Alcohol Consumption and Cognitive Aging: Can It Be Beneficial?
Abstract
:Introduction
Discussions
The process of aging
Brain aging and cognitive functions
The prevention and delay of cognitive aging through nutritional (food and drink) strategies
Biological mechanisms of the potential protective effect of alcoholic beverages on cognitive aging and dementia
Highlights
- ✔
- Prospective population-based studies have revealed a J-shaped or a U-shaped curve in the link between alcohol consumption and the risk of cognitive dysfunction and dementia, which is considered evidence for the potential beneficial effects of moderate alcohol consumption.
- ✔
- The more common opinion is that red wine has a more pronounced protective effect than other alcoholic beverages.
- ✔
- The main ingredients of wine act against dementia and in favor of the cognitive functions because phenolic compounds and ethanol exhibit anti-inflammatory and antioxidant activity, and reduce insulin resistance, inhibit Aβ synthesis and lower the intracellular Aβ levels, tau-phosphorylation, and amyloid plaque deposition, thus counteracting the Aβ-induced synaptic damage.
Conclusions
Conflicts of Interest disclosure
Compliance with ethical standards
References
- Arora, B.P. Anti-aging medicine. Indian J Plast Surg 2008, 41, S130–S133. [Google Scholar] [CrossRef]
- Lipsitz, L.A. Aging as a process of complexity loss. In Complex Systems Science in Biomedicine; Deisboeck, T.S., Kresh, J.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 641–654. ISBN 978-0-387-33532-2. [Google Scholar]
- Libertini, G. Aging Definition. In Encyclopedia of Gerontology and Population Aging; Gu, D., Dupre, M.E., Eds.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Vauzour, D.; Camprubi-Robles, M.; Miquel-Kergoat, S.; Andres-Lacueva, C.; Bánáti, D.; Barberger-Gateau, P.; Bowman, G.L.; Caberlotto, L.; Clarke, R.; Hogervorst, E.; et al. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res Rev 2017, 35, 222–240. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, Z.A. An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc. 1990, 65, 375–398. [Google Scholar] [CrossRef]
- Sergiev, P.V.; Dontsova, O.A.; Berezkin, G.V. Theories of aging: An ever-evolving field. Acta Naturae 2015, 7, 9–18. [Google Scholar] [CrossRef]
- Harman, D. The free radical theory of aging. Antioxid Redox Signal 2003, 5, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Zamboni, V.; Ferrini, A.; Cesari, M. The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2007, 2, 401–412. [Google Scholar] [PubMed]
- Jin, K. Modern biological theories of aging. Aging Dis. 2010, 1, 72–74. [Google Scholar]
- Cesari, M.; Kritchevsky, S.B.; Leeuwenburgh, C.; Pahor, M. Oxidative damage and platelet activation as new predictors of mobility disability and mortality in elders. Antioxid Redox Signal. 2006, 8, 609–619. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Franceschi, C.; Valensin, S.; Bonafe, M.; Paolisso, G.; Yashin, A.I.; Monti, D.; De Benedictis, G. The network and remodeling theories of aging: Historical background and new perspectives. Exp Gerontol. 2000, 35, 879–896. [Google Scholar] [CrossRef]
- Anderson, L.W.; Krathwohl, D.R. A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives; Longman Publishing: New York, NY, USA, 2001. [Google Scholar]
- Dietrich, A. The cognitive neuroscience of creativity. Psychon Bull Rev. 2004, 11, 1011–1026. [Google Scholar] [CrossRef]
- Craft, S.; Cholerton, B.; Baker, L.D. Insulin and Alzheimer’s disease: Untangling the web. J Alzheimers Dis. 2013, 33 (Suppl. S1), S263–S275. [Google Scholar] [CrossRef]
