Cytokines Studied in Carp (Cyprinus carpio L.) in Response to Important Diseases
Abstract
:1. Introduction
2. Fish Immune System
3. Cytokines
3.1. Cytokine Studied in Response to Cyprinid Herpesvirus 3 Infection
3.2. Cytokine Studied in Response to Spring Viremia of Carp Infections
3.3. Cytokine Studied in Response to Carp Edema Virus Infection
3.4. Cytokine Studied in Response to Aeromonas hydrophila Infections
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Hedrick, R.P.; Gilad, O.; Yun, S.; Spangenberg, J.V.; Marty, G.D.; Nordhausen, R.W.; Kebus, M.J.; Bercovier, H.; Eldar, A. A herpesvirus associated with mass mortality of juvenile and adult koi, a strain of common carp. J. Aquat. Anim. Health. 2000, 12, 44–57. [Google Scholar] [CrossRef]
- Council Directive 2006/88/EC. Council Directive 2006/88/EC on animal health requirements for aquaculture animals products thereof, and on the prevention and control of certain diseases in aquaculture. Off. J. Eur. Union 2006, 328, 14–56. [Google Scholar]
- European Commission. Regulation (EU) 2016/429 of the European Parliament and of the Council of 9 March 2016 on transmissible animal diseases and amending and repealing certain acts in the area of animal health (“Animal Health Law”). Off. J. Eur. Union 2016, 84, 1–208. [Google Scholar]
- Way, K.; Haenen, O.; Stone, D.; Adamek, M.; Bergmann, S.M.; Bigarré, L.; Diserens, N.; El-Matbouli, M.; Gjessing, M.C.; Jung-Schroers, V.; et al. Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio. Dis. Aquat. Org. 2017, 126, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Way, K.; Stone, D. Emergence of carp edema virus-like (CEV-like) disease in the UK. CEFAS Finfish News 2013, 15, 32–34. [Google Scholar]
- Matras, M.; Borzym, E.; Stone, D.; Way, K.; Stachnik, M.; Maj-Paluch, J.; Palusińska, M.; Reichert, M. Carp edema virus in Polish aquaculture—Evidence of significant sequence divergence and a new lineage in common carp Cyprinus carpio (L.). J. Fish. Dis. 2017, 40, 319–325. [Google Scholar] [CrossRef]
- Ahne, W.; Bjorklund, H.V.; Essbauer, S.; Fijan, N.; Kurath, G.; Winton, J.R. Spring viremia of carp (SVC). Dis. Aquat. Org. 2002, 52, 261–272. [Google Scholar] [CrossRef]
- Stratev, D.; Odeyemi, O. An overview of motile Aeromonas septicaemia management. Aquac. Int. 2017, 25, 1095–1105. [Google Scholar] [CrossRef]
- Camus, A.C.; Durborow, R.M.; Hemstreet, W.G.; Thune, R.L.; Hawke, J.P. Aeromonas bacterial infections-motile aeromonad septicemia. South. Reginal Aquac. Cent. 1998, 478. Available online: http://fisheries.tamu.edu/files/2013/09/SRAC-Publication-No.-478-Aeromonas-Bacterial-Infections-Motile-Aeromonad-Septicemia.pdf (accessed on 12 November 2021).
- Pridgeon, J.; Klesius, P. Virulence of Aeromonas hydrophila to channel catfish Ictaluras punctatus fingerlings in the presence and absence of bacterial extracellular products. Dis. Aquat. Org. 2011, 95, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.C.; Secombes, C.J. Immunology of Fish. eLS 2015, 1–9. [Google Scholar] [CrossRef]
- Press, C.; Evensen, Ø. The morphology of the immune system in teleost fishes. Fish Shellfish Immunol. 1999, 9, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Soulliere, C.; Dixon, B. Immune System Organs of Bony Fishes. In References Module in Life Sciences; Elsevier: North York, ON, Canada, 2017. [Google Scholar] [CrossRef]
- Esteban, M. An Overview of the Immunological Defenses in Fish Skin. ISRN Immunol. 2012, 2012, 853470. [Google Scholar] [CrossRef] [Green Version]
- Salinas, I.; Zhang, Y.-A.; Sunyer, J.O. Mucosal immunoglobulins and B cells of teleost fish. Dev. Comp. Immunol. 2011, 35, 1346–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, S.K. The innate immune response of finfish—A review of current knowledge. Fish Shellfish Immunol. 2007, 23, 1127–1151. [Google Scholar] [CrossRef]
- Rombout, J.H.W.M.; Huttenhuis, H.B.T.; Picchietti, S.; Scapigliati, G. Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol. 2005, 19, 441–455. [Google Scholar] [CrossRef]
- Smith, N.C.; Rise, M.L.; Christian, S.L. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front. Immunol. 2019, 10, 2292. [Google Scholar] [CrossRef] [Green Version]
- Mehana, E.E.; Rahmani, A.H.; Aly, S.M. Immunostimulants and Fish Culture: An Overview. Annu. Res. Rev. Biol. 2015, 5, 477–489. [Google Scholar] [CrossRef]
- Tortorella, D.; Gewurz, B.E.; Furman, M.H.; Schust, D.J.; Ploegh, H.L. Viral Subversion of the Immune System. Annu. Rev. Immunol. 2000, 18, 861–926. [Google Scholar] [CrossRef]
- Kerkeni, L.; Ruano, P.; Delgado, L.L.; Picco, S.; Villegas, L.; Tonelli, F.; Merlo, M.; Rigau, J.; Diaz, D.; Masuelli, M. We Are IntechOpen, the World’ s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%; Intech: Rijeka, Croatia, 2016; Volume 13. [Google Scholar]
- Alejo, A.; Tafalla, C. Chemokines in teleost fish species. Dev. Comp. Immunol. 2011, 35, 1215–1222. [Google Scholar] [CrossRef]
