Effect of Post-Activation Performance Enhancement in Combat Sports: A Systematic Review and Meta-Analysis—Part I: General Performance Indicators
Abstract
:1. Introduction
- (a)
- Are there CA protocols capable of eliciting PAPE in combat sports athletes?
- (b)
- How do different combat sports disciplines respond to PAPE protocols?
- (c)
- What type of test had the greatest PAPE effect?
- (d)
- Does the level of competition affect the magnitude of the enhancement effect of CA?
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Text Screening
2.4. Data Extraction, Study Coding
2.5. Quality Assessment
2.6. Meta-Analysis
3. Results
3.1. Literature Search
3.2. Quality Assessment
3.3. Systematic Review
3.4. Meta-Analysis
4. Discussion
4.1. Main Findings
4.2. The Competitive Level Factor
4.3. The Discipline Factor
4.4. Limitations
4.5. Practical Applications
4.6. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PAPE | Post-activation performance enhancement |
PAP | Post-activation potentiation |
CMJ | Countermovement jump |
MVIC | Maximum voluntary isometric contraction |
MRIC | Myosin regulatory light chain |
RCT | Randomized controlled trial |
PEDro | Physiotherapy Evidence Database |
1RM | One-repetition maximum |
MMA | Mixed martial arts |
RFD | Rate of force development |
LSJ | Loaded squat jump |
BP | Bench press |
BPT | Bench press throw |
BPU | Ballistic push-up |
HS | Half-squat |
ISOP | Isometric punch |
ISR | Intra-set rest |
SSR | Self-selected rest |
TW | Taolu wushu |
HRE | Heavy-resistance exercise |
HPT | Hip power test |
PBPT | Power bench press test |
RAST | Running anaerobic sprint test |
DBPT | Dumbbell press test |
References
- Andreato, L.V.; Lara, F.J.D.; Andrade, A.; Branco, B.H.M. Physical and physiological profiles of Brazilian jiu-jitsu athletes: A systematic review. Sports Med. Open 2017, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Bouhlel, E.; Jouini, A.; Gmada, N.; Abdallah, K.B.; Tabka, Z. Heart rate and blood lactate responses during Taekwondo training and competition. Sci. Sports 2006, 21, 285–290. [Google Scholar] [CrossRef]
- Sobkowicz, P.; Frank, R.H.; Biondo, A.E.; Pluchino, A.; Rapisarda, A. Inequalities, chance and success in sport competitions: Simulations vs empirical data. Phys. A Stat. Mech. Appl. 2020, 557, 124899. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Sale, D.G. Postactivation potentiation: Role in human performance. Exerc. Sport Sci. Rev. 2002, 30, 138–143. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; Smith, I.C.; Jordan, M.J.; MacIntosh, B.R.; López-Contreras, G.; Arellano, R.; Herzog, W. Nonlocalized postactivation performance enhancement (PAPE) effects in trained athletes: A pilot study. Appl. Physiol. Nutr. Metab. 2017, 42, 1122–1125. [Google Scholar] [CrossRef]
- Rassier, D.E.; Macintosh, B.R. Coexistence of potentiation and fatigue in skeletal muscle. Braz. J. Med. Biol. Res. 2000, 33, 499–508. [Google Scholar] [CrossRef]
- Boullosa, D.; Beato, M.; Iacono, A.D.; Cuenca-Fernández, F.; Doma, K.; Schumann, M.; Zagatto, A.M.; Loturco, I.; Behm, D.G. A new taxonomy for postactivation potentiation in sport. Int. J. Sports Physiol. Perform. 2020, 15, 1197–1200. [Google Scholar] [CrossRef]
- James, L.P.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. Towards a determination of the physiological characteristics distinguishing successful mixed martial arts athletes: A systematic review of combat sport literature. Sports Med. 2016, 46, 1525–1551. [Google Scholar] [CrossRef]
- Gołaś, A.; Maszczyk, A.; Zajac, A.; Mikołajec, K.; Stastny, P. Optimizing postactivation potentiation for explosive activities in competitive sports. J. Hum. Kinet. 2016, 52, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Herrera-Valenzuela, T.; Mota, G.; Franchini, E. Influence of half-squat intensity and volume on the subsequent countermovement jump and frequency speed of kick test performance in Taekwondo athletes. Kinesiology 2016, 48, 95–102. [Google Scholar] [CrossRef]