- Calvo-Ochoa, E.; Arias, C. Cellular and metabolic alterations in the hippocampus caused by insulin signaling dysfunction and its association with cognitive impairment during aging and Alzheimer’s disease: Studies in animal models. Diabetes Metab Res Rev 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.; McNeilly, A.; Sutherland, C. Insulin resistance in the brain: Anold-age or new-age problem? Biochem Pharmacol 2012, 84, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; Thirumala, V.; Hemachandra, P. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 2017, 1863, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Gold, J.; Shoaib, A.; Gorthy, G.; Grossberg, G.T. The role of vitamin D in cognitive disorders in older adults. US Neurology 2018, 14, 41–46. [Google Scholar] [CrossRef]
- Rimmelzwaan, L.M.; van Schoor, N.M.; Lips, P.; Berendse, H.W.; Eekhoff, E.M. Systematic review of the relationship between vitamin D and Parkinson’s disease. J Parkinsons Dis 2016, 29, 29–37. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.F. Vitamin D deficiency is associated with increased risk of Alzheimer’s disease and dementia: Evidence from meta-analysis. Nutr J. 2015, 14, 76. [Google Scholar] [CrossRef]
- Baas, D.; Prüfer, K.; Ittel, M.E.; Kuchler-Bopp, S.; Labourdette, G.; Sarliève, L.L.; Brachet, P. Rat oligodendrocytes express the vitamin D(3) receptor and respond to 1,25-dihydroxyvitamin D(3). Glia. 2000, 59–68. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wu, J.N.; Cherng, T.L.; Hoffer, B.J.; Chen, H.H.; Borlongan, C.V.; Wang, Y. Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res 2001, 904, 67–75. [Google Scholar] [CrossRef]
- Gezen-Ak, D.; Dursun, E.; Yilmazer, S. The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PLoS ONE 2011, 6, e17553. [Google Scholar] [CrossRef] [PubMed]
- Brewer, L.D.; Thibault, V.; Chen, K.C.; Langub, M.C.; Landfield, P.W.; Porter, N.M. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001, 21, 98–108. [Google Scholar] [CrossRef]
- Garcion, E.; Wion-Barbot, N.; Montero-Menei, C.N.; Berger, F.; Wion, D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 2002, 13, 100–105. [Google Scholar] [CrossRef]
- Banerjee, A.; Khemka, V.K.; Ganguly, A.; Roy, D.; Ganguly, U.; Chakrabarti, S. Vitamin D and Alzheimer’s disease: Neurocognition to therapeutics. Int J Alzheimers Dis. 2015, 2015, 192747. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, C.; Beauchet, O. Vitamin D-mentia: Randomized clinical trials should be the next step. Neuroepidemiology. 2011, 37, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Munshi, S.; Banerjee, K.; Thakurta, I.G.; Sinha, M.; Bagh, M.B. Mitochondrial dysfunction during brain aging: Role of oxidative stress and modulation by antioxidant supplementation. Aging Dis 2011, 2, 242–256. [Google Scholar]
- Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 2014, 1842, 1240–1247. [Google Scholar] [CrossRef]
- Perry, V.H.; Holmes, C. Microglial priming in neurodegenerative disease. Nat Rev Neurol 2014, 10, 217–224. [Google Scholar] [CrossRef]
- Perry, V.H. The influence of systemic inflammation on inflammation in the brain: Implications for chronic neurodegenerative disease. Brain Behav Immun 2004, 18, 407–413. [Google Scholar] [CrossRef]
- Perry, V.H.; Cunningham, C.; Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007, 7, 161–167. [Google Scholar] [CrossRef]
- Giaccone, G.; Arzberger, T.; Alafuzoff, I.; Al-Sarraj, S.; Budka, H.; Duyckaerts, C.; Falkai, P.; Ferrer, I.; Ironside, J.W.; Kovacs, G.G.; et al. New lexicon and criteria for the diagnosis of Alzheimer’s disease. Lancet Neurol 2011, 10, 298–299. [Google Scholar] [CrossRef] [PubMed]
