Next Article in Journal
Automatically Monitoring, Controlling, and Reporting Status/Data for Multiple Product Life Test Stands
Next Article in Special Issue
A Semi-Supervised Based K-Means Algorithm for Optimal Guided Waves Structural Health Monitoring: A Case Study
Previous Article in Journal
Acknowledgement to Reviewers of Inventions in 2018
Previous Article in Special Issue
Distributed Strain Sensing from Different Optical Fiber Configurations
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessArticle
Inventions 2019, 4(1), 6;

Star Type Wireless Sensor Network for Future Distributed Structural Health Monitoring Applications

School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE, UK
Author to whom correspondence should be addressed.
Received: 31 December 2018 / Revised: 13 January 2019 / Accepted: 17 January 2019 / Published: 23 January 2019
(This article belongs to the Special Issue Structural Health Monitoring and Their Applications Across Industry)
PDF [4394 KB, uploaded 23 January 2019]


A star type wireless sensor network based on nine-axis micro-electromechanical inertial motion sensors with the potential to include up to 254 sensor nodes is presented, and an investigation into the mechanical and structural effects of bell ringing on bell towers is presented as a possible application. This low-power and low-cost system facilitates the continual monitoring of mechanical forces exerted by swinging bells on their support and thus helps avoid structural degradation and damage. Each sensor measures bell rotation, and a novel method utilising only the instantaneous rotational angle is implemented to calculate the force caused by bell ringing. In addition, a commonly used, however, previously experimentally unconfirmed assumption that allows great simplification of force calculations was also proven to be valid by correlating predicted theoretical values with measurement data. Forces produced by ringing a 1425 kg bell in Durham Cathedral were characterised and found to agree with literature. The sensor network will form the basis of a toolkit that provides a scalable turnkey method to determine the exact mechanisms that cause excessive vibration in mechanical and architectural structures, and has the potential to find further applications in low-frequency distributed structural health monitoring. View Full-Text
Keywords: wireless; sensor; network; accelerometer; bell; tower; Durham; Cathedral wireless; sensor; network; accelerometer; bell; tower; Durham; Cathedral

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Meech, J.; Crabtree, C.; Rácz, Z. Star Type Wireless Sensor Network for Future Distributed Structural Health Monitoring Applications. Inventions 2019, 4, 6.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics



[Return to top]
Inventions EISSN 2411-5134 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top