- Ebben, W. Complex training: A brief review. J. Sports Sci. Med. 2002, 1, 42–46. [Google Scholar]
- Duthie, G.; Young, W.; Aitken, D. The acute effects of heavy loads on jump squat performance: An evaluation of the complex and contrast methods of power development. J. Strength. Cond. Res. 2002, 16, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Kasicki, K.; Rydzik, Ł.; Ambroży, T.; Spieszny, M.; Koteja, P. The impact of post-activation performance enhancement protocols on vertical jumps: Systematic review. Appl. Sci. 2024, 14, 9664. [Google Scholar] [CrossRef]
- Prieske, O.; Behrens, M.; Chaabene, H.; Granacher, U.; Maffiuletti, N.A. Time to differentiate postactivation “potentiation” from “performance enhancement” in the strength and conditioning community. Sports Med. 2020, 50, 1559–1565. [Google Scholar] [CrossRef]
- Barley, O.R.; Harms, C.A. Profiling combat sports athletes: Competitive history and outcomes according to sports type and current level of competition. Sports Med. Open 2021, 7, 63. [Google Scholar] [CrossRef]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Martín, E.B.-S.; Thapa, R.K.; Ramirez-Campillo, R. A systematic review with meta-analysis on the effects of plyometric-jump training on the physical fitness of combat sport athletes. Sports 2023, 11, 33. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; A Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Hedges, L.V., Ed.; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Zwierzchowska, A.; Gaweł, E.; Maszczyk, A.; Roczniok, R. The importance of extrinsic and intrinsic compensatory mechanisms to body posture of competitive athletes: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 8808. [Google Scholar] [CrossRef]
- Ouergui, I.; Delleli, S.; Messaoudi, H.; Chtourou, H.; Bouassida, A.; Bouhlel, E.; Franchini, E.; Ardigò, L.P. Acute effects of different activity types and work-to-rest ratios on post-activation performance enhancement in young male and female Taekwondo athletes. Int. J. Environ. Res. Public. Health 2022, 19, 1764. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.F.; Valenzuela, T.H.; Franchini, E. Can different conditioning activities and rest intervals affect the acute performance of Taekwondo turning kick? J. Strength Cond. Res. 2015, 29, 1640–1647. [Google Scholar] [CrossRef]
- Pyun, S.; Kim, S.; Kim, J.; Lee, D.; Hong, J.-H.; Yu, J.-H.; Kim, J.-S.; Yang, H.S.; Kim, S.-G. Effect of post-activation potentiation according to sequence of velocity using isokinetic device on short-term performance of lower extremity: Taekwondo athletes and healthy adults. J. Korean Phys. Ther. 2022, 34, 298–303. [Google Scholar] [CrossRef]
- Castro-Garrido, N.; Valderas-Maldonado, C.; Herrera-Valenzuela, T.; Da Silva, J.F.; Guzmán-Muñoz, E.; Vásquez-Gómez, J.; Branco, B.M.; Zapata-Bastias, J.; Valdés-Badilla, P.; López-Fuenzalida, A. Effects of post-activation potentiation exercises on kicking frequency, fatigue rate, and jump performance in Taekwondo athletes: A case study. Retos 2020, 38, 679–683. [Google Scholar] [CrossRef]
- Oliveira, M.P.; Cochrane, D.; Drummond, M.D.M.; Albuquerque, M.R.; Almeida, P.A.S.; Couto, B.P. No acute effect of whole-body vibration on roundhouse kick and countermovement jump performance of competitive Taekwondo athletes. Braz. J. Kinanthropom Hum. Perform. 2019, 20, 576–584. [Google Scholar] [CrossRef]
- Ouergui, I.; Delleli, S.; Messaoudi, H.; Bridge, C.A.; Chtourou, H.; Franchini, E.; Ardigò, L.P. Effects of conditioning activity mode, rest interval, and effort-to-pause ratio on post-activation performance enhancement in Taekwondo: A randomized study. Front. Physiol. 2023, 14, 1179309. [Google Scholar] [CrossRef]
- Boyacı, A.; Kizilet, T. Acute effects of cluster set and traditional set post-activation potentiation protocols on vertical jump performance. Eur. J. Phys. Educ. Sport Sci. 2023, 9, 38–49. [Google Scholar] [CrossRef]
