Role of Amide Proton Transfer Weighted MRI in Predicting MGMTp Methylation Status, p53-Status, Ki-67 Index, IDH-Status, and ATRX Expression in WHO Grade 4 High Grade Glioma
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. MRI Acquisition Protocol for APTw and Conventional MRI Sequences
2.3. Postprocessing of the APTw MRI Protocol
- Necrotic regions, defined as non-enhancing cores with elevated ADC and low perfusion.
- Cystic areas, characterized by CSF-like signal on FLAIR/T1-MPRAGE with no enhancement and elevated ADC values.
- Major vessels, recognized by flow voids in T2-weighted images and focal perfusion intensities corresponding to arterial anatomy.
2.4. Histopathology and Molecular Characterization
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | apparent diffusion coefficient |
APT | amide proton transfer |
APTw | amide proton transfer weighted |
ATRX | alpha-thalassemia/mental retardation, X-linked |
AUC | area under the curve |
BRAF | B-raf proto oncogene |
CBF | cerebral blood flow |
CBV | cerebral blood volume |
CDKN2A/B | cyclin-dependent kinase inhibitor 2A or 2B |
CEST | chemical exchange saturation transfer |
DSC PW | dynamic susceptibility contrast perfusion weighted imaging |
EGFR | epidermal growth factor receptor |
FLAIR | fluid attenuation inversion recovery |
GBM | Glioblastoma WHO Grade IV/4 |
Gd | gadolinium |
GOF | gain of function mutation |
GTR | gross total resection |
H3K27M | lysine-to-methionine substitution at position 27 (K27M) in histone H3 |
HGG | High-grade glioma |
IDH | isocitrate dehydrogenase |
IHC | immunohistochemistry |
Ki-67 index | antigen Kiel 67 proliferation index |
LGG | Low-grade glioma |
MGMT | O6-methylguanine-DNA methyltransferase |
MGMTp | MGMT promoter |
MLPA | multiplex ligation-dependent probe amplification |
MPRAGE | magnetization prepared rapid acquisition gradient echo |
mut | mutated |
MW-U | Mann–Whitney U test |
OS | overall survival |
p53 | tumor protein 53 |
PCR | polymerase chain reaction |
PFS | progression-free survival |
PTEN | Phosphatase and Tensin homolog gene |
ROC | receiver operating characteristic |
T1c | T1-weighted imaging with Gd enhancement |
TERT | telomerase reverse transcriptase |
TP53 | TP 53 gene |
WHO | World Health Organization |
WHO CNS5/2021 | WHO classification of CNS tumors 2021 |
wt | wild type |
Dx | dexter (Latin for ‘right’) |
Sin | sinister (Latin for ‘left’) |
References
- Fan, H.C.; Chen, C.M.; Chi, C.S.; Tsai, J.D.; Chiang, K.L.; Chang, Y.K.; Lin, S.Z.; Harn, H.J. Targeting Telomerase and ATRX/DAXX Inducing Tumor Senescence and Apoptosis in the Malignant Glioma. Int. J. Mol. Sci. 2019, 20, 200. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 1985–1996. [Google Scholar] [CrossRef] [PubMed]
- Ohka, F.; Natsume, A.; Wakabayashi, T. Current trends in targeted therapies for glioblastoma multiforme. Neurol. Res. Int. 2012, 2012, 878425. [Google Scholar] [CrossRef]
- Wang, W.; Shi, G.; Ma, B.; Hao, X.; Dong, X.; Zhang, B. Chemotherapy for Adults with Malignant Glioma: A Systematic Review and Network Meta-Analysis. Turk. Neurosurg. 2017, 27, 174–181. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Karsy, M.; Guan, J.; Cohen, A.L.; Jensen, R.L.; Colman, H. New Molecular Considerations for Glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr. Neurol. Neurosci. Rep. 2017, 17, 19. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- van den Bent, M.J.; Weller, M.; Wen, P.Y.; Kros, J.M.; Aldape, K.; Chang, S. A clinical perspective on the 2016 WHO brain tumor classification and routine molecular diagnostics. Neuro Oncol. 2017, 19, 614–624. [Google Scholar] [CrossRef]