- Ellis, A. Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol. 2001, 25, 827–839. [Google Scholar] [CrossRef]
- Goodbourn, S.; Didcock, L.; Randall, R.E. Interferons: Cell signalling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol. 2000, 81, 2341–2364. [Google Scholar] [CrossRef] [PubMed]
- Jensen, I.; Robertsen, B. Effect of double-stranded RNA and interferon on the antiviral activity of Atlantic salmon cells against infectious salmon anemia virus and infectious pancreatic necrosis virus. Fish Shellfish Immunol. 2002, 13, 221–241. [Google Scholar] [CrossRef] [PubMed]
- Langevin, C.; Aleksejeva, E.; Passoni, G.; Palha, N.; Levraud, J.-P.; Boudinot, P. The Antiviral Innate Immune Response in Fish: Evolution and Conservation of the IFN System. J. Mol. Biol. 2013, 425, 4904–4920. [Google Scholar] [CrossRef] [PubMed]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Mather, T.P.; Hokeness, K.L. Calling in the Troops: Regulation of Inflammatory Cell Trafficking Through Innate Cytokine/Chemokine Networks. Viral Immunol. 2003, 16, 291–306. [Google Scholar] [CrossRef]
- Secombes, C.; Wang, T.; Bird, S. The interleukins of fish. Dev. Comp. Immunol. 2011, 35, 1336–1345. [Google Scholar] [CrossRef]
- Zou, J.; Secombes, C.J. The Function of Fish Cytokines. Biology 2016, 5, 23. [Google Scholar] [CrossRef]
- Van Asseldonk, E.J.; Stienstra, R.; Koenen, T.B.; Van Tits, L.J.; Joosten, L.A.; Tack, C.J.; Netea, M.G. The Effect of the Interleukin-1 Cytokine Family Members IL-1F6 and IL-1F8 on Adipocyte Differentiation. Obesity 2010, 18, 2234–2236. [Google Scholar] [CrossRef]
- Ng, T.H.S.; Britton, G.; Hill, E.V.; Everhagen, J.; Burton, B.R.; Wraith, D.C. Regulation of Adaptive Immunity; The Role of Interleukin-10. Front. Immunol. 2013, 4, 129. [Google Scholar] [CrossRef] [Green Version]
- Zoua, J.; Grabowski, P.S.; Cunningham, C.; Secombes, C.J. Molecular Cloning of Interleukin 1β from Rainbow Trout Oncorhynchus Mykiss Reveals no Evidence of an Ice Cut Site. Cytokine 1999, 11, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Magnadottir, B. Immunological Control of Fish Diseases. Mar. Biotechnol. 2010, 12, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Tafalla, C.; Figueras, A.; Novoa, B. Viral hemorrhagic septicemia virus alters turbot Scophthalmus maximus macrophage nitric oxide production. Dis. Aquat. Org. 2001, 47, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Lam, T.; Sin, Y. Cytokine-mediated antimicrobial immune response of catfish, Clarias gariepinus, as a defence againstAeromonas hydrophila. Fish Shellfish Immunol. 1997, 7, 93–104. [Google Scholar] [CrossRef]
- Saeij, J.P.; Stet, R.J.; de Vries, B.J.; van Muiswinkel, W.B.; Wiegertjes, G. Molecular and functional characterization of carp TNF: A link between TNF polymorphism and trypanotolerance? Dev. Comp. Immunol. 2003, 27, 29–41. [Google Scholar] [CrossRef]
- Garcia-Castillo, J.; Pelegrín, P.; Mulero, V.; Meseguer, J. Molecular cloning and expression analysis of tumor necrosis factor α from a marine fish reveal its constitutive expression and ubiquitous nature. Immunogenetics 2002, 54, 200–207. [Google Scholar] [CrossRef]
- Zou, J.; Secombes, C.; Long, S.; Miller, N.; Clem, L.; Chinchar, V. Molecular identification and expression analysis of tumor necrosis factor in channel catfish (Ictalurus punctatus). Dev. Comp. Immunol. 2003, 27, 845–858. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, D.; Wei, H.; Du, L.; Zhao, T.; Wang, X.; Zhou, H. Functional characterization of TNF-α in grass carp head kidney leukocytes: Induction and involvement in the regulation of NF-κB signaling. Fish Shellfish Immunol. 2012, 33, 1123–1132. [Google Scholar] [CrossRef]
- Savan, R.; Kono, T.; Igawa, D.; Sakai, M. A novel tumor necrosis factor (TNF) gene present in tandem with theTNF-? gene on the same chromosome in teleosts. Immunogenetics 2005, 57, 140–150. [Google Scholar] [CrossRef]
- Nascimento, D.S.; Pereira, P.; Reis, M.; Vale, A.D.; Zou, J.; Silva, M.T.; Secombes, C.J.; dos Santos, N. Molecular cloning and expression analysis of sea bass (Dicentrarchus labrax L.) tumor necrosis factor-α (TNF-α). Fish Shellfish Immunol. 2007, 23, 701–710. [Google Scholar] [CrossRef]
- Verrecchia, F.; Mauviel, A. TGF-β and TNF-α: Antagonistic cytokines controlling type I collagen gene expression. Cell. Signal. 2004, 16, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Li, M.O.; Flavell, R.A. TGF-β: A Master of All T Cell Trades. Cell 2008, 134, 392–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yi, H.; Xia, X.-P.; Zhao, Y. Transforming growth factor-beta: An important role in CD4+CD25+ regulatory T cells and immune tolerance. Autoimmunity 2006, 39, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Kehrl, J.; Wakefield, L.M.; Roberts, A.B.; Jakowlew, S.; Alvarez-Mon, M.; Derynck, R.; Sporn, M.B.; Fauci, A.S. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 1986, 163, 1037–1050. [Google Scholar] [CrossRef]