- Yi, W.; Chen, C.; Zhou, Z.; Cui, W.; Wang, D. Acute effects of ballistic versus heavy-resistance exercises on countermovement jump and rear-hand straight punch performance in amateur boxers. BMC Sports Sci. Med. Rehabil. 2022, 14, 161. [Google Scholar] [CrossRef] [PubMed]
- Finlay, M.J.; Page, R.M.; Greig, M.; Bridge, C.A. The prevalence of pre-conditioning and recovery strategies in senior elite and non-elite amateur boxing. Phys. Sportsmed. 2022, 50, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Eroğlu, S. Acute effects of post-activation potentiation on explosive strength performance in wrestling athletes. Pak. J. Med. Health Sci. 2022, 16, 532. [Google Scholar] [CrossRef]
- Lum, D. Effects of various warm-up protocol on special Judo fitness test performance. J. Strength Cond. Res. 2019, 33, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Langer, A.; Ignatieva, A.; Fischerova, P.; Nitychoruk, M.; Golas, A.; Maszczyk, A. Effect of post-activation potentiation on the force, power, and rate of power and force development of the upper limbs in mixed martial arts (MMA) fighters, taking into account training experience. Balt. J. Health Phys. Act. 2022, 14, 2. [Google Scholar] [CrossRef]
- Margaritopoulos, S.; Theodorou, A.S.; Methenitis, S.; Zaras, N.; Donti, O.; Tsolakis, C. The effect of plyometric exercises on repeated strength and power performance in elite Karate athletes. J. Phys. Educ. Sport 2015, 15, 310. [Google Scholar]
- Yilmaz, A.; Gurses, V.; Gulsen, M. The effect of combined preconditioning strategies on isokinetic strength in well-trained kickboxers. Phys. Educ. Students 2018, 22, 278–284. [Google Scholar] [CrossRef]
- Cimadoro, G.; Mahaffey, R.; Babault, N. Acute neuromuscular responses to short and long roundhouse kick striking paces in professional Muay Thai fighters. J. Sports Med. Phys. Fitness 2019, 59, 204–209. [Google Scholar] [CrossRef]
- Afonso, J.; Moradian, H.; Eslami, R.; Martins, A.; Parnow, A. Does post-activation potentiation protocols affect anaerobic performance in women Taolu Wushu athletes? Preprint 2021. [Google Scholar] [CrossRef]
- Ferreira, S.L.; Panissa, V.L.; Miarka, B.; Franchini, E. Postactivation potentiation: Effect of various recovery intervals on bench press power performance. J. Strength. Cond. Res. 2012, 26, 739–744. [Google Scholar] [CrossRef]
- Liossis, L.D.; Forsyth, J.; Liossis, C.; Tsolakis, C. The acute effect of upper-body complex training on power output of martial art athletes as measured by the bench press throw exercise. J. Hum. Kinet. 2013, 39, 167–175. [Google Scholar] [CrossRef]
- Turner, A.; Comfort, P. Advanced Strength and Conditioning: An Evidence-Based Approach; Routledge: Abingdon, Oxfordshire, UK, 2022. [Google Scholar]
- Franchini, E.; Brito, C.J.; Fukuda, D.H.; Artioli, G.G. The physiology of Judo-specific training modalities. J. Strength Cond. Res. 2014, 28, 1474–1481. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Zabaloy, S.; Mercer, V.P.; Moura, T.B.M.A.; Freitas, T.T.; Boullosa, D. No Post-Activation Performance Enhancement Following a Single Set of Plyometric or Flywheel Exercises in National Team Rugby Players. Appl. Sci. 2024, 14, 9786. [Google Scholar] [CrossRef]
- Genc, S.; Manci, E.; Guducu, C.; Gunay, E. Post-Activation Performance Enhancement (PAPE) interventions at different loads may enhance sprint performance in well-trained athletes. Turk. J. Sports Med. 2024, 59, 88–93. [Google Scholar] [CrossRef]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.C.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of postactivation potentiation and power: Effects of conditioning activity, volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef]
- Kendrick, I.P.; Harris, R.C.; Kim, H.J.; Kim, C.K.; Dang, V.H.; Lam, T.Q.; Bui, T.T.; Smith, M.; Wise, J.A. The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance, and body composition. Amino Acids 2008, 34, 547–554. [Google Scholar] [CrossRef]
