- Katushabe, E.T.; Kramer, M. Effects of combined power band resistance training on sprint speed, agility, vertical jump height, and strength in collegiate soccer players. Int. J. Exerc. Sci. 2020, 13, 950–963. [Google Scholar]
- Loturco, I.; Pereira, L.A.; Reis, V.P.; Zanetti, V.; Bishop, C.; McGuigan, M. Traditional Free-Weight Vs. Variable Resistance Training Applied to Elite Young Soccer Players During a Short Preseason: Effects on Strength, Speed, and Power Performance. J. Strength Cond. Res. 2022, 36, 3432–3439. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Wilson, C.J.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sports Med. 2020, 50, 943–963. [Google Scholar] [CrossRef]
- Shibata, K.; Takizawa, K.; Nosaka, K.; Mizuno, M. Effects of prolonging eccentric phase duration in parallel back-squat training to momentary failure on muscle cross-sectional area, squat one-repetition maximum, and performance tests in university soccer players. J. Strength Cond. Res. 2021, 35, 668–674. [Google Scholar] [CrossRef]
- Segers, N.; Waldron, M.; Howe, L.P.; Patterson, S.D.; Moran, J.; Kidgell, D.; Tallent, J. Slow-Speed Compared with Fast-Speed Eccentric Muscle Actions Are Detrimental to Jump Performance in Elite Soccer Players In-Season. Int. J. Sports Physiol. Perform. 2022, 17, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Feng, S.; Su, S. The effect of velocity-based training variables on muscle strength: Dose-response meta-analysis. Int. J. Sports Med. 2023, 44, 857–864. [Google Scholar] [CrossRef]
- Baena-Marín, M.; Rojas-Jaramillo, A.; González-Santamaría, J.; Rodríguez-Rosell, D.; Petro, J.L.; Kreider, R.B.; Bonilla, D. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports 2022, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Włodarczyk, M.; Adamus, P.; Zieliński, J.; Kantanista, A. Effects of velocity-based training on strength and power in elite athletes—A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 5257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, S.; Peng, R.; Li, H. The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 9252. [Google Scholar] [CrossRef]
- Orange, S.T.; Hritz, A.; Pearson, L.; Jeffries, O.; Jones, T.W.; Steele, J. Comparison of the effects of velocity-based training vs. traditional resistance training methods on adaptations in strength, power and sprint speed: A systematic review, meta-analysis and quality of evidence appraisal. J. Sports Sci. 2022, 40, 1220–1234. [Google Scholar] [CrossRef]
- Held, S.; Speer, K.; Rappelt, L.; Wicker, P.; Donath, L. The effectiveness of traditional vs. velocity-based strength training on explosive and maximal strength performance: A network meta-analysis. Front. Physiol. 2022, 13, 926972. [Google Scholar] [CrossRef]
- Liao, K.F.; Wang, X.X.; Han, M.Y.; Li, L.L.; Nassis, G.P.; Li, Y.M. Effects of velocity-based training vs. traditional 1RM percentage-based training on improving strength, jump, linear sprint and change of direction speed performance: A Systematic review with meta-analysis. PLoS ONE 2021, 16, e0259790. [Google Scholar] [CrossRef]
- Young, W.; Benton, D.; Duthie, G.M.; Pryor, J.F. Resistance training for short sprints and maximum-speed sprints. Strength Cond. J. 2001, 23, 7–13. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Cava, A.M.; Courel-Ibáñez, J.; González-Badillo, J.J.; Morán-Navarro, R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport Sci. 2020, 20, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Bloomquist, K.; Langberg, H.; Karlsen, S.; Madsgaard, S.; Boesen, M.; Raastad, T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur. J. Appl. Physiol. 2013, 113, 2133–2142. [Google Scholar] [CrossRef]
- Hartmann, H.; Wirth, K.; Klusemann, M.; Dalic, J.; Matuschek, C.; Schmidtbleicher, D. Influence of squatting depth on jumping performance. J. Strength Cond. Res. 2012, 26, 3243–3261. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Schena, F. Eccentric resistance training increases and retains maximal strength, muscle endurance, and hypertrophy in trained men. Appl. Physiol. Nutr. Metab. 2016, 41, 1184–1189. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Bertinato, L.; Milanese, C.; Venturelli, M.; Schena, F. Including the Eccentric Phase in Resistance Training to Counteract the Effects of Detraining in Women: A Randomized Controlled Trial. J. Strength Cond. Res. 2022, 36, 3023–3031. [Google Scholar] [CrossRef]