- Qi, P.; Xie, C.; Guo, B.; Wu, C. Dissecting the role of transforming growth factor-β1 in topmouth culter immunobiological activity: A fundamental functional analysis. Sci. Rep. 2016, 6, 27179. [Google Scholar] [CrossRef] [Green Version]
- Haddad, G.; Hanington, P.C.; Wilson, E.C.; Grayfer, L.; Belosevic, M. Molecular and functional characterization of goldfish (Carassius auratus L.) transforming growth factor beta. Dev. Comp. Immunol. 2008, 32, 654–663. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yasui, Y.; Takahashi, Y.; Kohchi, C.; Soma, G.-I.; Inagawa, H. Comparative immunological analysis of innate immunity activation after oral administration of wheat fermented extract to teleost fish. Anticancer Res. 2009, 29, 4871–4877. [Google Scholar]
- Bird, S.; Tafalla, C. Teleost Chemokines and Their Receptors. Biology 2015, 4, 756–784. [Google Scholar] [CrossRef] [Green Version]
- Davison, A.J. Herpesvirus systematics. Vet. Microbiol. 2010, 143, 52–69. [Google Scholar] [CrossRef] [Green Version]
- Ababneh, M.; Hananeh, W.; Alzghoul, M. Mass mortality associated with koi herpesvirus in common carp in Iraq. Heliyon 2020, 6, e04827. [Google Scholar] [CrossRef]
- Bergmann, S.M.; Jin, Y.; Franzke, K.; Grunow, B.; Wang, Q.; Klafack, S. Koi herpesvirus (KHV) and KHV disease (KHVD)—A recently updated overview. J. Appl. Microbiol. 2020, 129, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Hedges, S.B. A molecular timescale for vertebrate evolution. Nature 1998, 392, 917–920. [Google Scholar] [CrossRef] [PubMed]
- McGeoch, D.J.; Gatherer, D. Integrating Reptilian Herpesviruses into the Family Herpesviridae. J. Virol. 2005, 79, 725–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossman, K.L.; Ashkar, A.A. Herpesviruses and the Innate Immune Response. Viral Immunol. 2005, 18, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Adamek, M.; Syakuri, H.; Harris, S.; Rakus, K.; Brogden, G.; Matras, M.; Irnazarow, I.; Steinhagen, D. Cyprinid herpesvirus 3 infection disrupts the skin barrier of common carp (Cyprinus carpio L.). Veter.-Microbiol. 2013, 162, 456–470. [Google Scholar] [CrossRef] [PubMed]
- Kitao, Y.; Kono, T.; Korenaga, H.; Iizasa, T.; Nakamura, K.; Savan, R.; Sakai, M. Characterization and expression analysis of type I interferon in common carp Cyprinus carpio L. Mol. Immunol. 2009, 46, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Costes, B.; Raj, V.S.; Michel, B.; Fournier, G.; Thirion, M.; Gillet, L.; Mast, J.; Lieffrig, F.; Bremont, M.; Vanderplasschen, A. The Major Portal of Entry of Koi Herpesvirus in Cyprinus carpio Is the Skin. J. Virol. 2009, 83, 2819–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, V.S.; Fournier, G.; Rakus, K.; Ronsmans, M.; Ouyang, P.; Michel, B.; Delforges, C.; Costes, B.; Farnir, F.; Leroy, B.; et al. Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells. Vet. Res. 2011, 42, 92. [Google Scholar] [CrossRef] [Green Version]
- Glover, C.; Bucking, C.; Wood, C. The skin of fish as a transport epithelium: A review. J. Comp. Physiol. B 2013, 183, 877–891. [Google Scholar] [CrossRef]
- Adamek, M.; Rakus, K.; Chyb, J.; Brogden, G.; Huebner, A.; Irnazarow, I.; Steinhagen, D. Interferon type I responses to virus infections in carp cells: In vitro studies on Cyprinid herpesvirus 3 and Rhabdovirus carpio infections. Fish Shellfish Immunol. 2012, 33, 482–493. [Google Scholar] [CrossRef]
- Hwang, J.-A.; Kim, J.E.; Kim, H.-S.; Lee, J.-H. Immune Response to Koi Herpesvirus (KHV) of Koi and Koi × Red Common Carp (Cyprinus carpio). Dev. Reprod. 2017, 21, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamek, M.; Oschilewski, A.; Wohlsein, P.; Jung-Schroers, V.; Teitge, F.; Dawson, A.; Gela, D.; Piackova, V.; Kocour, M.; Adamek, J.; et al. Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture. Vet. Res. 2017, 48, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunarto, A.; Liongue, C.; McColl, K.A.; Adams, M.M.; Bulach, D.; Crane, M.; Schat, K.A.; Slobedman, B.; Barnes, A.; Ward, A.; et al. Koi Herpesvirus Encodes and Expresses a Functional Interleukin-10. J. Virol. 2012, 86, 11512–11520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakus, K.; Irnazarow, I.; Adamek, M.; Palmeira, L.; Kawana, Y.; Hirono, I.; Kondo, H.; Matras, M.; Steinhagen, D.; Flasz, B.; et al. Gene expression analysis of common carp (Cyprinus carpio L.) lines during Cyprinid herpesvirus 3 infection yields insights into differential immune responses. Dev. Comp. Immunol. 2012, 37, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Adamek, M.; Rakus, K.; Brogden, G.; Matras, M.; Chyb, J.; Hirono, I.; Kondo, H.; Aoki, T.; Irnazarow, I.; Steinhagen, D. Interaction between type I interferon and cyprinid herpesvirus 3 in two genetic lines of common carp Cyprinus carpio. Dis. Aquat. Org. 2014, 111, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neave, M.; Sunarto, A.; McColl, K.A. Transcriptomic analysis of common carp anterior kidney during Cyprinid herpesvirus 3 infection: Immunoglobulin repertoire and homologue functional divergence. Sci. Rep. 2017, 7, srep41531. [Google Scholar] [CrossRef] [Green Version]