- Skulachev, V.P. Biological role of carnosine in the functioning of excitable tissues: Centenary of Gulewitsch’s discovery. Biochemistry 2000, 65, 749–750. [Google Scholar] [PubMed]
- McHugh, M.P.; Connolly, D.A.; Eston, R.G.; Gleim, G.W. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. 1999, 27, 157–170. [Google Scholar] [CrossRef]
- Hamada, T.; Sale, D.G.; MacDougall, J.D.; Tarnopolsky, M.A. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J. Appl. Physiol. 2000, 88, 2131–2137. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Moore, R.L.; Stull, J.T. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am. J. Physiol. 1984, 247, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Gardetto, P.R.; Schluter, J.M.; Fitts, R.H. Contractile function of single muscle fibers after hindlimb suspension. J. Appl. Physiol. 1989, 66, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- Metzger, J.M.; Moss, R.L. Calcium-sensitive cross-bridge transitions in mammalian fast and slow skeletal muscle fibers. Science 1990, 247, 1088–1090. [Google Scholar] [CrossRef]
- Grange, R.W.; Vandenboom, R.; Houston, M.E. Physiological significance of myosin phosphorylation in skeletal muscle. Can. J. Appl. Physiol. 1993, 18, 229–242. [Google Scholar] [CrossRef]
- Nederveen, J.P.; Ibrahim, G.; Fortino, S.A.; Snijders, T.; Kumbhare, D.; Parise, G. Variability in skeletal muscle fiber characteristics during repeated muscle biopsy sampling in human vastus lateralis. Appl. Physiol. Nutr. Metab. 2020, 45, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Čular, D.; Babić, M.; Zubac, D.; Kezić, A.; Macan, I.; Peyré-Tartaruga, L.A.; Ceccarini, F.; Padulo, J. Tensiomyography: From muscle assessment to talent identification tool. Front. Physiol. 2023, 14, 1163078. [Google Scholar] [CrossRef]
- Šimunič, B.; Degens, H.; Rittweger, J.; Narici, M.; Mekjavić, I.B.; Pišot, R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med. Sci. Sports Exerc. 2011, 43, 1619–1625. [Google Scholar] [CrossRef]
- Haugen, T.A.; Breitschädel, F.; Wiig, H.; Seiler, S. Countermovement Jump Height in National-Team Athletes of Various Sports: A Framework for Practitioners and Scientists. Int. J. Sports Physiol Perform. 2021, 16, 184–189. [Google Scholar] [CrossRef]
- Villalon-Gasch, L.; Penichet-Tomas, A.; Sebastia-Amat, S.; Pueo, B.; Jimenez-Olmedo, J.M. Postactivation performance enhancement (PAPE) increases vertical jump in elite female volleyball players. Int. J. Environ. Res. Public Health 2022, 19, 462. [Google Scholar] [CrossRef]
- Seitz, L.B.; de Villarreal, E.S.; Haff, G.G. The temporal profile of postactivation potentiation is related to strength level. J. Strength Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef]
Factor | Description |
---|---|
Participants | Healthy combat sports athletes actively participating in recognized disciplines such as boxing, judo, karate, taekwondo, Brazilian jiu-jitsu, MMA, wrestling, kickboxing, and Muay Thai. Athletes must be free of injuries and any health conditions that could affect neuromuscular performance |
Interventions | Studies must implement a defined post-activation performance enhancement (PAPE) protocol, specifying training parameters such as intensity (%1RM), volume (sets/reps), intra- and inter-set rest periods, and exercise type. Pre- and post-intervention performance metrics must be compared. |
Comparisons | Control or comparison conditions, including rest, standard warm-up, alternative interventions, or between different PAPE protocols. Studies may also compare effects by discipline, competition level, or test results. |
Outcomes | Acute changes in general performance metrics, including but not limited to countermovement jump (CMJ), isokinetic strength, sprint performance, power outputs, or agility tests. Results must be reported with means, standard deviations, or effect sizes. |
Study design | Experimental designs such as randomized controlled trials, crossover designs, or quasi-experimental studies. Studies must include clearly defined protocols and outcome measures |