- Sato, S.; Yoshida, R.; Murakoshi, F.; Sasaki, Y.; Yahata, K.; Kasahara, K.; Nunes, J.P.; Nosaka, K.; Nakamura, M. Comparison between concentric-only, eccentric-only, and concentric–eccentric resistance training of the elbow flexors for their effects on muscle strength and hypertrophy. Eur. J. Appl. Physiol. 2022, 122, 2607–2614. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K.; Newton, R.U.; Walker, S.; Häkkinen, A.; Krapi, S.; Rekola, R.; Koponen, P.; Kraemer, W.J.; Haff, G.G.; Blazevich, A.J.; et al. Effects of Upper Body Eccentric versus Concentric Strength Training and Detraining on Maximal Force, Muscle Activation, Hypertrophy and Serum Hormones in Women. J. Sports Sci. Med. 2022, 21, 200–213. [Google Scholar] [CrossRef]
- Coratella, G.; Galas, A.; Campa, F.; Pedrinolla, A.; Schena, F.; Venturelli, M. The Eccentric Phase in Unilateral Resistance Training Enhances and Preserves the Contralateral Knee Extensors Strength Gains After Detraining in Women: A Randomized Controlled Trial. Front. Physiol. 2022, 13, 788473. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Lambert, N.J.; Hill, J.P. Greater cross education following training with muscle lengthening than shortening. Med. Sci. Sports Exerc. 1997, 29, 107–112. [Google Scholar] [CrossRef]
- Altheyab, A.; Alqurashi, H.; England, T.J.; Philips, B.E.; Piasecki, M. Cross-education of lower limb muscle strength following resistance exercise training in males and females: A systematic review and meta-analysis. Exp. Physiol. 2024. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J. Altering the length-tension relationship with eccentric exercise: Implications for performance and injury. Sports Med. 2007, 37, 807–826. [Google Scholar] [CrossRef] [PubMed]
- van der Horst, N.; Smits, D.-W.; Petersen, J.; Goedhart, E.A.; Backx, F.J.G. The Preventive Effect of the Nordic Hamstring Exercise on Hamstring Injuries in Amateur Soccer Players. Am. J. Sports Med. 2015, 43, 1316–1323. [Google Scholar] [CrossRef]
- Bright, T.E.; Handford, M.J.; Mundy, P.; Lake, J.; Theis, N.; Hughes, J.D. Building for the Future: A Systematic Review of the Effects of Eccentric Resistance Training on Measures of Physical Performance in Youth Athletes. Sports Med. 2023, 53, 1219–1254. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, Y.; Zhang, L.; Sun, M. The impact of eccentric training on athlete movement speed: A systematic review. Front. Physiol. 2024, 15, 1492023. [Google Scholar] [CrossRef]
- Coratella, G.; Bertinato, L. Isoload vs isokinetic eccentric exercise: A direct comparison of exercise-induced muscle damage and repeated bout effect. Sport Sci. Health 2015, 11, 87–96. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. American journal of physical medicine & rehabilitation. Assoc. Acad. Physiatr. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Chapman, D.; Newton, M.; Sacco, P.; Nosaka, K. Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int. J. Sports Med. 2006, 27, 591–598. [Google Scholar] [CrossRef]
- Nosaka, K.; Newton, M. Is recovery from muscle damage retarded by a subsequent bout of eccentric exercise inducing larger decreases in force? J. Sci. Med. Sport/Sports Med. Aust. 2002, 5, 204–218. [Google Scholar] [CrossRef]
- Chen, T.C.; Nosaka, K. Effects of number of eccentric muscle actions on first and second bouts of eccentric exercise of the elbow flexors. J. Sci. Med. Sport 2006, 9, 57–66. [Google Scholar] [CrossRef]
- Wulf, G. Attentional focus and motor learning: A review of 15 years. Int. Rev. Sport Exerc. Psychol. 2013, 6, 77–104. [Google Scholar] [CrossRef]
- Neumann, D.L. A Systematic Review of Attentional Focus Strategies in Weightlifting. Front. Sports Act Living 2019, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Tornatore, G.; Longo, S.; Borrelli, M.; Doria, C.; Esposito, F.; Cè, E. The Effects of Verbal Instructions on Lower Limb Muscles’ Excitation in Back-Squat. Res. Q. Exerc. Sport 2022, 93, 429–435. [Google Scholar] [CrossRef]
- Calatayud, J.; Vinstrup, J.; Due, M. Importance of mind—muscle connection during progressive resistance training. Eur. J. Appl. Physiol. 2016, 116, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; Vinstrup, J.; Jakobsen, M.D.; Sundstrup, E. Mind—Muscle connection training principle: Influence of muscle strength and training experience during a pushing movement. Eur. J. Appl. Physiol. 2017, 117, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Mancin, L.; Saoncella, M.; Grigoletto, D.; Pacelli, F.Q.; Zamparo, P.; Schoenfeld, B.J.; Marcolin, G. Mind-muscle connection: Effects of verbal instructions on muscle activity during bench press exercise. Eur. J. Transl. Myol. 2019, 29, 106–111. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Vigotsky, A.; Contreras, B.; Golden, S.; Alto, A.; Larson, R.; Winkelman, N.; Paoli, A. Differential effects of attentional focus strategies during long-term resistance training. Eur. J. Sport Sci. 2018, 18, 705–712. [Google Scholar] [CrossRef]