- Tadmor-Levi, R.; Doron-Faigenboim, A.; Marcos-Hadad, E.; Petit, J.; Hulata, G.; Forlenza, M.; Wiegertjes, G.F.; David, L. Different transcriptional response between susceptible and resistant common carp (Cyprinus carpio) fish hints on the mechanism of CyHV-3 disease resistance. BMC Genom. 2019, 20, 1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunarto, A.; McColl, K. Expression of immune-related genes of common carp during cyprinid herpesvirus 3 infection. Dis. Aquat. Org. 2015, 113, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Kongchum, P.; Sandel, E.; Lutzky, S.; Hallerman, E.M.; Hulata, G.; David, L.; Palti, Y. Association between IL-10a single nucleotide polymorphisms and resistance to cyprinid herpesvirus-3 infection in common carp (Cyprinus carpio). Aquaculture 2011, 315, 417–421. [Google Scholar] [CrossRef]
- Lee, X.; Yi, Y.; Weng, S.; Zeng, J.; Zhang, H.; He, J.; Dong, C. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing. Fish Shellfish Immunol. 2016, 49, 213–224. [Google Scholar] [CrossRef]
- Xu, J.-R.; Bently, J.; Beck, L.; Reed, A.; Miller-Morgan, T.; Heidel, J.R.; Kent, M.L.; Rockey, D.D.; Jin, L. Analysis of koi herpesvirus latency in wild common carp and ornamental koi in Oregon, USA. J. Virol. Methods 2012, 187, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Embregts, C.; Tadmor-Levi, R.; Veselý, T.; Pokorová, D.; David, L.; Wiegertjes, G.; Forlenza, M. Intra-muscular and oral vaccination using a Koi Herpesvirus ORF25 DNA vaccine does not confer protection in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2019, 85, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gao, S.; Luan, W.; Zhou, J.; Wang, H. Generation and functional evaluation of a DNA vaccine co-expressing Cyprinid herpesvirus-3 envelope protein and carp interleukin-1 beta. Fish Shellfish Immunol. 2018, 80, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Adamek, M.; Matras, M.; Dawson, A.; Piackova, V.; Gela, D.; Kocour, M.; Adamek, J.; Kamiński, R.; Rakus, K.; Bergmann, S.M.; et al. Type I interferon responses of common carp strains with different levels of resistance to koi herpesvirus disease during infection with CyHV-3 or SVCV. Fish Shellfish Immunol. 2019, 87, 809–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakus, K.; Ronsmans, M.; Forlenza, M.; Boutier, M.; Piazzon, M.C.; Jazowiecka-Rakus, J.; Gatherer, D.; Athanasiadis, A.; Farnir, F.; Davison, A.J.; et al. Conserved Fever Pathways across Vertebrates: A Herpesvirus Expressed Decoy TNF-α Receptor Delays Behavioral Fever in Fish. Cell Host Microbe 2017, 21, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, P.; Rakus, K.; Boutier, M.; Reschner, A.; Leroy, B.; Ronsmans, M.; Fournier, G.; Scohy, S.; Costes, B.; Wattiez, R.; et al. The IL-10 homologue encoded by cyprinid herpesvirus 3 is essential neither for viral replication in vitro nor for virulence in vivo. Vet. Res. 2013, 44, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, H.; Liu, H.; Kong, R.; Wang, L.; Wang, Y.; Hu, W.; Guo, Q. Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway. Fish Shellfish Immunol. 2011, 30, 1159–1169. [Google Scholar] [CrossRef]
- Liu, L.; Qiu, T.-X.; Song, D.-W.; Shan, L.-P.; Chen, J. Inhibition of a novel coumarin on an aquatic rhabdovirus by targeting the early stage of viral infection demonstrates potential application in aquaculture. Antivir. Res. 2020, 174, 104672. [Google Scholar] [CrossRef]
- Embregts, C.W.E.; Rigaudeau, D.; Veselý, T.; Pokorová, D.; Lorenzen, N.; Petit, J.; Houel, A.; Dauber, M.; Schütze, H.; Boudinot, P.; et al. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response. Front. Immunol. 2017, 8, 1340. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Feng, S.; Zhang, S.; Liu, H.; Feng, J.; Mu, X.; Sun, X.; Xu, P. Transcriptome signatures in common carp spleen in response to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2016, 57, 41–48. [Google Scholar] [CrossRef]
- Tanekhy, M.; Kono, T.; Sakai, M. Expression profile of cytokine genes in the common carp species Cyprinus carpio L. following infection with Aeromonas hydrophila. Bull. Eur. Assoc. Fish Pathol. 2009, 29, 198–204. [Google Scholar]