# | Reference | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Yi et al., 2022 [32] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 8 |
2 | Eroglu et al., 2022 [34] | yes | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 7 |
3 | Langer et al., 2022 [36] | yes | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 4 |
4 | Ferreira et al., 2012 [41] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 7 |
5 | Liossis et al., 2013 [42] | yes | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 8 |
6 | Finlay et al., 2022 [33] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 9 |
7 | Ouergui et al., 2022 [25] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 9 |
8 | Margaritopoulos et al., 2015 [37] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 9 |
9 | Da Silva Santos et al., 2015 [26] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 9 |
10 | Pyun et al., 2022 [27] | yes | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 5 |
11 | Afonso et al., 2021 [40] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 9 |
12 | Catsro-Gatrido et al., 2020 [28] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 8 |
13 | da Silva Santos et al., 2016 [12] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 9 |
14 | Lum, 2019 [35] | yes | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 8 |
15 | Cimadoro et al., 2018 [39] | yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
16 | Oliviera et al., 2018 [29] | yes | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 7 |
17 | Ouergui et al., 2023 [30] | yes | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 |
18 | Boyaci & Kizilet, 2023 [31] | yes | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
19 | Yilmaz et al., 2018 [38] | yes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Ref. | AGE (M ± SD) | SEX | Level | 1RM | D | n | CG | CA | L | RI, min | ISR, s | GPT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yi et al., 2022 [32] | 19–20 ± 1.55 | M | A | 90.80 ± 8.39 kg. squat | BOX | 10 | X | LSJ Squat | LSJ:4 × 8@30% BE SQ:3 × 5@80% HRE | 3/6/9/12 | 90 | CMJ |
Eroglu et al., 2022 [34] | 19.3 ± 1.2 | M | A | 86.3 ± 5.6 kg. squat | WRE | 22 | X | Squat | 1 × 85%1RM | <1/3/6/9 | X | CMJ |
Langer et al., 2022 [36] | 25 ± 7.3 | M | MIX | X | MMA | 48 | NR | BPU/DBP | MIX | 4 | X | DBPT |
Ferreira et al., 2012 [41] | 25 ± 4 | M | A | 74 ± 8 kg. BP | MIX | 11 | X | BP | 6x@50%1RM | NR | NR | PBPT |
Liossis et al., 2013 [42] | 26.1 ± 3.4 | M | A | 83.9 ± 8.4 kg. BP | MIX | 9 | NR | BP BPT | BP:5 × 65%/5 × 85%1RM BPT:3x@30%1RM | 4 | X | BPT |
Finlay et al., 2022 [33] | 19.7 ± 1.2 | M | A | X | BOX | 10 | Y | ERP ISOP | ERP:2 × 5 ISOP:3 × 3s | 3 | NR | CMJ |
Ouergui et al., 2022 [25] | 16 ± 1 | MIX | A | X | TKD | 27 | Y | RHIT CMJ | RHIT:3 × 5s CMJ:3 × 5s | <1 | SSR | CMJ |
Margaritopoulos et al., 2015 [37] | 18.4 ± 1.2 (M); 19.2 ± 0.4 (F) | MIX | A | X | KAR | 10 | X | TJ | 3 × 5 | <1 | 30 | CMJ |
Da Silva Santos et al., 2015 [26] | 20.3 ± 5.2 | M | E | 136.4 ± 30.7 kg. HS | TKD | 11 | Y | HS HS + J J | HS:3 × 1@95% J:3 × 10@40cm HS + J:3 × 2@95% + 4 | 5/10/SSR | 3/30 | CMJ |
Pyun et al., 2022 [27] | 20.2 ± 1.5 | MIX | A | X | TKD | 18 | X | ISO EXT | %MV varied (10–40%, 40–10%) | NR | X | ISO |
Afonso et al., 2021[40] | 19.9 ± 3.3 | F | E | 53.90 ±27.2 kg. squat | TW | 10 | X | Squat | 2 × 4@70%1RM | 5 min | NR | RAST |
Gastro-Gatrido et al., 2020 [28] | 20.5 ± 2.38 (A); 24.75 ± 4.27 (E) | M | MIX | X | TKD | 8 | Y | HS HS + J J | HS:3 × 3@95% HS + J:3 × 2@95% + 4 J:3 × 10 | <1/10 | 3/30 | CMJ |
da Silva Santos et al., 2016 [12] | 20.3 ±5.2 | M | E | 132.8 ± 32.5 kg. HS | TKD | 9 | Y | HS | 1 × 3(50%) 1 × 3(90%) 3 × 3(50%) 3 × 3(90%) | 10 | NR | CMJ |
Lum et al., 2019 [35] | 16–29 | M | A | X | JU | 11 | Y | ER pull + BJ/BJ | 2 × 5 or 3 × 5 BJ/ER pulls | 3 | X | HPT |
Yilmaz et al., 2018 [38] | 22.38 ± 4.01 | M | A | X | KBOX | 15 | Y | HS | 3 × 3@75%1RM | 2 | 10 | ISO |
Cimadoro et al., 2018 [39] | 20 ± 4 | M | A | X | MT | 9 | NR | Kicks | 20 × 1 | <1 | 3 | CMJ |