- Jack Jr, C.R.; Albert, M.S.; Knopman, D.S.; McKhann, G.M.; Sperling, R.A.; Carrillo, M.C.; Thies, B.; Phelps, C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011, 7, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010, 6, 131–144. [Google Scholar] [CrossRef]
- Perneczky, R.; Alexopoulos, P.; Kurz, A. Soluble amyloid precursor proteins and secretases as Alzheimer’s disease biomarkers. Trends Mol Med 2014, 20, 8–15. [Google Scholar] [CrossRef]
- Reale, M.; Costantini, E.; Jagarlapoodi, S.; Khan, H.; Belwal, T.; Cichelli, A. Relationship of wine consumption with Alzheimer’s disease. Nutrients 2020, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005, 366, 2112–2117. [Google Scholar] [CrossRef]
- Butler, R.N.; Fossel, M.; Harman, M.; Heward, C.B.; Olshansky, S.J.; Perls, T.T.; Rothman, D.J.; Rothman, S.M.; Warner, H.R.; West, M.D.; et al. Is there an Antiaging Medicine? J Gerontol A Biol Sci Med Sci 2002, 57, B333–B338. [Google Scholar] [CrossRef]
- Stockley, C.S. Wine consumption, cognitive function and dementias—A relationship? Nutr Aging 2015, 3, 125–137. [Google Scholar] [CrossRef]
- Cao, L.; Tan, L.; Wang, H.F.; Jiang, T.; Zhu, X.C.; Lu, H.; Tan, M.S.; Yu, J.T. Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Mol Neurobiol 2016, 53, 6144–6154. [Google Scholar] [CrossRef]
- McEvoy, C.T.; Hoang, T.; Sidney, S.; Steffen, L.M.; Jacobs DRJr Shikany, J.M.; Wilkins, J.T.; Yaffe, K. Dietary patterns during adulthood and cognitive performance in midlife: The CARDIA study. Neurology 2019, 92, e1589–e1599. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J. (Ed.) The Oxford Companion to Wine, 3rd ed.; Oxford University Press: Oxford, UK, 2006; p. 433. [Google Scholar]
- Liappas, J.A.; Lascaratos, J.; Fafouti, S.; Christodoulou, G.N. Alexander the Great’s relationship with alcohol. Addiction 2003, 98, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Karbowiak, T.; Crouvisier-Urion, K.; Lagorce, A.; Ballester, J.; Geoffroy, A.; Roullier-Gall, C.; Chanut, J.; Gougeon, R.D.; Schmitt-Kopplin, P.; Bellat, J.P. Wine aging: A bottleneck story. NPJ Sci Food. 2019, 3, 14. [Google Scholar] [CrossRef]
- Peters, R.; Peters, J.; Warner, J.; Beckett, N.; Bulpitt, C. Alcohol, dementia and cognitive decline in the elderly: A systematic review. Age Ageing 2008, 37, 505–512. [Google Scholar] [CrossRef]
- Anstey, K.J.; Mack, H.A.; Cherbuin, N. Alcohol consumption as a risk factor for dementia and cognitive decline: Meta-analysis of prospective studies. Am J Geriatr Psychiatry 2009, 17, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; D’Introno, A.; Colacicco, A.M.; Capurso, C.; Gagliardi, G.; Santamato, A.; Baldassarre, G.; Capurso, A.; Panza, F. Lifestyle-related factors, alcohol consumption, and mild cognitive impairment. J Am Geriatric Soc 2007, 55, 1679–1681. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, L.; Miles, T.; Shen, Y.; Cordero, J.; Qi, Y.; Liang, L.; Li, C. Association of low to moderate alcohol drinking with cognitive functions from middle to older age among US adults. JAMA Netw Open 2020, 3, e207922. [Google Scholar] [CrossRef]
- Richard, E.L.; Kritz-Silverstein, D.; Laughlin, G.A.; Fung, T.T.; Barrett-Connor, E.; McEvoy, L.K. Alcohol intake and cognitively healthy longevity in community-dwelling adults: The Rancho Bernardo Study. J Alzheimers Dis 2017, 59, 803–814. [Google Scholar] [CrossRef]
- Moussa, M.N.; Simpson, S.L.; Mayhugh, R.E.; Grata, M.E.; Burdette, J.H.; Porrino, L.J.; Laurienti, P.J. Long-term moderate alcohol consumption does not exacerbate age-related cognitive decline in healthy, community-dwelling older adults. Front Aging Neuroscience. 2015, 6, 341. [Google Scholar] [CrossRef]
