Development of Primary Cell Cultures from Haplochromine Cichlid Bone-Derived Tissues
Abstract
1. Introduction
2. Materials and Methods
2.1. 6-Well Plate Preparation for Primary Cell Culture
2.2. Establishing Primary Cell Culture from Bone Tissue
2.2.1. Collection of Bone Material
2.2.2. Initiation of Bone Cell Cultures
2.3. Osteogenic Differentiation Induction
2.4. Fixation and Cytoskeletal Staining
2.5. Histological Staining for Mineralisation Detection

2.6. Long-Term Storage and Reconstitution
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robling, A.G.; Castillo, A.B.; Turner, C.H. Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 2006, 8, 455–498. [Google Scholar] [CrossRef]
- Parsons, K.J.; Albertson, R.C. Roles for Bmp4 and CaM1 in shaping the jaw: Evo-devo and beyond. Annu. Rev. Genet. 2009, 43, 369–388. [Google Scholar] [CrossRef]
- Dodds, R.A.; Ali, N.; Pead, M.J.; Lanyon, L.E. Early Loading-Related Changes in the Activity of Glucose 6-Phosphate Dehydrogenase and Alkaline Phosphatase in Osteocytes and Periosteal Osteoblasts in Rat Fibulae In Vivo. J. Bone Miner. Res. 1993, 8, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Pead, M.J.; Skerry, T.M.; Lanyon, L.E. Direct Transformation from Quiescence to Bone Formation in the Adult Periosteum Following a Single Brief Period of Bone Loading. J. Bone Miner. Res. 1988, 3, 647–656. [Google Scholar] [CrossRef]
- Herrel, A.; Podos, J.; Vanhooydonck, B.; Andrew, P. Force–velocity trade-off in Darwin’s finch jaw function: A biomechanical basis for ecological speciation? Funct. Ecol. 2009, 23, 119–125. [Google Scholar] [CrossRef]
- Riddle, R.C.; Donahue, H.J. From Streaming Potentials to Shear Stress: 25 Years of Bone Cell Mechanotransduction. J. Orthop. Res. 2009, 27, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Bonewald, L.F. The amazing osteocyte. J. Bone Miner. Res. 2011, 26, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Onal, M.; Jilka, R.L.; Weinstein, R.S.; Manolagas, S.C.; O’brien, C.A. Matrix-embedded cells control osteoclast formation. Nat. Med. 2011, 17, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Hellmich, C.; Ulm, F.J. Micromechanical model for ultrastructural stiffness of mineralized tissues. J. Eng. Mech. 2002, 128, 898–908. [Google Scholar] [CrossRef]
- Robinson, B.W.; Parsons, K.J. Changing times, spaces, and faces: Tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Can. J. Fish. Aquat. Sci. 2002, 59, 1819–1833. [Google Scholar] [CrossRef]
- Skúlason, S.; Parsons, K.J.; Svanbäck, R.; Räsänen, K.; Ferguson, M.M.; Adams, C.E.; Snorrason, S.S. A way forward with eco evo devo: An extended theory of resource polymorphism with postglacial fishes as model systems. Biol. Rev. 2019, 94, 1786–1808. [Google Scholar] [CrossRef]
- Moss, M.L. The biology of acellular teleost bone. Ann. N. Y. Acad. Sci. 1963, 109, 337–350. [Google Scholar] [CrossRef]
- Ekanayake, S.; Hall, B.K. The development of acellularity of the vertebral bone of the Japanese medaka, Oryzias latipes (Teleostei; Cyprinidontidae). J. Morphol. 1987, 193, 253–261. [Google Scholar] [CrossRef]
- Witten, P.E.; Huysseune, A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol. Rev. 2009, 84, 315–346. [Google Scholar] [CrossRef] [PubMed]
- Shahar, R.; Dean, M.N. The enigmas of bone without osteocytes. BoneKEy Rep. 2013, 2, 343. [Google Scholar] [CrossRef] [PubMed]