- Shahi, N.; Ardó, L.; Fazekas, G.; Gocza, E.; Kumar, S.; Rèvèsz, N.; Sandor, Z.J.; Molnar, Z.; Jeney, G.; Jeney, Z. Immunogene expression in head kidney and spleen of common carp (Cyprinus carpio L.) following thermal stress and challenge with Gram-negative bacterium, Aeromonas hydrophila. Aquac. Int. 2018, 26, 727–741. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, C.; Zhao, Y.; Kong, X.; Pei, C.; Li, L.; Nie, G.; Li, X. Immune effects of the vaccine of live attenuated Aeromonas hydrophila screened by rifampicin on common carp (Cyprinus carpio L). Vaccine 2016, 34, 3087–3092. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Kong, S.; Zheng, X.; Zhang, J.; Nie, G.; Li, X.; Xu, P. Genome-wide identification of interleukin-17 (IL17) in common carp (Cyprinus carpio) and its expression following Aeromonas hydrophila infection. Gene 2018, 686, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Pijanowski, L.; Jurecka, P.; Irnazarow, I.; Kepka, M.; Szwejser, E.; van Kemenade, L.; Chadzinska, M. Activity of the hypothalamus–pituitary–interrenal axis (HPI axis) and immune response in carp lines with different susceptibility to disease. Fish Physiol. Biochem. 2015, 41, 1261–1278. [Google Scholar] [CrossRef]
- Zhu, Y.; Shan, S.; Feng, H.; Jiang, L.; An, L.; Yang, G.; Li, H. Molecular characterization and functional analysis of interferon regulatory factor 9 (irf9) in common carp Cyprinus carpio: A pivotal molecule in the Ifn response against pathogens. J. Fish Biol. 2019, 95, 510–519. [Google Scholar] [CrossRef]
- Zhu, Y.; Shan, S.; Zhao, H.; Liu, R.; Wang, H.; Chen, X.; Yang, G.; Li, H. Identification of an IRF10 gene in common carp (Cyprinus carpio L.) and analysis of its function in the antiviral and antibacterial immune response. BMC Vet. Res. 2020, 16, 450. [Google Scholar] [CrossRef]
- Shan, S.; Liu, D.; Liu, R.; Zhu, Y.; Li, T.; Zhang, F.; An, L.; Yang, G.; Li, H. Non-mammalian Toll-like receptor 18 (Tlr18) recognizes bacterial pathogens in common carp (Cyprinus carpio L.): Indications for a role of participation in the NF-κB signaling pathway. Fish Shellfish Immunol. 2018, 72, 187–198. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Li, J.; Tang, Y.; Yu, F.; Zhou, J.; Yu, W. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2. Fish Shellfish Immunol. 2016, 51, 303–312. [Google Scholar] [CrossRef]
- Robinson, D.S.; Hamid, Q.; Ying, S.; Tsicopoulos, A.; Barkans, J.; Bentley, A.M.; Corrigan, C.; Durham, S.R.; Kay, A.B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 1992, 326, 298–304. [Google Scholar] [CrossRef]
- Forlenza, M.; Dias, J.D.; Veselý, T.; Pokorová, D.; Savelkoul, H.F.; Wiegertjes, G.F. Transcription of signal-3 cytokines, IL-12 and IFNαβ, coincides with the timing of CD8αβ up-regulation during viral infection of common carp (Cyprinus carpio L.). Mol. Immunol. 2008, 45, 1531–1547. [Google Scholar] [CrossRef] [PubMed]
- Adkison, M.A.; Gilad, O.; Hedrick, R.P. An Enzyme Linked Immunosorbent Assay (ELISA) for Detection of Antibodies to the Koi Herpesvirus (KHV) in the Serum of Koi Cyprinus carpio. Fish Pathol. 2005, 40, 53–62. [Google Scholar] [CrossRef]
- Perelberg, A.; Ilouze, M.; Kotler, M.; Steinitz, M. Antibody response and resistance of Cyprinus carpio immunized with cyprinid herpes virus 3 (CyHV-3). Vaccine 2008, 26, 3750–3756. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.J.; Eberle, R.; Ehlers, B.; Hayward, G.S.; McGeoch, D.J.; Minson, A.C.; Pellett, P.E.; Roizman, B.; Studdert, M.J.; Thiry, E. The order Herpesvirales. Arch. Virol. 2008, 154, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.L. Origin and Evolution of Viral Interleukin-10 and Other DNA Virus Genes with Vertebrate Homologues. J. Mol. Evol. 2002, 54, 90–101. [Google Scholar] [CrossRef]
- Van Beurden, S.J.; Forlenza, M.; Westphal, A.H.; Wiegertjes, G.F.; Haenen, O.L.; Engelsma, M.Y. The alloherpesviral counterparts of interleukin 10 in European eel and common carp. Fish Shellfish Immunol. 2011, 31, 1211–1217. [Google Scholar] [CrossRef]
- Egilmez, N.K. Cytokines as Vaccine Adjuvants. In Vaccine Adjuvants and Delivery Systems; Wiley and Sons: Hoboken, NJ, USA, 2006; pp. 327–354. [Google Scholar] [CrossRef]
- Guo, M.; Li, C. An overview of cytokine used as adjuvants in fish: Current state and future trends. Rev. Aquac. 2020, 13, 996–1014. [Google Scholar] [CrossRef]
- Wessely, O.; Deiner, E.-M.; Lim, K.C.; Mellitzer, G.; Steinlein, P.; Beug, H. Mammalian Granulocyte–Macrophage Colony-stimulating Factor Receptor Expressed in Primary Avian Hematopoietic Progenitors: Lineage-specific Regulation of Proliferation and Differentiation. J. Cell Biol. 1998, 141, 1041–1051. [Google Scholar] [CrossRef]
- Kanellos, T.S.; Sylvester, I.D.; Butler, V.L.; Ambali, A.G.; Partidos, C.D.; Hamblin, A.S.; Russell, P.H. Mammalian granulocyte-macrophage colony-stimulating factor and some CpG motifs have an effect on the immunogenicity of DNA and subunit vaccines in fish. Immunology 1999, 96, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.J.; Lefkowitz, E.; King, A.M.Q.; Carstens, E.B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2014, 159, 2831–2841. [Google Scholar] [CrossRef] [Green Version]
- Sanders, G.E.; Batts, W.N.; Winton, J.R. Susceptibility of Zebrafish (Danio rerio) to a Model Pathogen, Spring Viremia of Carp Virus. Comp. Med. 2003, 53, 514–521. [Google Scholar]