- Huang, W.; Qiu, C.; Winblad, B.; Fratiglioni, L. Alcohol consumption and incidence of dementia in a community sample aged 75 years and older. J Clin Epidemiol 2002, 55, 959–964. [Google Scholar] [CrossRef]
- Neafsey, E.J.; Collins, M.A. Moderate alcohol consumption and cognitive risk. Neuropsychiatr Dis Treat. 2011, 7, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Nooyens, A.C.J.; Bueno-de-Mesquita, H.B.; van Gelder, B.M.; van Boxtel, M.P.J.; Verschuren, W.M.M. Consumption of alcoholic beverages and cognitive decline at middle age: The Doetinchem Cohort Study. Br J Nutr 2014, 111, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.A.; Tang, M.X.; Siddiqui, M.; Shea, S.; Mayeux, R. Alcohol intake and risk of dementia. J Am Geriatric Soc 2004, 52, 540–546. [Google Scholar] [CrossRef]
- Zuccala, G.; Onder, G.; Pedone, C.; Cesari, M.; Landi, F.; Bernabei, R.; Cocchi, A. Dose-related impact of alcohol consumption on cognitive function in advanced age: Results of a multicenter survey. Alcohol Clin Exp Res 2001, 25, 1743–1748. [Google Scholar] [CrossRef]
- Bao, Q.; Zhao, H.; Han, S.; Zhang, C.; Hasi, W. Surface-enhanced Raman spectroscopy for rapid identification and quantification of Flibanserin in different kinds of wine. Anal Methods 2020, 12, 3025–3031. [Google Scholar] [CrossRef] [PubMed]
- Cassino, C.; Gianotti, V.; Bonello, F.; Tsolakis, C.; Cravero, M.; Osella, D. Antioxidant composition of a selection of Italian red wines and their corresponding free-radical scavenging ability. J Chem. 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Barril, C.; Clark, A.C.; Scollary, G.R. Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine. Anal Chim Acta. 2012, 732, 186–193. [Google Scholar] [CrossRef]
- Coetzee, C.; Lisjak, K.; Nicolau, L.; Kilmartin, P.; du Toit, W.J. Oxygen and sulfur dioxide additions to Sauvignon blanc must: Effect on must and wine composition. Flavour Fragr J 2013, 28, 155–167. [Google Scholar] [CrossRef]
- Porro, C.; Cianciulli, A.; Calvello, R.; Panaro, M.A. Reviewing the role of resveratrol as a natural modulator of microglial activities. Curr Pharm Des 2015, 21, 5277–5291. [Google Scholar] [CrossRef]
- Todorova, M.N.; Pasheva, M.G.; Kiselova-Kaneva, Y.D.; Ivanova, D.G.; Galunska, B.T. Phenolics content and antioxidant activity of beverages on the Bulgarian market—Wines, juices and compotes. Bulg Chem Commun. 2018, 50, 164–168. [Google Scholar]
- Weiskirchen, S.; Weiskirchen, R. Resveratrol: How much wine do you have to drink to stay healthy? Adv Nutr 2016, 7, 706–718. [Google Scholar] [CrossRef]
- Wiegmann, C.; Mick, I.; Brandl, E.J.; Heinz, A.; Gutwinski, S. Alcohol and dementia—What is the link? A systematic review. Neuropsychiatr Dis Treat. 2020, 16, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Tabengwa, E.M.; Grenett, H.E.; Benza, R.L.; Abou-Agag, L.H.; Tresnak, J.K.; Wheeler, C.G.; Booyse, F.M. Ethanol-induced up-regulation of the urokinase receptor in cultured human endothelial cells. Alcohol Clin Exp Res 2001, 25, 163–170. [Google Scholar]
- Lee, K.W.; Lip, G.Y.H. Effects of lifestyle on hemostasis, fibrinolysis, and platelet reactivity: A systematic review. Arch Intern Med 2003, 163, 2368–2392. [Google Scholar] [CrossRef]
- Kim, J.W.; Byun, M.S.; Yi, D.; Lee, J.H.; Ko, K.; Jeon, S.Y.; Sohn, B.K.; Lee, J.Y.; Kim, Y.K.; Shin, S.A.; et al. Association of moderate alcohol intake with in vivo amyloid-beta deposition in human brain: A cross-sectional study. PLoS Med 2020, 17, e1003022. [Google Scholar] [CrossRef] [PubMed]