- Ofer, L.; Dean, M.N.; Zaslansky, P.; Kult, S.; Shwartz, Y.; Zaretsky, J.; Griess-Fishheimer, S.; Monsonego-Ornan, E.; Zelzer, E.; Shahar, R. A novel nonosteocytic regulatory mechanism of bone modeling. PLoS Biol. 2019, 17, e3000140. [Google Scholar] [CrossRef] [PubMed]
- Gunter, H.M.; Fan, S.; Xiong, F.; Franchini, P.; Fruciano, C.; Meyer, A. Shaping development through mechanical strain: The transcriptional basis of diet-induced phenotypic plasticity in a cichlid fish. Mol. Ecol. 2013, 22, 4516–4531. [Google Scholar] [CrossRef]
- Atkins, A.; Dean, M.N.; Habegger, M.L.; Motta, P.J.; Ofer, L.; Repp, F.; Shipov, A.; Weiner, S.; Currey, J.D.; Shahar, R. Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms. Proc. Natl. Acad. Sci. USA 2014, 111, 16047–16052. [Google Scholar] [CrossRef]
- Currey, J.D.; Dean, M.N.; Shahar, R. Revisiting the Links between Bone Remodelling and Osteocytes: Insights from across Phyla. Biol. Rev. 2017, 92, 1702–1719. [Google Scholar] [CrossRef]
- Albertson, R.C.; Yelick, P.C. Fgf8 haploinsufficiency results in distinct craniofacial defects in adult zebrafish. Dev. Biol. 2007, 306, 505–515. [Google Scholar] [CrossRef]
- Parsons, K.J.; McWhinnie, K.; Pilakouta, N.; Walker, L. Does phenotypic plasticity initiate developmental bias? Evol. Dev. 2020, 22, 56–70. [Google Scholar] [CrossRef]
- Wimberger, P.H. Plasticity of jaw and skull morphology in the neotropical cichlids Geophagus brasiliensis and G. steindachneri. Evolution 1991, 45, 1545–1563. [Google Scholar] [CrossRef]
- Bouton, N.; Witte, F.; Van Alphen, J.J. Experimental evidence for adaptive phenotypic plasticity in a rock-dwelling cichlid fish from Lake Victoria. Biol. J. Linn. Soc. 2002, 77, 185–192. [Google Scholar] [CrossRef]
- Huysseune, A.; Sire, J.Y.; Meunier, F.J. Comparative study of lower pharyngeal jaw structure in two phenotypes of Astatoreochromis alluaudi (Teleostei: Cichlidae). J. Morphol. 1994, 221, 25–43. [Google Scholar] [CrossRef]
- Atkins, A.; Milgram, J.; Weiner, S.; Shahar, R. The response of anosteocytic bone to controlled loading. J. Exp. Biol. 2015, 218, 3559–3569. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.C.; Tetrault, E.; Packard, M.; Navon, D.; Albertson, R.C. Ciliary rootlet coiled-coil2 (crocc2) is associated with evolutionary divergence and plasticity of cichlid jaw shape. Mol. Biol. Evol. 2021, 38, 3078–3092. [Google Scholar] [CrossRef]
- Cohen, L.; Dean, M.; Shipov, A.; Atkins, A.; Monsonego-Ornan, E.; Shahar, R. Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish. J. Exp. Biol. 2012, 215, 1983–1993. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.H.; Ghalambor, C.K.; Donahue, S.W. Evolutionary physiology of bone: Bone metabolism in changing environments. Physiology 2015, 30, 17–29. [Google Scholar] [CrossRef]
- Dornburg, A.; Wcisel, D.J.; Zapfe, K.; Ferraro, E.; Roupe-Abrams, L.; Thompson, A.W.; Braasch, I.; Ota, T.; Yoder, J.A. Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. Immunogenetics 2021, 73, 479–497. [Google Scholar] [CrossRef]
- Laizé, V.; Rosa, J.T.; Tarasco, M.; Cancela, M.L. Status, challenges, and perspectives of fish cell culture—Focus on cell lines capable of in vitro mineralization. In Cellular and Molecular Approaches in Fish Biology; Academic Press: Cambridge, MA, USA, 2022; pp. 381–404. [Google Scholar]
- Brawand, D.; Wagner, C.E.; Li, Y.I.; Malinsky, M.; Keller, I.; Fan, S.; Simakov, O.; Ng, A.Y.; Lim, Z.W.; Bezault, E.; et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 2014, 513, 375–381. [Google Scholar] [CrossRef]