- Teng, Y.; Liu, H.; Lv, J.Q.; Fan, W.H.; Zhang, Q.Y.; Qin, Q.W. Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China. Arch. Virol. 2007, 152, 1457–1465. [Google Scholar] [CrossRef]
- Walker, P.J.; Dietzgen, R.G.; Joubert, D.A.; Blasdell, K. Rhabdovirus accessory genes. Virus Res. 2011, 162, 110–125. [Google Scholar] [CrossRef]
- Chaves-Pozo, E.; Zou, J.; Secombes, C.J.; Cuesta, A.; Tafalla, C. The rainbow trout (Oncorhynchus mykiss) interferon response in the ovary. Mol. Immunol. 2010, 47, 1757–1764. [Google Scholar] [CrossRef] [PubMed]
- Ooi, E.L.; Verjan, N.; Haraguchi, I.; Oshima, T.; Kondo, H.; Hirono, I.; Aoki, T.; Kiyono, H.; Yuki, Y. Innate immunomodulation with recombinant interferon-α enhances resistance of rainbow trout (Oncorhynchus mykiss) to infectious hematopoietic necrosis virus. Dev. Comp. Immunol. 2008, 32, 1211–1220. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.-X.; Zhang, J.-H.; Chen, W.-H.; Ruan, X.-F.; Xia, P.C.; Wang, L. In Vitro Effects of Recombinant Zebrafish IFN on Spring Viremia of Carp Virus and Infectious Hematopoietic Necrosis Virus. J. Interf. Cytokine Res. 2006, 26, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Tafalla, C.; Truckle, J.; Secombes, C.J. Identification of a Second Group of Type I IFNs in Fish Sheds Light on IFN Evolution in Vertebrates. J. Immunol. 2007, 179, 3859–3871. [Google Scholar] [CrossRef] [Green Version]
- López-Muñoz, A.; Roca, F.J.; Meseguer, J.; Mulero, V. New Insights into the Evolution of IFNs: Zebrafish Group II IFNs Induce a Rapid and Transient Expression of IFN-Dependent Genes and Display Powerful Antiviral Activities. J. Immunol. 2009, 182, 3440–3449. [Google Scholar] [CrossRef] [Green Version]
- Bruce, T.J.; Brown, M.L. A Review of Immune System Components, Cytokines, and Immunostimulants in Cultured Finfish Species. Open J. Anim. Sci. 2017, 7, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Curtsinger, J.M.; Schmidt, C.S.; Mondino, A.; Lins, D.C.; Kedl, R.M.; Jenkins, M.; Mescher, M.F. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J. Immunol. 1999, 162, 3256–3262. [Google Scholar] [PubMed]
- Curtsinger, J.M.; Valenzuela, J.O.; Agarwal, P.; Lins, D.C.; Mescher, M.F. Cutting Edge: Type I IFNs Provide a Third Signal to CD8 T Cells to Stimulate Clonal Expansion and Differentiation. J. Immunol. 2005, 174, 4465–4469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Kinkelin, P.; Dorson, M. Interferon Production in Rainbow Trout (Salmo gairdneri) Experimentally infected with Egtved Virus. J. Gen. Virol. 1973, 19, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes. Fish Shellfish Immunol. 2009, 26, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Taggart, J.B.; Seear, P.; Bron, J.E.; Talbot, R.; Teale, A.J.; Sweeney, G.E.; Høyheim, B.; Houlihan, D.F.; Tocher, D.R.; et al. Interferon type I and type II responses in an Atlantic salmon (Salmo salar) SHK-1 cell line by the salmon TRAITS/SGP microarray. Physiol. Genom. 2007, 32, 33–44. [Google Scholar] [CrossRef]
- Sun, B.; Skjaeveland, I.; Svingerud, T.; Zou, J.; Jørgensen, J.; Robertsen, B. Antiviral Activity of Salmonid Gamma Interferon against Infectious Pancreatic Necrosis Virus and Salmonid Alphavirus and Its Dependency on Type I Interferon. J. Virol. 2011, 85, 9188–9198. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, U.; Lu, Y.; Lin, L.; Yuan, J.; Wang, M.; Liu, X. Spring viraemia of carp virus: Recent advances. J. Gen. Virol. 2016, 97, 1037–1051. [Google Scholar] [CrossRef]
- Li, S.; Lu, L.-F.; Wang, Z.-X.; Lu, X.-B.; Chen, D.-D.; Nie, P.; Zhang, Y.-A. The P Protein of Spring Viremia of Carp Virus Negatively Regulates the Fish Interferon Response by Inhibiting the Kinase Activity of TANK-Binding Kinase 1. J. Virol. 2016, 90, 10728–10737. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.-F.; Li, S.; Lu, X.-B.; LaPatra, S.E.; Zhang, N.; Zhang, X.-J.; Chen, D.-D.; Nie, P.; Zhang, Y.-A. Spring Viremia of Carp Virus N Protein Suppresses Fish IFNφ1 Production by Targeting the Mitochondrial Antiviral Signaling Protein. J. Immunol. 2016, 196, 3744–3753. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Wentzel, A.S.; Wiegertjes, G.; Forlenza, M. Carp Il10a and Il10b exert identical biological activities in vitro, but are differentially regulated in vivo. Dev. Comp. Immunol. 2017, 67, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Amita, K.; Oe, M.; Matoyama, H.; Yamaguchi, N.; Fukuda, H. A survey of Koi Herpesvirus and Carp Edema Virus in Colorcarp Cultured in Niigata Prefecture, Japan. Fish Pathol. 2002, 37, 197–198. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y. Studies on mass mortality of juvenile carp.-about mass mortality showing edema-. Rep. Res. Fish Dis. 1976, 19–33. Available online: https://ci.nii.ac.jp/naid/10019210375/ (accessed on 10 December 2021).
