Solid-State Hydrolysis (SSH) Improves the Nutritional Value of Plant Ingredients in the Diet of Mugil cephalus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1. Short-Term Trial
2.1.1. Ingredients and Experimental Feeds
2.1.2. Feeding Trial, Samples Collection and Data Recording
2.1.3. Growth Performance and Biometric Parameters
weight)/days
weight
2.1.4. Biochemical Parameters
2.2. Experiment 2. Field Trial
Experimental Feeds, Feeding Trial, Samples Collection and Data Recording
2.3. Statistical Analysis
3. Results
3.1. Experiment 1
3.1.1. Growth Performance
3.1.2. Biochemical Parameters
3.2. Experiment 2. Field Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dror, A. Marine Aquaculture in the Mediterranean. In Sustainable Food Production; Christou, P., Savin, E., Costa-Pierce, B., Eds.; Springer Science & Business Media: Berlin, Germany, 2013; pp. 1121–1138. [Google Scholar]
- Abo-Taleb, H.A.; El-feky, M.M.; Azab, A.M.; Mabrouk, M.M.; Elokaby, M.A.; Ashour, M.; Mansour, A.T.; Abdelzaher, O.F.; Abualnaja, K.M.; Sallam, A.E. Growth performance, feed utilization, gut integrity, and economic revenue of grey mullet, Mugil cephalus, fed an increasing level of dried zooplankton biomass meal as fishmeal substitutions. Fishes 2021, 6, 38. [Google Scholar] [CrossRef]
- Abo-Taleb, H.A.; Ashour, M.; Elokaby, M.A.; Mabrouk, M.M.; El-feky, M.M.; Abdelzaher, O.F.; Gaber, A.; Alsanie, W.F.; Mansour, A.T. Effect of a new feed Daphnia magna (Straus, 1820), as a fish meal substitute on growth, feed utilization, histological status, and economic revenue of grey mullet, Mugil cephalus (Linnaeus 1758). Sustainability 2021, 13, 7093. [Google Scholar] [CrossRef]
- Wassef, E.A.; El Masry, M.H.; Mikhail, F.R. Growth enhancement and muscle structure of striped mullet, Mugil cephalus L., fingerlings by feeding algal meal-based diets. Aquac. Res. 2001, 32, 315–322. [Google Scholar] [CrossRef]
- Kalla, A.; Garg, S.K.; Kaushik, C.P.; Arasu, A.R.T.; Dinodia, G.S. Effect of replacement of fish meal with processed soybean on growth, digestibility and nutrient retention in Mugil cephalus (Linn.) fry. Ind. J. Fisher. 2003, 50, 509–518. [Google Scholar]
- Jana, N.S.; Sudesh; Garg, S.K.; Sabhlok, V.P.; Bhatnagar, A. Nutritive evaluation of lysine- and methionine-supplemented raw vs heat-processed soybean to replace fishmeal as a dietary protein source for grey mullet, Mugil cephalus, and milkfish, Chanos chanos. J. Appl. Aquac. 2012, 24, 69–80. [Google Scholar] [CrossRef]
- El-Dahhar, A.A.; Salama, M.A.; Moustafa, Y.T.; Elmorshedy, E.M. Effect of using equal mixture of seaweeds and marine algae in striped mullet (Mugil cephalus) larval diets on growth performance and feed utilization. J. Arab. Aquacult. Soc. 2014, 9, 145–158. [Google Scholar]
- Gisbert, E.; Mozanzadeh, M.T.; Kotzamanis, Y.; Estévez, A. Weaning wild flathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture 2016, 462, 92–100. [Google Scholar] [CrossRef]
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, G.; Hardy, R.; Herman, E.; Hu, G.; Krogdahl, A.; Nelson, R. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Ai, Q.; Mai, K.; Zhang, W.; Xu, W.; Tan, B.; Zhang, C.; Li, H. Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Comp. Biochem. Physiol. A 2007, 147, 502–508. [Google Scholar] [CrossRef]
- Dalsgaard, J.; Verlhac, V.; Hjermitslev, N.H.; Ekmann, K.S.; Fischer, M.; Klausen, M.; Pedersen, P.B. Effects of exogenous enzymes on apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fed diets with high inclusion of plant-based protein. Anim. Feed Sci. Technol. 2012, 171, 181–191. [Google Scholar] [CrossRef]