- Jiang, S.; Wen, Z.; Ahn, S.S.; Cai, K.; Paech, D.; Eberhart, C.G.; Zhou, J. Applications of chemical exchange saturation transfer magnetic resonance imaging in identifying genetic markers in gliomas. NMR Biomed. 2023, 36, e4731. [Google Scholar] [CrossRef]
- Ichimura, K.; Pearson, D.M.; Kocialkowski, S.; Backlund, L.M.; Chan, R.; Jones, D.T.; Collins, V.P. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol. 2009, 11, 341–347. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, X.; Rui, W.; Pang, H.; Qiu, T.; Wang, J.; Xie, Q.; Jin, T.; Zhang, H.; Chen, H.; et al. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. J. Magn. Reson. Imaging 2019, 49, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Zhang, C.B.; Cai, J.Q.; Li, Q.B.; Wang, Z.; Jiang, T. Integrated analysis of genome-wide DNA methylation, gene expression and protein expression profiles in molecular subtypes of WHO II-IV gliomas. J. Exp. Clin. Cancer Res. 2015, 34, 127. [Google Scholar] [CrossRef] [PubMed]
- Doll, S.; Urisman, A.; Oses-Prieto, J.A.; Arnott, D.; Burlingame, A.L. Quantitative Proteomics Reveals Fundamental Regulatory Differences in Oncogenic HRAS and Isocitrate Dehydrogenase (IDH1) Driven Astrocytoma. Mol. Cell Proteomics 2017, 16, 39–56. [Google Scholar] [CrossRef]
- Nandakumar, P.; Mansouri, A.; Das, S. The Role of ATRX in Glioma Biology. Front. Oncol. 2017, 7, 236. [Google Scholar] [CrossRef]
- Leeper, H.E.; Caron, A.A.; Decker, P.A.; Jenkins, R.B.; Lachance, D.H.; Giannini, C. IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas. Oncotarget 2015, 6, 30295–30305. [Google Scholar] [CrossRef]
- Kannan, K.; Inagaki, A.; Silber, J.; Gorovets, D.; Zhang, J.; Kastenhuber, E.R.; Heguy, A.; Petrini, J.H.; Chan, T.A.; Huse, J.T. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 2012, 3, 1194–1203. [Google Scholar] [CrossRef]
- Sabapathy, K.; Lane, D.P. Understanding p53 functions through p53 antibodies. J. Mol. Cell Biol. 2019, 11, 317–329. [Google Scholar] [CrossRef]
- Zhang, Y.; Dube, C.; Gibert, M., Jr.; Cruickshanks, N.; Wang, B.; Coughlan, M.; Yang, Y.; Setiady, I.; Deveau, C.; Saoud, K.; et al. The p53 Pathway in Glioblastoma. Cancers 2018, 10, 297. [Google Scholar] [CrossRef]
- Niskanen, E.; Blomqvist, C.; Franssila, K.; Hietanen, P.; Wasenius, V.M. Predictive value of c-erbB-2, p53, cathepsin-D and histology of the primary tumour in metastatic breast cancer. Br. J. Cancer 1997, 76, 917–922. [Google Scholar] [CrossRef]
- Kandioler-Eckersberger, D.; Ludwig, C.; Rudas, M.; Kappel, S.; Janschek, E.; Wenzel, C.; Schlagbauer-Wadl, H.; Mittlbock, M.; Gnant, M.; Steger, G.; et al. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin. Cancer Res. 2000, 6, 50–56. [Google Scholar]
- Lowe, S.W.; Schmitt, E.M.; Smith, S.W.; Osborne, B.A.; Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993, 362, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Klingbeil, O.; Lu, B.; Wu, C.; Ballon, C.; Ouyang, M.; Wu, X.S.; Jin, Y.; Hwangbo, Y.; Huang, Y.H.; et al. BRD8 maintains glioblastoma by epigenetic reprogramming of the p53 network. Nature 2023, 613, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Scholzen, T.; Gerdes, J. The Ki-67 protein: From the known and the unknown. J. Cell Physiol. 2000, 182, 311–322. [Google Scholar] [CrossRef]