Oliviera et al., 2018 [29] | 18.6 ± 2.1 | MIX | A | NR | TKD | 15 | X | WBV | 1min@26Hz | NR | NR | CMJ |
Ouergui et al., 2023 [30] | 20.4 ± 1.4 | MIX | A | X | TKD | 21 | Y | RHIT/P | RT:3 × 5s P:3 × 5s(40cm) | 3/7/SSR | 30/45/SSR | CMJ |
Boyaci & Kizilet, 2023 [31] | 15.17 ± 0.718 | F | E | X | TKD | 12 | X | Squat, TS/CS | TS:3 × 12@75% CS:3 × (4 + 4 + 4)@75% | <1/4/8 | 180 | CMJ |
Author | # | Conditioning Activity/Discipline Competitive Level |
---|---|---|
Yi et al., 2022 [32] | CA1 | Loaded squat jumps 4 × 8 × 30%1RM, 3 min rest, 90 s, intraset rest/B-A |
CA2 | Loaded squat jumps 4 × 8 × 30%1RM, 6 min rest, 90 s, intraset rest/B-A | |
CA3 | Loaded squat jumps 4 × 8 × 30%1RM, 9 min rest, 90 s, intraset rest/B-A | |
CA4 | Loaded squat jumps 4 × 8 × 30%1RM, 12 min rest, 90 s, intraset rest/B-A | |
CA5 | Squat 3 × 5 × 80%1RM, 3 min rest, 9 -s, intraset rest/B-A | |
CA6 | Squat 3 × 5 × 80%1RM, 6 min rest, 90 s, intraset rest/B-A | |
CA7 | Squat 3 × 5 × 80%1RM, 9 min rest, 90 s, intraset rest/B-A | |
CA8 | Squat 3 × 5 × 80%1RM, 12 min rest, 90 s, intraset rest/B-A | |
Ouergui et al., 2022 [25] | CA9 | Bandal chagui, 3 × 5 s, 10 min rest, 30 s intraset rest/T-A |
CA10 | Bandal chagui, 3 × 5 s, 10 min rest, 35 s intraset rest/T-A | |
CA11 | Bandal chagui, 3 × 5 s, 10 min rest, self-selected intraset rest/T-A | |
CA12 | Consutive vertical jump, 3 × 5 s, 10 min rest, 30 s intraset rest/T-A | |
CA13 | Consecutive vertical jump, 3 × 5 s, 10 min rest, 35 s intraset rest/T-A | |
CA14 | Consecutive vertical jump, 3 × 5 s, 10 min rest, self-selected interset rest/T-A | |
Margaritopoulos, et al., 2015 [37] | CA15 | Tuck jumps, 3 × 5, 5 min rest, intraset rest 30 sek (a)/K-A |
CA16 | Tuck jumps, 3 × 5, 5 min rest, intraset rest 30 sek (b)/K-A | |
CA17 | Tuck jumps, 3 × 5, 5 min rest, intraset rest 30 sek (c)/K-A | |
CA18 | Control, 5 min rest, (a)/K-A | |
CA19 | Control, 5 min rest, (b)/K-A | |
CA20 | Control, 5 min rest, (c)/K-A | |
Da Silva Santos, et al., 2015 [26] | CA21 | Half squat, 3 × 1 × 95%1RM, 5 min rest, 3 min interset rest/T-E |
CA22 | Half squat, 3 × 1 × 95%1RM, 10 min rest, 3 min interset rest/T-E | |
CA23 | Half squat, 3 × 1 × 95%1RM, self-selected rest, 3 min interset rest/T-E | |
CA24 | Jumps, 3 × 10, 5 min rest, 30 s interset rest/T-E | |
CA25 | Jumps, 3 × 10, 10 min rest, 30 s interset rest/T-E | |
CA26 | Jumps, 3 × 10,self-selected rest, 30 s interset rest/T-E | |
CA27 | Half squat + jumps, 3 × 2 × 95%1RM + 4, 5 min rest, 3 min interset rest/T-E | |
CA28 | Half squat + jumps, 3 × 2 × 95%1RM + 4, 10 min rest, 3 min interset rest/T-E | |
CA29 | Half squat + jumps, 3 × 2 × 95%1RM + 4, self-selected rest, 3 min interset rest/T-E | |
Da Silva Santos, et al., 2016 [12] | CA30 | Half-squat, 1 × 3 × 50%1RM, 10 min rest/T-E |
CA31 | Half-squat, 1 × 3 × 90%1RM, 10 min rest/T-E | |
CA32 | Half-squat, 3 × 3 × 50%1RM, 10 min rest/T-E | |
CA33 | Half-squat, 3 × 3 × 90%1RM, 10 min rest/T-E | |
Cimadoro, et al., 2018 [39] | CA34 | Roundhouse kicks, 20 × 1, 0 min rest, 1 s interset rest/M-A |
CA35 | Roundhouse kicks, 20 × 1, 5 min rest, 1 s interset rest/M-A | |
CA36 | Roundhouse kicks, 20 × 1, 10 min rest, 1 s interset rest/M-A | |
CA37 | Roundhouse kicks, 20 × 1, 20 min rest, 1 s interset rest/M-A | |
CA38 | Roundhouse kicks, 20 × 1, 30 min rest, 1 s interset rest/M-A | |
CA39 | Roundhouse kicks, 20 × 1, 0 min rest, 3 s interset rest/M-A | |
CA40 | Roundhouse kicks, 20 × 1, 5 min rest, 3 s interset rest/M-A | |
CA41 | Roundhouse kicks, 20 × 1, 10 min rest, 3 s interset rest/M-A | |
CA42 | Roundhouse kicks, 20 × 1, 20 min rest, 3 s interset rest/M-A | |
CA43 | Roundhouse kicks, 20 × 1, 30 min rest, 3 s interset rest/M-A | |
Oliviera, et al., 2018 [29] | CA44 | Whole-body vibration 1 × 1 min x 26 hz/T-A |
Ouergui et al., 2023 [30] | CA45 | Bandal chagui, 3 × 5 s, 3 min rest, 30 s intraset rest/T-A |
CA46 | Bandal chagui, 3 × 5 s, 3 min rest, 45 s intraset rest/T-A | |