- Schneider, R.F.; Meyer, A. How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Mol. Ecol. 2017, 26, 330–350. [Google Scholar] [CrossRef]
- Parsons, K.J.; Taylor, A.T.; Powder, K.E.; Albertson, R.C. Wnt signalling underlies the evolution of new phenotypes and craniofacial variability in Lake Malawi cichlids. Nat. Commun. 2014, 5, 3629. [Google Scholar] [CrossRef] [PubMed]
- Parsons, K.J.; Concannon, M.; Navon, D.; Wang, J.; Ea, I.; Groveas, K.; Campbell, C.; Albertson, R.C. Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes. Mol. Ecol. 2016, 25, 6012–6023. [Google Scholar] [CrossRef]
- Navon, D.; Male, I.; Tetrault, E.R.; Aaronson, B.; Karlstrom, R.O.; Craig Albertson, R. Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts. Proc. Natl. Acad. Sci. USA 2020, 117, 19321–19327. [Google Scholar] [CrossRef] [PubMed]
- McWhinnie, K.; Gibson, J.; Gislason, M.; Tanner, E.; Windmill, J.; Albertson, R.; Parsons, K. Assessing the levels of functional adaptation: Finite element analysis reveals species, hybrid, and sexual variation in the biomechanics of African cichlid mandibles. Evol. Biol. 2022, 49, 205–220. [Google Scholar] [CrossRef]
- Kocher, T.D. Adaptive evolution and explosive speciation: The cichlid fish model. Nat. Rev. Genet. 2004, 5, 288–298. [Google Scholar] [CrossRef]
- Cooper, W.J.; Parsons, K.; Mcintyre, A.; Kern, B.; Mcgee-moore, A.; Craig, R. Bentho-Pelagic Divergence of Cichlid Feeding Architecture Was Prodigious and Consistent during Multiple Adaptive Radiations within African Rift-Lakes. PLoS ONE 2010, 5, e9551. [Google Scholar] [CrossRef]
- Albertson, R.C.; Kocher, T.D. Genetic and developmental basis of cichlid trophic diversity. Heredity 2006, 97, 211–221. [Google Scholar] [CrossRef]
- Davesne, D.; Meunier, F.J.; Schmitt, A.D.; Friedman, M.; Otero, O.; Benson, R.B. The phylogenetic origin and evolution of acellular bone in teleost fishes: Insights into osteocyte function in bone metabolism. Biol. Rev. 2019, 94, 1338–1363. [Google Scholar] [CrossRef] [PubMed]
- Tsimbouri, P.M.; Childs, P.G.; Pemberton, G.D.; Yang, J.; Jayawarna, V.; Orapiriyakul, W.; Burgess, K.; Gonzalez-Garcia, C.; Blackburn, G.; Thomas, D.; et al. Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat. Biomed. Eng. 2017, 1, 758–770. [Google Scholar] [CrossRef]
- Robertson, S.N.; Campsie, P.; Childs, P.G.; Madsen, F.; Donnelly, H.; Henriquez, F.L.; Mackay, W.G.; Salmerón-Sánchez, M.; Tsimbouri, M.P.; Williams, C.; et al. Control of cell behaviour through nanovibrational stimulation: Nanokicking. Philos. Trans. R. Soc. A 2018, 376, 20170290. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negi, D.; Tsimbouri, P.M.; Dalby, M.J.; Parsons, K.J. Development of Primary Cell Cultures from Haplochromine Cichlid Bone-Derived Tissues. Fishes 2025, 10, 636. https://doi.org/10.3390/fishes10120636
Negi D, Tsimbouri PM, Dalby MJ, Parsons KJ. Development of Primary Cell Cultures from Haplochromine Cichlid Bone-Derived Tissues. Fishes. 2025; 10(12):636. https://doi.org/10.3390/fishes10120636
Chicago/Turabian StyleNegi, Deepti, Penelope M. Tsimbouri, Matthew J. Dalby, and Kevin J. Parsons. 2025. "Development of Primary Cell Cultures from Haplochromine Cichlid Bone-Derived Tissues" Fishes 10, no. 12: 636. https://doi.org/10.3390/fishes10120636
APA StyleNegi, D., Tsimbouri, P. M., Dalby, M. J., & Parsons, K. J. (2025). Development of Primary Cell Cultures from Haplochromine Cichlid Bone-Derived Tissues. Fishes, 10(12), 636. https://doi.org/10.3390/fishes10120636