- Jiang, T.T.; Feng, L.; Liu, Y.; Jiang, W.D.; Jiang, J.; Li, S.H.; Tang, L.; Kuang, S.Y.; Zhou, X.Q. Effects of exogenous xylanase supplementation in plant protein-enriched diets on growth performance, intestinal enzyme activities and microflora of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac. Nutr. 2014, 20, 632–645. [Google Scholar] [CrossRef]
- Castillo, S.; Gatlin, D.M. Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: A review. Aquaculture 2015, 435, 286–292. [Google Scholar] [CrossRef]
- Fernandes, H.; Moyano, F.; Castro, C.; Salgado, J.; Martínez, F.; Aznar, M.; Fernandes, N.; Ferreira, P.; Gonçalves, M.; Belo, I.; et al. Solid-state fermented brewer’s spent grain enzymatic extract increases in vitro and in vivo feed digestibility in European seabass. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Cheng, H.Z.; Liu, Z.H. Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng. Life Sci. 2016, 4, 1–11. [Google Scholar]
- Opazo, R.; Ortuzar, F.; Navarrete, P.; Espejo, R.; Romero, J. Reduction of soybean meal non-starch polysaccharides and a-galactosides by solid-state fermentation using cellulolytic bacteria obtained from different environments. PLoS ONE 2012, 7, e44783. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Douglas, S.G. A rapid method for the determination of pentosans in wheat flour. Food Chem. 1981, 7, 139–145. [Google Scholar] [CrossRef]
- Haug, W.; Lantzsch, H.J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists. Official Methods of Analysis, 17th ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Heywood, A.A.; Myers, D.J.; Bailey, T.B.; Johnson, L.A. Functional properties of low-fat soy flour produced by an extrusion-expelling system. J. Am. Oil Chem. Soc. 2002, 79, 1249. [Google Scholar] [CrossRef]
- Decker, K.; Keppler, D. Galactosamine hepatitis: Key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev. Physiol. Biochem. Pharmacol. 1974, 71, 77–106. [Google Scholar]
- El-Gendy, M.; Shehab El-Din, M.; Tolan, A. Studies on growth performance and health status when substituting fish meal by a mixture of oil seeds meal in diets of Nile tilapia (Oreochromis niloticus) and grey mullet (Mugil cephalus). Egypt. J. Aquat. Biol. Fish. 2016, 20, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Cozannet, P.; Ma, R.; Zhang, L.; Huang, Y.K.; Preynat, A.; Sun, L.H. Effect of concentration of arabinoxylans and a carbohydrase mixture on energy, amino acids and nutrients total tract and ileal digestibility in wheat and wheat by-product-based diet for pigs. Anim. Feed. Sci. Technol. 2020, 262, 114380. [Google Scholar] [CrossRef]
- Poernama, F.; Wibowo, T.A.; Liu, Y.G. The effect of feeding phytase alone or in combination with nonstarch polysaccharides-degrading enzymes on broiler performance, bone mineralization, and carcass traits. J. Appl. Poult. Res. 2021, 30, 100134. [Google Scholar] [CrossRef]
- Polakof, S.; Panserat, S.; Soengas, J.L.; Moon, T.W. Glucose metabolism in fish: A review. J. Comp. Physiol. B 2012, 182, 1015–1045. [Google Scholar] [CrossRef]
- Enes, P.; Panserat, S.; Kaushik, S.; Oliva-Teles, A.A. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol. Biochem. 2009, 35, 519–539. [Google Scholar] [CrossRef] [PubMed]
- Vallet, F.; Berhaut, J.; Leray, C.; Bonnet, B.; Pic, P. Preliminary experiments on the artificial feeding of Mugilidae. Helgol. Wiss Meer 1970, 20, 610–619. [Google Scholar] [CrossRef] [Green Version]
- Chervinski, J. Growth of the golden grey mullet (Liza aurata (Risso)) in saltwater ponds during 1974. Aquaculture 1976, 7, 51–57. [Google Scholar] [CrossRef]