CA47 | Bandal chagui, 3 × 5 s, 3 min rest, self-selected intraset rest/T-A | |
CA48 | Consecutive vertcial jump, 3 × 5 s, 3 min rest, 30 s intraset rest/T-A | |
CA49 | Consecutive vertcial jump, 3 × 5 s, 3 min rest, 45 s intraset rest/T-A | |
CA50 | Consecutive vertcial jump, 3 × 5 s, 3 min rest, self-selected interset rest/T-A | |
CA51 | Bandal chagui, 3 × 5 s, 7 min rest, 30 s intraset rest/T-A | |
CA52 | Bandal chagui, 3 × 5 s, 7 min rest, 45 s intraset rest/T-A | |
CA53 | Bandal chagui, 3 × 5 s, 7 min rest, self-selected intraset rest/T-A | |
CA54 | Consecutive vertical jump, 3 × 5 s, 7 min rest, 30 s intraset rest/T-A | |
CA55 | Consecutive vertical jump, 3 × 5 s, 7 min rest, 45 s intraset rest/T-A | |
CA56 | Consecutive vertical jump, 3 × 5 s, 7 min rest, self-selected interset rest/T-A | |
Boyaci and Kizilet., 2023 [31] | CA57 | Squat, 3 × 12 × 75%1RM, 30 s rest, 180 s interset/T-E |
CA58 | Squat, 3 × 12 × 75%1RM, 4-min rest, 180 s interset/T-E | |
CA59 | Squat, 3 × 12 × 75%1RM, 8-min rest, 180 s interset/T-E | |
CA60 | Squat, 3 × (4 + 4 + 4) × 75%1RM, 30-s rest, 180 s interset/T-E | |
CA61 | Squat, 3 × (4 + 4 + 4) × 75%1RM, 4 min rest, 180 s interset/T-E | |
CA62 | Squat, 3 × (4 + 4 + 4) × 75%1RM, 8 min rest, 180 s interset/T-E |
Name | Sample Size | ES | SE | ±95%CI | Z-Statistic | p-Palue | Variance | Weight |
---|---|---|---|---|---|---|---|---|
CA1 | 10 | −0.2 | 0.45 | −1.08; 0.68 | −0.44 | 0.66 | 0.20 | 3.28 |
CA2 | 10 | 0 | 0.45 | −0.88; 0.88 | 0.00 | 1.00 | 0.20 | 3.28 |
CA3 | 10 | 0.03 | 0.45 | −0.85; 0.91 | 0.07 | 0.95 | 0.20 | 3.28 |
CA4 | 10 | −0.02 | 0.45 | −0.90; 0.86 | −0.04 | 0.96 | 0.20 | 3.28 |
CA5 | 10 | −0.02 | 0.45 | −0.90; 0.86 | −0.04 | 0.96 | 0.20 | 3.28 |
CA6 | 10 | −0.06 | 0.45 | −0.94; 0.82 | −0.13 | 0.89 | 0.20 | 3.28 |
CA7 | 10 | 0.03 | 0.45 | −0.85; 0.91 | 0.07 | 0.95 | 0.20 | 3.28 |
CA8 | 10 | −0.04 | 0.45 | −0.92; 0.84 | −0.09 | 0.93 | 0.20 | 3.28 |
CA9 | 27 | 0.09 | 0.27 | −0.44; 0.84 | 0.33 | 0.74 | 0.07 | 5.70 |
CA10 | 27 | 0.09 | 0.27 | −0.44; 0.62 | 0.33 | 0.74 | 0.07 | 5.70 |
CA11 | 27 | 0.14 | 0.27 | −0.39; 0.67 | 0.52 | 0.60 | 0.07 | 5.70 |
CA12 | 27 | −0.21 | 0.27 | −0.74; 0.32 | −0.78 | 0.44 | 0.07 | 5.70 |
CA13 | 27 | 0.23 | 0.27 | −0.30; 0.76 | 0.85 | 0.39 | 0.07 | 5.70 |
CA14 | 27 | −0.04 | 0.27 | −0.57; 0.49 | −0.15 | 0.88 | 0.07 | 5.70 |
CA15 | 10 | 0.17 | 0.45 | −0.71; 1.05 | 0.38 | 0.71 | 0.20 | 3.28 |
CA16 | 10 | 0 | 0.45 | −0.88; 0.88 | 0.00 | 1.00 | 0.20 | 3.28 |
CA17 | 10 | 0.14 | 0.45 | −0.74; 1.02 | 0.31 | 0.76 | 0.20 | 3.28 |
CA18 | 10 | −0.2 | 0.45 | −1.08; 0.68 | −0.44 | 0.66 | 0.20 | 3.28 |
CA19 | 10 | −0.22 | 0.45 | −1.10; 0.66 | −0.49 | 0.62 | 0.20 | 3.28 |
CA20 | 10 | −0.37 | 0.45 | −1.25; 0.51 | −0.82 | 0.41 | 0.20 | 3.28 |
CA21 | 11 | −0.06 | 0.43 | −0.90; 0.78 | −0.14 | 0.89 | 0.18 | 3.48 |
CA22 | 11 | 0 | 0.43 | −0.84; 0.84 | 0.00 | 1.00 | 0.18 | 3.48 |
CA23 | 11 | −0.11 | 0.43 | −0.95; 0.73 | −0.26 | 0.80 | 0.18 | 3.48 |
CA24 | 11 | −0.17 | 0.43 | −1.01; 0.67 | −0.40 | 0.69 | 0.18 | 3.48 |
CA25 | 11 | −0.16 | 0.43 | −1.00; 0.68 | −0.37 | 0.71 | 0.18 | 3.48 |
CA26 | 11 | 0.19 | 0.43 | −0.65; 1.03 | 0.44 | 0.66 | 0.18 | 3.48 |
CA27 | 11 | 0.04 | 0.43 | −0.80; 0.88 | 0.09 | 0.93 | 0.18 | 3.48 |
CA28 | 11 | 0.17 | 0.43 | −0.67; 1.01 | 0.40 | 0.69 | 0.18 | 3.48 |
CA29 | 11 | 0.19 | 0.43 | −0.65; 1.03 | 0.44 | 0.66 | 0.18 | 3.48 |
CA30 | 9 | −0.19 | 0.47 | −1.11; 0.73 | −0.40 | 0.69 | 0.22 | 3.09 |
CA31 | 9 | 0.08 | 0.47 | −0.84; 1.00 | 0.17 | 0.86 | 0.22 | 3.09 |
CA32 | 9 | −0.31 | 0.47 | −1.23; 0.61 | −0.66 | 0.51 | 0.22 | 3.09 |
CA33 | 9 | 0.17 | 0.47 | −0.75; 1.09 | 0.36 | 0.72 | 0.22 | 3.09 |
CA34 | 9 | −0.53 | 0.48 | −1.47; 0.41 | −1.10 | 0.27 | 0.23 | 3.00 |
CA35 | 9 | −0.24 | 0.47 | −1.16; 0.68 | −0.51 | 0.61 | 0.22 | 3.09 |
CA36 | 9 | −0.37 | 0.48 | −1.31; 0.57 | −0.77 | 0.44 | 0.23 | 3.00 |
CA37 | 9 | −0.95 | 0.5 | −1.93; 0.03 | −1.90 | 0.06 | 0.25 | 2.84 |
CA38 | 9 | −1.36 | 0.52 | −2.38; −0.34 | −2.62 | 0.009 * | 0.27 | 2.68 |
CA39 | 9 | −0.37 | 0.48 | −1.31; 0.57 | −0.77 | 0.44 | 0.23 | 3.00 |