- Gerszon, J.; Rodacka, A.; Puchała, M. Antioxidant properties of resveratrol and its protective effects in neurodegenerative diseases. Adv Cell Biol. 2014, 4, 97–117. [Google Scholar] [CrossRef]
- Desquiret-Dumas, V.; Gueguen, N.; Leman, G.; Baron, S.; Nivet-Antoine, V.; Chupin, S.; Chevrollier, A.; Vessières, E.; Ayer, A.; Ferré, M. Resveratrol induces a mitochondrial complex I-dependent increase in NADH oxidation responsible for sirtuin activation in liver cells. J Biol Chem 2013, 288, 36662–36675. [Google Scholar] [CrossRef]
- Gledhill, J.R.; Montgomery, M.G.; Leslie, A.G.; Walker, J.E. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci USA 2007, 104, 13632–13637. [Google Scholar] [CrossRef]
- Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003, 425, 191–196. [Google Scholar] [CrossRef]
- Davies, D.R.; Mamat, B.; Magnusson, O.T.; Christensen, J.; Haraldsson, M.H.; Mishra, R.; Pease, B.; Hansen, E.; Singh, J.; Zembower, D.; et al. Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography. J Med Chem 2009, 52, 4694–4715. [Google Scholar] [CrossRef]
- Milne, J.C.; Lambert, P.D.; Schenk, S.; Carney, D.P.; Smith, J.J.; Gagne, D.J.; Jin, L.; Boss, O.; Perni, R.B.; Vu, C.B. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007, 450, 712–716. [Google Scholar] [CrossRef]
- Ge, L.; Liu, L.; Liu, H.; Liu, S.; Xue, H.; Wang, X.; Yuan, L.; Wang, Z.; Liu, D. Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice. Eur J Pharmacol. 2015, 768, 49–57. [Google Scholar] [CrossRef]
- Ge, J.F.; Xu, Y.Y.; Li, N.; Zhang, Y.; Qiu, G.L.; Chu, C.H.; Wang, C.Y.; Qin, G.; Chen, F.H. Resveratrol improved the spatial learning and memory in subclinical hypothyroidism rat induced by hemi-thyroid electrocauterization. Endocr J 2015, 62, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Chervenkov, T.; Gerova, D.; Galunska, B.; Enchev, V. Theoretical and experimental evaluation of antioxidant potential of natural bioflavonoids rutin and quercetin: PP8C-9. FEBS J 2008, 275, 377. [Google Scholar]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Bahijri, S.M.; Ajabnoor, G.; Hegazy GAAlsheikh, L.; Moumena, M.Z.; Bashanfar, B.M.; Alzahrani, A.H. Supplementation with oligonol, prevents weight gain and improves lipid profile in overweight and obese saudi females. Curr Nutr Food Sci 2018, 14, 164–170. [Google Scholar] [CrossRef]
- Wang, J.; Ho, L.; Zhao, Z.; Seror, I.; Humala, N.; Dickstein, D.L.; Thiyagarajan, M.; Percival, S.S.; Talcott, S.T.; Pasinetti, G.M. Moderate consumption of Cabernet Sauvignon attenuates A beta neuropathology in a mouse model of Alzheimer’s disease. FASEB J 2006, 20, 2313–2320. [Google Scholar] [CrossRef]
- Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 2005, 280, 37377–37382. [Google Scholar] [CrossRef]
- Wang, J.; Ho, L.; Zhao, W.; Ono, K.; Rosensweig, C.; Chen, L.H.; Humala, N.; Teplow, D.B.; Pasinetti, G.M. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 2008, 28, 6388–6392. [Google Scholar] [CrossRef]
- Sweatt, J.D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004, 14, 311–317. [Google Scholar] [CrossRef]
- Kim, T.; Hinton, D.J.; Choi, D.S. Protein kinase C-regulated aβ production and clearance. Int J Alzheimers Dis. 2011, 2011, 857368. [Google Scholar] [CrossRef] [PubMed]
- Mega, M.S. The cholinergic deficit in Alzheimer’s disease: Impact on cognition, behaviour and function. Int J Neuropsychopharmacol 2000, 3, 3–12. [Google Scholar] [CrossRef]
- Fadda, F.; Rossetti, Z.L. Chronic ethanol consumption: From neuroadaptation to neurodegeneration. Progress Neurobiol 1998, 56, 385–431. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.A.; Mandal, A.K.A.; Khan, Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2015, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Munoz, F.J.; Aldunate, R.; Inestrosa, N.C. Peripheral binding site is involved in the neurotrophic activity of acetylcholinesterase. Neuroreport 1999, 10, 3621–3625. [Google Scholar] [CrossRef]