- Johannessen, A.L.; Torp, S.H. The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol. Oncol. Res. 2006, 12, 143–147. [Google Scholar] [CrossRef]
- Togao, O.; Yoshiura, T.; Keupp, J.; Hiwatashi, A.; Yamashita, K.; Kikuchi, K.; Suzuki, Y.; Suzuki, S.O.; Iwaki, T.; Hata, N.; et al. Amide proton transfer imaging of adult diffuse gliomas: Correlation with histopathological grades. Neuro Oncol. 2014, 16, 441–448. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Weller, M.; Felsberg, J.; Hartmann, C.; Berger, H.; Steinbach, J.P.; Schramm, J.; Westphal, M.; Schackert, G.; Simon, M.; Tonn, J.C.; et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: A prospective translational study of the German Glioma Network. J. Clin. Oncol. 2009, 27, 5743–5750. [Google Scholar] [CrossRef]
- McAleenan, A.; Kelly, C.; Spiga, F.; Kernohan, A.; Cheng, H.Y.; Dawson, S.; Schmidt, L.; Robinson, T.; Brandner, S.; Faulkner, C.L.; et al. Prognostic value of test(s) for O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide. Cochrane Database Syst. Rev. 2021, 3, CD013316. [Google Scholar] [CrossRef]
- Wick, W.; Platten, M.; Meisner, C.; Felsberg, J.; Tabatabai, G.; Simon, M.; Nikkhah, G.; Papsdorf, K.; Steinbach, J.P.; Sabel, M.; et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: The NOA-08 randomised, phase 3 trial. Lancet Oncol. 2012, 13, 707–715. [Google Scholar] [CrossRef]
- Liu, X.Y.; Gerges, N.; Korshunov, A.; Sabha, N.; Khuong-Quang, D.A.; Fontebasso, A.M.; Fleming, A.; Hadjadj, D.; Schwartzentruber, J.; Majewski, J.; et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012, 124, 615–625. [Google Scholar] [CrossRef]
- Wen, P.Y.; Packer, R.J. The 2021 WHO Classification of Tumors of the Central Nervous System: Clinical implications. Neuro Oncol. 2021, 23, 1215–1217. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chai, R.; Lin, Z.; Wu, R.; Yao, D.; Jiang, T.; Wang, Q. Evolution-driven crosstalk between glioblastoma and the tumor microenvironment. Cancer Biol. Med. 2023, 20, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wu, W.; Zhang, J.; Zhao, Z.; Li, L.; Zhu, M.; Wu, M.; Wu, F.; Zhou, F.; Du, Y.; et al. Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma. Cancer Discov. 2022, 12, 2820–2837. [Google Scholar] [CrossRef]
- Goffart, N.; Lombard, A.; Lallemand, F.; Kroonen, J.; Nassen, J.; Di Valentin, E.; Berendsen, S.; Dedobbeleer, M.; Willems, E.; Robe, P.; et al. CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro Oncol. 2017, 19, 66–77. [Google Scholar] [CrossRef]
- Rubenich, D.S.; de Souza, P.O.; Omizzollo, N.; Aubin, M.R.; Basso, P.J.; Silva, L.M.; da Silva, E.M.; Teixeira, F.C.; Gentil, G.F.S.; Domagalski, J.L.; et al. Tumor-neutrophil crosstalk promotes in vitro and in vivo glioblastoma progression. Front. Immunol. 2023, 14, 1183465. [Google Scholar] [CrossRef]
- Rao, J.U.; Coman, D.; Walsh, J.J.; Ali, M.M.; Huang, Y.; Hyder, F. Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH. Sci. Rep. 2017, 7, 7865. [Google Scholar] [CrossRef]
- Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013, 73, 1524–1535. [Google Scholar] [CrossRef]
- Coman, D.; Huang, Y.; Rao, J.U.; De Feyter, H.M.; Rothman, D.L.; Juchem, C.; Hyder, F. Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas. NMR Biomed. 2016, 29, 309–319. [Google Scholar] [CrossRef]