- Ono, S.-I.; Nagai, A.; Sugai, N. A histopathological study on juvenile colorcarp, Cyprinus carpio, showing edema. Fish Pathol. 1986, 21, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Isshiki, T.; Katsuyuki, H. Histopathological and electron microscopy studies on sleepy disease of koi Cyprinus carpio koi in Japan. Dis. Aquat. Org. 2005, 65, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Jung-Schroers, V.; Adamek, M.; Teitge, F.; Hellmann, J.; Bergmann, S.M.; Schütze, H.; Kleingeld, D.W.; Way, K.; Stone, D.; Runge, M.; et al. Another potential carp killer?: Carp Edema Virus disease in Germany. BMC Veter. Res. 2015, 11, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewisch, E.; Gorgoglione, B.; Way, K.; El-Matbouli, M. Carp Edema Virus/Koi Sleepy Disease: An Emerging Disease in Central-East Europe. Transbound. Emerg. Dis. 2014, 62, 6–12. [Google Scholar] [CrossRef]
- Haenen, O.; Way, K.; Stone, M.E.D. Koi Sleepy Disease ‘found for the first time in Koi Carps in the Netherlandse. Tijdschr. Diergeneeskd. 2014, 139, 26. [Google Scholar]
- Pretto, T.; Manfrin, A.; Ceolin, C.; Dalla Pozza, M.; Zelco, S.; Quartesan, R.; Abbadi, M.; Panzarin, V.; Toffan, A. First isolation of koi herpes virus (KHV) in Italy from imported koi (Cyprinus carpio koi). Bull. Eur. Assoc. Fish Pathol. 2013, 33, 126–133. [Google Scholar]
- Zhang, X.; Ni, Y.; Ye, J.; Xu, H.; Hou, Y.; Luo, W.; Shen, W. Carp edema virus, an emerging threat to the carp (Cyprinus carpio) industry in China. Aquaculture 2017, 474, 34–39. [Google Scholar] [CrossRef]
- Oyamatsu, T.; Hata, N.; Yamada, K.; Sano, T.; Fukuda, H. An Etiological Study on Mass Mortality of Cultured Colorcarp Juveniles Showing Edema. Fish Pathol. 1997, 32, 81–88. [Google Scholar] [CrossRef]
- Smith, S.A.; Kotwa, G.J. Immune Response to Poxvirus Infections in Various Animals. Crit. Rev. Microbiol. 2002, 28, 149–185. [Google Scholar] [CrossRef]
- Howard, J.; Justus, D.E.; Totmenin, A.V.; Shchelkunov, S.; Kotwal, G.J. Molecular mimicry of the inflammation modulatory proteins (IMPs) of poxviruses: Evasion of the inflammatory response to preserve viral habitat. J. Leukoc. Biol. 1998, 64, 68–71. [Google Scholar] [CrossRef]
- Fensterl, V.; Sen, G.C. Interferons and viral infections. BioFactors 2009, 35, 14–20. [Google Scholar] [CrossRef]
- Vivekanandhan, G.; Savithamani, K.; Hatha, A.; Lakshmanaperumalsamy, P. Antibiotic resistance of Aeromonas hydrophila isolated from marketed fish and prawn of South India. Int. J. Food Microbiol. 2002, 76, 165–168. [Google Scholar] [CrossRef]
- Brum, A.; Pereira, S.A.; Owatari, M.S.; Chagas, E.C.; Chaves, F.C.M.; Mouriño, J.L.P.; Martins, M.L. Effect of dietary essential oils of clove basil and ginger on Nile tilapia (Oreochromis niloticus) following challenge with Streptococcus agalactiae. Aquaculture 2017, 468, 235–243. [Google Scholar] [CrossRef]
- Galina, J.; Yin, G.; Ardó, L.; Jeney, Z. The use of immunostimulating herbs in fish. An overview of research. Fish Physiol. Biochem. 2009, 35, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Huizinga, H.W.; Esch, G.; Hazen, T.C. Histopathology of red-sore disease (Aeromonas hydrophila) in naturally and experimentally infected largemouth bass Micropterus salmoides (Lacepede). J. Fish Dis. 1979, 2, 263–277. [Google Scholar] [CrossRef]
- Jagruthi, C.; Yogeshwari, G.; Anbazahan, S.M.; Mari, L.S.S.; Arockiaraj, J.; Mariappan, P.; Sudhakar, G.R.L.; Balasundaram, C.; Harikrishnan, R. Effect of dietary astaxanthin against Aeromonas hydrophila infection in common carp, Cyprinus carpio. Fish Shellfish Immunol. 2014, 41, 674–680. [Google Scholar] [CrossRef]
- Martin, M.; Rehani, K.; Jope, R.S.; Michalek, S.M. Toll-like receptor–mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 2005, 6, 777–784. [Google Scholar] [CrossRef]
- Bixler, S.L.; Goff, A.J. The Role of Cytokines and Chemokines in Filovirus Infection. Viruses 2015, 7, 5489–5507. [Google Scholar] [CrossRef]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Mzula, A.; Wambura, P.N.; Mdegela, R.H.; Shirima, G.M. Current State of Modern Biotechnological-BasedAeromonas hydrophilaVaccines for Aquaculture: A Systematic Review. BioMed Res. Int. 2019, 2019, 3768948. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, S.; Akhlaghi, M.; Dehghani, M. Efficacy of formalin-killed, heat-killed and lipopolysaccharide vaccines against motile aeromonads infection in rainbow trout (Oncorhynchus mykiss). Glob. Vet. 2012, 9, 409–415. [Google Scholar] [CrossRef]
- Rao, Y.V.; Das, B.; Jyotyrmayee, P.; Chakrabarti, R. Effect of Achyranthes aspera on the immunity and survival of Labeo rohita infected with Aeromonas hydrophila. Fish Shellfish Immunol. 2006, 20, 263–273. [Google Scholar] [CrossRef]
- Siriyappagouder, P.; Shankar, K.; Kumar, B.N.; Patil, R.; Byadgi, O.V. Evaluation of biofilm of Aeromonas hydrophila for oral vaccination of Channa striatus. Fish Shellfish Immunol. 2014, 41, 581–585. [Google Scholar] [CrossRef]
- Yadav, S.K.; Sahoo, P.K.; Dixit, A. Characterization of immune response elicited by the recombinant outer membrane protein OmpF of Aeromonas hydrophila, a potential vaccine candidate in murine model. Mol. Biol. Rep. 2014, 41, 1837–1848. [Google Scholar] [CrossRef]