- Heymann, D.; Stern, Y.; Cosentino, S.; Tatarina-Nulman, O.; Dorrejo, J.N.; Gu, Y. The association between alcohol use and the progression of Alzheimer’s disease. Curr Alzheimer Res 2016, 13, 1356–1362. [Google Scholar] [CrossRef]
- Bate, C.; Williams, A. Ethanol protects cultured neurons against amyloid-β and α-synuclein-induced synapse damage. Neuropharmacology 2011, 61, 1406–1412. [Google Scholar] [CrossRef]
- Habtemariam, S. The brain-derived neurotrophic factor in neuronal plasticity and neuroregeneration: New pharmacological concepts for old and new drugs. Neural Regen Res 2018, 13, 983–984. [Google Scholar] [CrossRef]
- Logrip, M.L.; Barak, S.; Warnault, V.; Ron, D. Corticostriatal BDNF and alcohol addiction. Brain Res. 2015, 1628 Pt A, 60–67. [Google Scholar] [CrossRef]
- van Grootheest, G.; Milaneschi, Y.; Lips, P.T.A.M.; Heijboer, A.C.; Smit, J.H.; Penninx, B.W.J.H. Determinants of plasma 25-hydroxyvitamin D levels in healthy adults in the Netherlands. Neth J Med 2014, 72, 533–540. [Google Scholar]
- Gorter, E.A.; Krijnen, P.; Schipper, I.B. Vitamin D deficiency in adult fracture patients: Prevalence and risk factors. Eur J Trauma Emerg Surg 2016, 42, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Tardelli, V.S.; Lago, M.P.P.D.; Silveira, D.X.D.; Fidalgo, T.M. Vitamin D and alcohol: A review of the current literature. Psychiatry Res. 2017, 248, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Siddiquee, A.T.; Kadota, A.; Fujiyoshi, A.; Miyagawa, N.; Saito, Y.; Suzuki, H.; Kondo, K.; Yamauchi, H.; Ito, T.; Segawa, H.; et al. Alcohol consumption and cognitive function in elderly Japanese men. Alcohol. 2020, 85, 145–152. [Google Scholar] [CrossRef]
- Velikova, M.; Stoyanov, Z. Alcohol and the cognitive functions of the aging brain. Journal of the Union of Scientists—Varna. Medicine and Ecology Series 2019, 24, 61–65. [Google Scholar] [CrossRef]
- Topiwala, A.; Allan, C.L.; Valkanova, V.; Zsoldos, E.; Filippini, N.; Sexton, C.; Mahmood, A.; Fooks, P.; Singh-Manoux, A.; Mackay, C.E.; et al. Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: Longitudinal cohort study. BMJ. 2017, 357, j2353. [Google Scholar] [CrossRef]
- Albu, C.V.; Pădureanu, V.; Boldeanu, M.V.; Bumbea, A.M.; Enescu, A.Ş.; Albulescu, D.M.; Siloși, C.A.; Enescu, A. Vascular neurocognitive disorders and the vascular risk factors. J Mind Med Sci 2018, 5, 7–5. [Google Scholar] [CrossRef]
© 2021 by the author. 2021 Margarita Velikova, Bistra Galunska, Raya Dimitrova, Zlatislav Stoyanov
Share and Cite
Velikova, M.; Galunska, B.; Dimitrova, R.; Stoyanov, Z. Alcohol Consumption and Cognitive Aging: Can It Be Beneficial? J. Mind Med. Sci. 2021, 8, 5-16. https://doi.org/10.22543/7674.81.P516
Velikova M, Galunska B, Dimitrova R, Stoyanov Z. Alcohol Consumption and Cognitive Aging: Can It Be Beneficial? Journal of Mind and Medical Sciences. 2021; 8(1):5-16. https://doi.org/10.22543/7674.81.P516
Chicago/Turabian StyleVelikova, Margarita, Bistra Galunska, Raya Dimitrova, and Zlatislav Stoyanov. 2021. "Alcohol Consumption and Cognitive Aging: Can It Be Beneficial?" Journal of Mind and Medical Sciences 8, no. 1: 5-16. https://doi.org/10.22543/7674.81.P516
APA StyleVelikova, M., Galunska, B., Dimitrova, R., & Stoyanov, Z. (2021). Alcohol Consumption and Cognitive Aging: Can It Be Beneficial? Journal of Mind and Medical Sciences, 8(1), 5-16. https://doi.org/10.22543/7674.81.P516