- Richard, M.; Maurice, J.T.; Anginot, A.; Paticat, F.; Verdegem, M.C.J.; Hussenot, J.M.E. Influence of periphyton substrates and rearing density on Liza aurata growth and production in marine nursery ponds. Aquaculture 2010, 310, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Legarda, E.C.; Poli, M.A.; Martins, M.A.; Pereira, S.A.; Martins, M.L.; Machado, C.; de Lorenzo, M.A.; do Nascimento Vieira, F. Integrated recirculating aquaculture system for mullet and shrimp using biofloc technology. Aquaculture 2019, 512, 734308. [Google Scholar] [CrossRef]
- Nengas, I.; Karacostas, I.; Neofitou, C.; Tsiara, V.; Tsiamis, V.; Kougioumtzis, N.; Karapanagiotidis, I.T. Growth and feed utilization by golden grey mullet (Liza aurata) in a coastal lagoon ecosystem, fed compound feeds with varying protein levels. Isr. J. Aquac.-Bamidgeh 2014, 66, 20784. [Google Scholar] [CrossRef]
- Pujante, I.M.; Díaz-López, M.; Mancera, J.M.; Moyano, F.J. Characterization of digestive enzymes protease and alpha-amylase activities in the thick-lipped grey mullet (Chelon labrosus, Risso 1827). Aquac. Res. 2017, 48, 367–376. [Google Scholar] [CrossRef]
- Gilannejad, N.; de Las Heras, V.; Martos-Sitcha, J.A.; Moyano, F.J.; Yúfera, M.; Martínez-Rodríguez, G. Ontogeny of expression and activity of digestive enzymes and establishment of gh/igf1 axis in the omnivorous fish Chelon labrosus. Animals 2020, 10, 874. [Google Scholar] [CrossRef]
- Maas, R.M.; Verdegem, M.C.J.; Schrama, J.W. Effect of non-starch polysaccharide composition and enzyme supplementation on growth performance and nutrient digestibility in Nile tilapia (Oreochromis niloticus). Aquac. Nutr. 2018, 25, 622–632. [Google Scholar] [CrossRef] [Green Version]
- Zamini, A.; Kanani, H.G.; Esmaeili, A.; Ramezani, S.; Zoriezahra, S.J. Effects of two dietary exogenous multi-enzyme supplementation, Natuzyme® and beta-mannanase (Hemicell®), on growth and blood parameters of Caspian salmon (Salmo trutta caspius). Comp. Clin. Pathol. 2014, 23, 187–192. [Google Scholar] [CrossRef]
- Adeola, O.; Bedford, M.R. Exogenous dietary xylanase ameliorates viscosity-induced anti-nutritional effects in wheat-based diets for White Pekin ducks (Anas platyrinchos domesticus). Br. J. Nutr. 2004, 92, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.K.; Kumar, V.; Makkar, H.P.; De Boeck, G.; Becker, K. Non-starch polysaccharides and their role in fish nutrition–A review. Food Chem. 2011, 127, 1409–1426. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Gabaudan, J.; Dong, F.M.; Hardy, R.W. Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout (Oncorhynchus mykiss) fed soybean meal based diets. Aquac. Res. 2001, 32, 583–592. [Google Scholar] [CrossRef]
- Cao, L.; Wang, W.; Yang, C.; Yang, Y.; Diana, J.; Yakupitiyage, A.; Luo, Z.; Li, D. Application of microbial phytase in fish feed. Enzym. Microb. Technol. 2007, 40, 497–507. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Dong, F.M.; Hardy, R.W. Effects of dietary supplements on the availability of minerals in fish meal; preliminary observations. Aquaculture 1998, 160, 283–303. [Google Scholar] [CrossRef]
- Denstadli, V.; Hillestad, M.; Verlhac, V.; Klausen, M.; Øverland, M. Enzyme pretreatment of fibrous ingredients for carnivorous fish: Effects on nutrient utilisation and technical feed quality in rainbow trout (Oncurhynchus mykiss). Aquaculture 2011, 319, 391–397. [Google Scholar] [CrossRef]
Ingredient (in g/100 g d.w.) | EXP | COM |
---|---|---|
Fishmeal 67/10 | 10.00 | |
Soybean meal 47 | 18.83 | |
Defatted rice bran | 10.00 | |
Soybean protein concentrate | 8.00 | |
Corn gluten meal 60 Guar meal (Korma) | 8.00 11.16 | |
Brewer’s spent grain | 20.00 | |
Fish oil | 3.25 | |
Sunflower oil | 2.60 | |
Soy lecithin | 0.65 | |
Vitamin/mineral premix | 0.05 | |