- Halperin, I.; Vigotsky, A.D. The mind–muscle connection in resistance training: Friend or foe? Eur. J. Appl. Physiol. 2016, 116, 863–864. [Google Scholar] [CrossRef]
- Marchant, D.C.; Greig, M.; Scott, C. Attentional focusing instructions influence force production and muscular activity during isokinetic elbow flexions. J. Strength Cond. Res. 2009, 23, 2358–2366. [Google Scholar] [CrossRef]
- Marchant, D.C.; Greig, M. Attentional focusing instructions influence quadriceps activity characteristics but not force production during isokinetic knee extensions. Hum. Mov. Sci. 2017, 52, 67–73. [Google Scholar] [CrossRef]
- Vieira, A.F.; Umpierre, D.; Teodoro, J.L.; Lisboa, S.C.; Baroni, B.M.; Izquierdo, M.; Cadore, E.L. Effects of Resistance Training Performed to Failure or Not to Failure on Muscle Strength, Hypertrophy, and Power Output: A Systematic Review with Meta-Analysis. J. Strength Cond. Res. 2021, 35, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Schoenfeld, B.J.; Orazem, J.; Sabol, F. Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: A systematic review and meta-analysis. J. Sport Health Sci. 2021, 11, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Arede, J.; Vaz, R.; Gonzalo-Skok, O.; Balsalobre-Fernandéz, C.; Varela-Olalla, D.; Madruga-Parera, M.; Leite, N. Repetitions in reserve vs. maximum effort resistance training programs in youth female athletes. J. Sports Med. Phys. Fit. 2020, 60, 1231–1239. [Google Scholar] [CrossRef]
- Carroll, K.M.; Bernards, J.R.; Bazyler, C.D.; Taber, C.B.; Stuart, C.A.; Deweese, B.H.; Sato, K.; Stone, M.H. Divergent Performance Outcomes Following Resistance Training Using Repetition Maximums or Relative Intensity. Int. J. Sports Physiol. Perform. 2019, 14, 46–54. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Sánchez-Medina, L.; Suárez-Arrones, L.; González-Badillo, J.J. Effects of velocity loss during resistance training on performance in professional soccer players. Int. J. Sports Physiol. Perform. 2017, 12, 512–519. [Google Scholar] [CrossRef]
- Jukic, I.; Castilla, A.P.; Ramos, A.G.; Van Hooren, B.; McGuigan, M.R.; Helms, E.R. The Acute and Chronic Effects of Implementing Velocity Loss Thresholds During Resistance Training: A Systematic Review, Meta-Analysis, and Critical Evaluation of the Literature. Sports Med. 2023, 53, 177–214. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J. Does Training to Failure Maximize Muscle Hypertrophy? Natl. Strength Cond. Assoc. 2019, 41, 108–113. [Google Scholar] [CrossRef]
- Fonseca, F.S.; Costa BDde, V.; Ferreira, M.E.C.; Paes, S.; de Lima-Junior, D.; Kassiano, W.; Cyrino, E.S.; Gantois, P.; Fortes, L.S. Acute effects of equated volume-load resistance training leading to muscular failure versus non-failure on neuromuscular performance. J. Exerc. Sci. Fit. 2020, 18, 94–100. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2017, 35, 1073–1082. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B.; Krieger, J.; Grgic, J.; Delcastillo, K.; Belliard, R.; Alto, A. Resistance Training Volume Enhances Muscle Hypertrophy but Not Strength in Trained Men. Med. Sci. Sports Exerc. 2019, 51, 94–103. [Google Scholar] [CrossRef]
- Androulakis-Korakakis, P.; Fisher, J.P.; Steele, J. The Minimum Effective Training Dose Required to Increase 1RM Strength in Resistance-Trained Men: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 751–765. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Davies, T.B.; Lazinica, B.; Krieger, J.W.; Pedisic, Z. Effect of Resistance Training Frequency on Gains in Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 1207–1220. [Google Scholar] [CrossRef]
- Lesinski, M.; Prieske, O.; Granacher, U. Effects and dose-response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Otero-Esquina, C.; de Hoyo Lora, M.; Gonzalo-Skok, Ó.; Domínguez-Cobo, S.; Sánchez, H. Is strength-training frequency a key factor to develop performance adaptations in young elite soccer players? Eur. J. Sport Sci. 2017, 17, 1241–1251. [Google Scholar] [CrossRef]
- Latella, C.; Grgic, J.; Van Der Westhuizen, D. Effect of interset strategies on acute resistance training performance and physiological responses: A systematic review. J. Strength Cond. Res. 2019, 33, S180–S193. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Skrepnik, M.; Davies, T.B.; Mikulic, P. Effects of Rest Interval Duration in Resistance Training on Measures of Muscular Strength: A Systematic Review. Sports Med. 2018, 48, 137–151. [Google Scholar] [CrossRef] [PubMed]