CA40 | 9 | −0.31 | 0.47 | −1.23; 0.61 | −0.66 | 0.51 | 0.22 | 3.09 |
CA41 | 9 | −0.71 | 0.49 | −1.67; 0.25 | −1.45 | 0.15 | 0.24 | 2.92 |
CA42 | 9 | −1.14 | 0.51 | −2.14; −0.14 | −2.24 | 0.025 * | 0.26 | 2.76 |
CA43 | 9 | −1.33 | 0.52 | −2.35; −0.31 | −2.56 | 0.011 * | 0.27 | 2.68 |
CA44 | 15 | 0.02 | 0.37 | −0.71; 0.75 | 0.05 | 0.96 | 0.14 | 4.18 |
CA45 | 21 | 0.23 | 0.31 | −0.38; 0.84 | 0.74 | 0.46 | 0.10 | 5.04 |
CA46 | 21 | 0.66 | 0.32 | 0.03; 1.29 | 2.06 | 0.039 * | 0.10 | 4.88 |
CA47 | 21 | 0.84 | 0.32 | 0.21; 1.47 | 2.63 | 0.009 * | 0.10 | 4.88 |
CA48 | 21 | 0.53 | 0.31 | −0.08; 1.14 | 1.71 | 0.09 | 0.10 | 5.04 |
CA49 | 21 | 0.93 | 0.32 | 0.30; 1.56 | 2.91 | 0.004 * | 0.10 | 4.88 |
CA50 | 21 | 0.95 | 0.33 | 0.30; 1.60 | 2.88 | 0.004 * | 0.11 | 4.73 |
CA51 | 21 | 1.19 | 0.33 | 0.54; 1.84 | 3.61 | 0.000 * | 0.11 | 4.73 |
CA52 | 21 | 0.93 | 0.32 | 0.30; 1.56 | 2.91 | 0.004 * | 0.10 | 4.88 |
CA53 | 21 | 0.81 | 0.32 | 0.18; 1.44 | 2.53 | 0.011 * | 0.10 | 4.88 |
CA54 | 21 | 0.82 | 0.32 | 0.19; 1.45 | 2.56 | 0.010 * | 0.10 | 4.88 |
CA55 | 21 | 0.65 | 0.32 | 0.02; 1.28 | 2.03 | 0.042 * | 0.10 | 4.88 |
CA56 | 21 | 0.7 | 0.32 | 0.07; 1.33 | 2.19 | 0.029 * | 0.10 | 4.88 |
CA57 | 12 | 0.04 | 0.41 | −0.76; 0.84 | 0.10 | 0.92 | 0.17 | 3.70 |
CA58 | 12 | 0.38 | 0.41 | −0.42; 1.18 | 0.93 | 0.35 | 0.17 | 3.70 |
CA59 | 12 | 0.21 | 0.41 | −0.59; 1.01 | 0.51 | 0.61 | 0.17 | 3.70 |
CA60 | 12 | 0.53 | 0.42 | −0.29; 1.35 | 1.26 | 0.21 | 0.18 | 3.59 |
CA61 | 12 | 1.07 | 0.44 | 0.21; 1.93 | 2.43 | 0.015 * | 0.19 | 3.38 |
CA62 | 12 | 0.34 | 0.41 | −0.46; 1.14 | 0.83 | 0.41 | 0.17 | 3.70 |
Total | 866 | 0.136 | 0.065 | 0.008; 0.263 | 2.090 | 0.037 * |
Name | Sample Size | ES | SE | ±95%CI | Z-Statistic | p-Value | Variance | Weight |
---|---|---|---|---|---|---|---|---|
Boxing | 80 | −0.035 | 0.159 | −0.347; 0.277 | −0.220 | 0.826 | 0.025 | 39.506 |
Karate | 60 | −0.080 | 0.184 | −0.440; 0.280 | −0.435 | 0.663 | 0.034 | 29.630 |
Muay Thai | 90 | −0.701 | 0.155 | −1.006; −0.397 | −4.517 | 0.00001 * | 0.024 | 41.481 |
Taekwondo | 636 | 0.346 | 0.067 | 0.214; 0.477 | 5.137 | <0.000001 * | 0.005 | 220.925 |
Total | 866 | 0.131 | 0.055 | 0.024; 0.239 | 2.389 | 0.017 * |
Name | Sample Size | ES | SE | ±95%CI | Z-Statistic | p-Value | Variance | Weight | Contribution |
---|---|---|---|---|---|---|---|---|---|
Amateur | 659 | 0.14 | 0.08 | −0.01; 0.29 | 1.77 | 0.08 | 0.01 | 169.53 | 0.72 |
Elite | 207 | 0.13 | 0.12 | −0.11; 0.38 | 1.06 | 0.29 | 0.02 | 64.69 | 0.28 |
Total | 866 | 0.13 | 0.07 | 0.01; 0.26 | 2.06 | 0.039 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terbalyan, A.; Skotniczny, K.; Krzysztofik, M.; Chycki, J.; Kasparov, V.; Roczniok, R. Effect of Post-Activation Performance Enhancement in Combat Sports: A Systematic Review and Meta-Analysis—Part I: General Performance Indicators. J. Funct. Morphol. Kinesiol. 2025, 10, 88. https://doi.org/10.3390/jfmk10010088
Terbalyan A, Skotniczny K, Krzysztofik M, Chycki J, Kasparov V, Roczniok R. Effect of Post-Activation Performance Enhancement in Combat Sports: A Systematic Review and Meta-Analysis—Part I: General Performance Indicators. Journal of Functional Morphology and Kinesiology. 2025; 10(1):88. https://doi.org/10.3390/jfmk10010088
Chicago/Turabian StyleTerbalyan, Artur, Karol Skotniczny, Michał Krzysztofik, Jakub Chycki, Vadim Kasparov, and Robert Roczniok. 2025. "Effect of Post-Activation Performance Enhancement in Combat Sports: A Systematic Review and Meta-Analysis—Part I: General Performance Indicators" Journal of Functional Morphology and Kinesiology 10, no. 1: 88. https://doi.org/10.3390/jfmk10010088
APA StyleTerbalyan, A., Skotniczny, K., Krzysztofik, M., Chycki, J., Kasparov, V., & Roczniok, R. (2025). Effect of Post-Activation Performance Enhancement in Combat Sports: A Systematic Review and Meta-Analysis—Part I: General Performance Indicators. Journal of Functional Morphology and Kinesiology, 10(1), 88. https://doi.org/10.3390/jfmk10010088