Taurine | 0.30 | |
Yeast | 3.00 | |
Squid hydrolysate | 1.50 | |
Proximate composition (in g/100 g) | ||
Crude protein | 35.60 | 35.00 |
Crude fat | 9.03 | 9.00 |
Digestible carbohydrates (starch + oligosaccharides) | 10.56 | 4.00 |
NSP | 27.73 | |
Ash | 6.21 | 8.00 |
Phosphorus | 0.85 | 1.30 |
Phytate P | 0.35 | |
Gross Energy (MJ kg−1) | 17.80 | 17.10 |
Soluble Protein | Reducing Sugars | Pentoses | Phosphorus | Phytate | Water Retention | |
---|---|---|---|---|---|---|
COM | 3.13 ± 0.05 A | 0.45 ± 0.00 A | 0.29 ± 0.01 A | 1.31 ± 0.02 A | 0.22 ± 0.00 A | 305.77 ± 6.89 A |
EXP | 6.83 ± 1.13 Ba | 2.08 ± 0.02 Ba | 0.28 ± 0.00 Aa | 0.83 ± 0.10 Ba | 0.34 ± 0.01 Ba | 305.45 ± 3.87 Aa |
EXP/enz | 5.58 ± 0.24 Ba | 2.83 ± 0.03 Bb | 0.36 ± 0.05 Bb | 0.76 ± 0.03 Ba | 0.21 ± 0.02 Bb | 280.94 ± 9.29 Bb |
Parameter | COM | EXP | EXP/enz |
---|---|---|---|
Initial body mass (g/fish) | 12.02 ± 0.33 A | 11.89 ± 0.55 Aa | 12.38 ± 0.16 Aa |
Final body mass (g/fish) | 16.60 ± 0.60 A | 13.21 ± 0.49 Ba | 15.36 ± 0.04 Ab |
Feed consumption (g/fish) | 10.02 ± 0.17 A | 8.65 ± 0.45 Ba | 9.23 ± 0.17 Ab |
FCR (g feed/g fish) | 2.19 ± 0.11 A | 5.89 ± 0.60 Ba | 3.11 ± 0.19 Bb |
SGR (%/day) | 0.75 ± 0.02 A | 0.25 ± 0.05 Ba | 0.50 ± 0.03 Bb |
HIS (%) | 1.27 ± 0.07 A | 0.93 ± 0.18 Ba | 0.83 ± 0.20 Bb |
Condition factor (K) | 1.11 ± 0.12 A | 1.07 ± 0.12 Ba | 1.07 ± 0.17 Ba |
Parameter | COM | EXP | EXP/enz |
---|---|---|---|
In plasma (mg/dL) | |||
Glucose | 80.54 ± 26.21 A | 92.12 ± 29.61 Aa | 76.76 ± 14.81 Aa |
Lactate | 67.28 ± 32.89 A | 56.71 ± 11.07 Ba | 47.13 ± 22.73 Bb |
Protein | 32.60 ± 5.46 A | 34.62 ± 10.08 Aa | 38.23 ± 4.35 Aa |
TAG | 38.09 ± 7.60 A | 34.13 ± 4.76 Aa | 42.53 ± 6.48 Bb |
In liver (mg/g w/w) | |||
Glucose | 1.41 ± 0.48 A | 1.37 ± 0.56 Aa | 1.34 ± 0.29 Aa |
Glycogen | 7.26 ± 1.26 A | 2.61 ± 1.52 Ba | 3.31 ± 1.32 Ba |
In muscle (mg/g w/w) | |||
Glucose | 0.77 ± 0.30 A | 0.84 ± 0.28 Aa | 0.72 ± 0.30 Aa |
Glycogen | 0.78 ± 0.45 A | 0.38 ± 0.14 Ba | 0.79 ± 0.31 Ab |
Lactate | 24.57 ± 6.63 A | 26.35 ± 7.62 Ba | 24.96 ± 3.90 Aa |
TAG | 10.48 ± 5.14 A | 10.79 ± 3.83 Aa | 11.17 ± 7.15 Aa |
Parameter | COM | EXP | EXP/enz |
---|---|---|---|
Initial body mass (g/fish) | 40.13 ± 0.18 A | 38.25 ± 0.35 Ba | 40.50 ± 0.71 Ab |
Final body mass (g/fish) | 88.05 ± 11.53 A | 94.65 ± 13.08 Aa | 104.70 ± 13.86 Aa |
Feed consumption (g/fish) | 18.58 ± 0.96 A | 17.83 ± 1.68 Aa | 17.76 ± 0.01 Aa |
FCR (g feed/g fish) | 2.65 ± 0.12 A | 2.67 ± 0.29 Aa | 2.33 ± 0.58 Bb |
SGR (%/day) | 0.32 ± 0.08 A | 0.38 ± 0.09 Aa | 0.43 ± 0.09 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Antequera, F.P.; Barranco-Ávila, I.; Martos-Sitcha, J.A.; Moyano, F.J. Solid-State Hydrolysis (SSH) Improves the Nutritional Value of Plant Ingredients in the Diet of Mugil cephalus. Fishes 2022, 7, 4. https://doi.org/10.3390/fishes7010004
Martínez-Antequera FP, Barranco-Ávila I, Martos-Sitcha JA, Moyano FJ. Solid-State Hydrolysis (SSH) Improves the Nutritional Value of Plant Ingredients in the Diet of Mugil cephalus. Fishes. 2022; 7(1):4. https://doi.org/10.3390/fishes7010004
Chicago/Turabian StyleMartínez-Antequera, Francisca P., Isabel Barranco-Ávila, Juan A. Martos-Sitcha, and Francisco J. Moyano. 2022. "Solid-State Hydrolysis (SSH) Improves the Nutritional Value of Plant Ingredients in the Diet of Mugil cephalus" Fishes 7, no. 1: 4. https://doi.org/10.3390/fishes7010004
APA StyleMartínez-Antequera, F. P., Barranco-Ávila, I., Martos-Sitcha, J. A., & Moyano, F. J. (2022). Solid-State Hydrolysis (SSH) Improves the Nutritional Value of Plant Ingredients in the Diet of Mugil cephalus. Fishes, 7(1), 4. https://doi.org/10.3390/fishes7010004