- Zhang, D.; Pridgeon, J.W.; Klesius, P.H. Vaccination of channel catfish with extracellular products of Aeromonas hydrophila provides protection against infection by the pathogen. Fish Shellfish Immunol. 2014, 36, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Okamura, Y.; Morimoto, N.; Ikeda, D.; Mizusawa, N.; Watabe, S.; Miyanishi, H.; Saeki, Y.; Takeyama, H.; Aoki, T.; Kinoshita, M.; et al. Interleukin-17A/F1 Deficiency Reduces Antimicrobial Gene Expression and Contributes to Microbiome Alterations in Intestines of Japanese medaka (Oryzias latipes). Front. Immunol. 2020, 11, 425. [Google Scholar] [CrossRef]
- González-Fernández, C.; Chaves-Pozo, E.; Cuesta, A. Identification and Regulation of Interleukin-17 (IL-17) Family Ligands in the Teleost Fish European Sea Bass. Int. J. Mol. Sci. 2020, 21, 2439. [Google Scholar] [CrossRef] [Green Version]
- Kono, T.; Korenaga, H.; Sakai, M. Genomics of fish IL-17 ligand and receptors: A review. Fish Shellfish Immunol. 2011, 31, 635–643. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Li, J.; Yu, F.; Wang, M.; Wang, Q.; Wu, Y.; Zhang, Q.; Tang, Y.; Yu, J. Identification, expression and pro-inflammatory effect of interleukin-17 N in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2020, 111, 6–15. [Google Scholar] [CrossRef]
- Perry, A.K.; Chen, G.; Zheng, D.; Tang, H.; Cheng, G. The host type I interferon response to viral and bacterial infections. Cell Res. 2005, 15, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, T.; Sakai, M. Inflammatory cytokines responses of common carp, Cyprinus carpio, leucocytes in vitro treated by immunostimulants. Iran J. Fish Sci. 2018, 18, 847–861. [Google Scholar] [CrossRef]
- Li, S.; Lu, L.-F.; Feng, H.; Wu, N.; Chen, D.-D.; Zhang, Y.-B.; Gui, J.-F.; Nie, P.; Zhang, Y.-A. IFN Regulatory Factor 10 Is a Negative Regulator of the IFN Responses in Fish. J. Immunol. 2014, 193, 1100–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CyHV-3 | ||||
---|---|---|---|---|
Assay Condition | Tissue/Cell Type | Studied Cytokine | Observed Effect | Reference |
in vivo | kidney | IFNαβ, IL-12p35 | ↑ | [63] |
gill | type 1 IFN, Vip, PKR | ↑ | [64] | |
gill, kidney, spleen | IL-10 | ↓ | [65] | |
spleen | IL-1β, IL-10, IL-12p35, IL-6 and IFNαβ | ↑ | [66] | |
skin, head kidney | Type 1 IFNs | ↑ | [67] | |
anterior kidney | IL-10 | ↑ | [68] | |
spleen | Type 1 IFN, Vip2 and IL-8 | ↑ | [69] | |
spleen | IFNγ-1, IFNγ-2, IL-1β, IL-10, and IL-12 | ↑ | [70] | |
spleen, kidney, intestine | IL-10 | ↑ | [71] | |
spleen | IFNγ-2, IL-6, Mx and IL-8 | ↑ | [72] | |
gills | IL-10 and TNF | — | [73] | |
muscles | IL-1β, TNF-α, IFNγ2ab, ISGs (Mx1, Vip2 and PKR3) | ↑ | [74] | |
serum | IL-1β | — | [75] | |
in vitro | head kidney leucocytes | type 1 IFNs | ↑ | [62] |
in vitro/in vivo | gill, kidney, head kidney, skin | type 1 IFN | ↑ | [76] |
plasma | TNF-α | ↑ | [77] | |
spleen | IL-10 | ↓ | [78] | |
svcv | ||||
in vivo | spleen, head kidney, intestine, thymus, blood | IRFs | ↑ | [79] |
in vitro | head kidney leucocytes (HKLs) | type 1 IFNs | ↑ | [62] |
in vitro/in vivo | kidney and spleen | type 1 IFN, Mx1, Rig1 | ↑ | [80] |
skin, kidney, head kidney | IFNα2 and Vig1 | ↑ | [76] | |
muscles and blood | IL-1β, IL-6, TNF-α, IFNγ2a, IFNγ2b, IFNø1, IFNø2, Mx1, Mx2, Vip 2, PKR3 | ↑ | [81] | |
CEV | ||||
in vivo | gill | Type 1 IFN (Vip and PKR) | ↑ | [64] |
A. hydrophila | ||||
in vivo | spleen | IL-1β, IL-10, IL-12, IL-6, IL-8, IRFs (1, 4, 7 and 8) | ↑ | [82] |
head kidney | IL-1β, IL-10, TNF-α, Cc and Cxc-chemokines | ↑ | [83] | |
spleen and head kidney | IL-1β, TNF-α | — | [84] | |
spleen and liver | IL-1β, IL-10 | ↑ | [85] | |
spleen, kidney, and liver | IL-17 | ↑ | [86] | |
head kidney and pituitary | IL-1β | ↑ | [87] | |
head kidney, spleen, foregut, hindgut, and endothelial progenitor cells (EPCs) | IRF9, Type 1 IFN, PKR, ISG15, TNF-α | ↑ | [88] | |
in vitro | spleen, head kidney, foregut, hindgut, peripheral blood leucocytes (PBLs) and head kidney leucocytes (HKLs) | IRF10 | ↑ | [89] |
in vitro/in vivo | head kidney leucocytes (HKLs) | IL-1β, IL-10 | ↑ | [90] |
head kidney and trunk kidney | IL-17, IL-1β | ↑ | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baloch, A.A.; Abdelsalam, E.E.E.; Piačková, V. Cytokines Studied in Carp (Cyprinus carpio L.) in Response to Important Diseases. Fishes 2022, 7, 3. https://doi.org/10.3390/fishes7010003
Baloch AA, Abdelsalam EEE, Piačková V. Cytokines Studied in Carp (Cyprinus carpio L.) in Response to Important Diseases. Fishes. 2022; 7(1):3. https://doi.org/10.3390/fishes7010003
Chicago/Turabian StyleBaloch, Ali Asghar, Ehdaa Eltayeb Eltigani Abdelsalam, and Veronika Piačková. 2022. "Cytokines Studied in Carp (Cyprinus carpio L.) in Response to Important Diseases" Fishes 7, no. 1: 3. https://doi.org/10.3390/fishes7010003
APA StyleBaloch, A. A., Abdelsalam, E. E. E., & Piačková, V. (2022). Cytokines Studied in Carp (Cyprinus carpio L.) in Response to Important Diseases. Fishes, 7(1), 3. https://doi.org/10.3390/fishes7010003