- D’Emanuele, S.; Maffiuletti, N.A.; Tarperi, C.; Rainoldi, A.; Schena, F.; Boccia, G. Rate of Force Development as an Indicator of Neuromuscular Fatigue: A Scoping Review. Front. Hum. Neurosci. 2021, 15, 701916. [Google Scholar] [CrossRef] [PubMed]
- Neto, W.K.; Vieira, T.L.; Gama, E.F. Barbell hip thrust, muscular activation and performance: A systematic review. J. Sports Sci. Med. 2019, 18, 198–206. [Google Scholar]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; McMaster, D.T.; Reyneke, J.H.T.; Cronin, J.B. Effects of a Six-Week Hip Thrust vs. Front Squat Resistance Training Program on Performance in Adolescent Males: A Randomized Controlled Trial. J. Strength Cond. Res. 2017, 31, 999–1008. [Google Scholar] [CrossRef]
- González-García, J.; Morencos, E.; Balsalobre-Fernández, C.; Cuéllar-Rayo, A.; Romero-Moraleda, B. Effects of 7-week hip thrust versus back squat resistance training on performance in adolescent female soccer players. Sports 2019, 7, 80. [Google Scholar] [CrossRef]
- Beato, M.; Bianchi, M.; Coratella, G.; Merlini, M.; Drust, B. Effects of plyometric and directional training on speed and jump performance in elite youth soccer players. J. Strength Cond. Res. 2018, 32, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Berryman, N.; Mujika, I.; Bosquet, L. Concurrent training for sports performance: The 2 sides of the medal. Int. J. Sports Physiol. Perform. 2019, 14, 279–285. [Google Scholar] [CrossRef] [PubMed]
Influence of Resistance Training Variables on Jumps, Sprints and Changes of Direction (CODs) | ||
---|---|---|
Resistance Training Variable | What Is Known | What Is Not Known |
Magnitude external load | Moderate-to-high > low loads | Short-term recovery should be considered after high vs low loads |
Type external resistance | Flywheel and constant external loads are equally effective for jumps and sprints. Flywheel is possibly better than constant load for CODs. | Elastic training as an alternative method for sprints and CODs. |
Movement velocity | Movement velocity does not affect gains in jumps, sprints, and CODs. | Over-slowing movement velocity (>4 s per phase) should be avoided, although not completely proven. |
Range of motion (ROM) | Full > partial ROM for jumps. | No sufficient information for ROM and sprints and CODs. |
Eccentric vs. concentric vs. traditional eccentric/concentric training | Eccentric training is effective in improving jumps, sprints, and CODs. Eccentric training requires long initial recovery. | No direct comparison, so it is not clear if one methodology is more, less, or equally effective. |
External internal focus | External focus should equalize or increase strength during a movement. External focus suggested for complex tasks. | No direct long-term comparison, albeit external focus has more favorable theoretical bases. |
Failure/Non-failure | Velocity loss thresholds > 15% to improve jumps and sprints. | Few information indicates non-failure > failure. No information about velocity loss thresholds and CODs. |
Total number of repetitions (N) | A wide range of N could be selected to improve jumps, sprints, and CODs. Higher N is needed to improve CODs than jumps and sprints in young athletes. | N may not affect COD in adults. No information about the effects of N of jumps and sprints in adults. |
Inter-set rest | Longer durations may be suggested since it is more effective for increasing strength. | No direct comparison between longer/shorter durations available. |
Exercise selection | Squat variations, hip thrusts, and deadlift improve sprints equally. | No exercise superiority can be claimed. No information for jumps and COD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomei, S.; Beato, M.; Coratella, G. Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know. J. Funct. Morphol. Kinesiol. 2025, 10, 145. https://doi.org/10.3390/jfmk10020145
Bartolomei S, Beato M, Coratella G. Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know. Journal of Functional Morphology and Kinesiology. 2025; 10(2):145. https://doi.org/10.3390/jfmk10020145
Chicago/Turabian StyleBartolomei, Sandro, Marco Beato, and Giuseppe Coratella. 2025. "Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know" Journal of Functional Morphology and Kinesiology 10, no. 2: 145. https://doi.org/10.3390/jfmk10020145
APA StyleBartolomei, S., Beato, M., & Coratella, G. (2025). Manipulating Resistance Exercise Variables to Improve Jumps, Sprints, and Changes of Direction in Soccer: What We Know and What We Don’t Know. Journal of Functional Morphology and Kinesiology, 10(2), 145. https://doi.org/10.3390/jfmk10020145