- Zhou, J.; Payen, J.F.; Wilson, D.A.; Traystman, R.J.; van Zijl, P.C. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat. Med. 2003, 9, 1085–1090. [Google Scholar] [CrossRef]
- Knutsson, L.; Xu, J.; Ahlgren, A.; van Zijl, P.C.M. CEST, ASL, and magnetization transfer contrast: How similar pulse sequences detect different phenomena. Magn. Reson. Med. 2018, 80, 1320–1340. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kitai, R.; Kodera, T.; Arishima, H.; Matsuda, K.; Isozaki, M.; Ishida, S.; Matta, Y.; Kanamoto, M.; Kimura, H.; et al. Comparison of amide proton transfer imaging with perfusion imaging of using arterial spin-labeling for evidence of tumor invasion in glioblastoma. Interdiscip. Neurosurg. 2022, 28, 101461. [Google Scholar] [CrossRef]
- Zhou, J.; Heo, H.Y.; Knutsson, L.; van Zijl, P.C.M.; Jiang, S. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. J. Magn. Reson. Imaging 2019, 50, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zhang, C.; Chen, X.; Cheng, Y. Comparing amide proton transfer imaging with dynamic susceptibility contrast-enhanced perfusion in predicting histological grades of gliomas: A meta-analysis. Acta Radiol. 2020, 61, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Tryggestad, E.; Wen, Z.; Lal, B.; Zhou, T.; Grossman, R.; Wang, S.; Yan, K.; Fu, D.X.; Ford, E.; et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat. Med. 2011, 17, 130–134. [Google Scholar] [CrossRef]
- Ma, B.; Blakeley, J.O.; Hong, X.; Zhang, H.; Jiang, S.; Blair, L.; Zhang, Y.; Heo, H.Y.; Zhang, M.; van Zijl, P.C.; et al. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J. Magn. Reson. Imaging 2016, 44, 456–462. [Google Scholar] [CrossRef]
- Jiang, S.; Eberhart, C.G.; Lim, M.; Heo, H.-Y.; Zhang, Y.; Blair, L.; Wen, Z.; Holdhoff, M.; Lin, D.; Huang, P.; et al. Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy. Clin. Cancer Res. 2019, 25, 552–561. [Google Scholar] [CrossRef]
- Jiang, S.; Zou, T.; Eberhart, C.G.; Villalobos, M.A.V.; Heo, H.Y.; Zhang, Y.; Wang, Y.; Wang, X.; Yu, H.; Du, Y.; et al. Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI. Magn. Reson. Med. 2017, 78, 1100–1109. [Google Scholar] [CrossRef]
- Paech, D.; Windschuh, J.; Oberhollenzer, J.; Dreher, C.; Sahm, F.; Meissner, J.E.; Goerke, S.; Schuenke, P.; Zaiss, M.; Regnery, S.; et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Neuro Oncol. 2018, 20, 1661–1671. [Google Scholar] [CrossRef]
- Yao, J.; Chakhoyan, A.; Nathanson, D.A.; Yong, W.H.; Salamon, N.; Raymond, C.; Mareninov, S.; Lai, A.; Nghiemphu, P.L.; Prins, R.M.; et al. Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH- and oxygen-sensitive molecular MRI. Neuro Oncol. 2019, 21, 1184–1196. [Google Scholar] [CrossRef]
- Han, Y.; Wang, W.; Yang, Y.; Sun, Y.Z.; Xiao, G.; Tian, Q.; Zhang, J.; Cui, G.B.; Yan, L.F. Amide Proton Transfer Imaging in Predicting Isocitrate Dehydrogenase 1 Mutation Status of Grade II/III Gliomas Based on Support Vector Machine. Front. Neurosci. 2020, 14, 144. [Google Scholar] [CrossRef]
- Moon, W.J.; Choi, J.W.; Roh, H.G.; Lim, S.D.; Koh, Y.C. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: The CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 2012, 54, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Rui, Q.; Wang, Y.; Heo, H.Y.; Zou, T.; Yu, H.; Zhang, Y.; Wang, X.; Du, Y.; Wen, X.; et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics. Eur. Radiol. 2018, 28, 2115–2123. [Google Scholar] [CrossRef]
- Su, L.; Gao, P.; Lin, S.; Wu, B.; Qin, W.; Lin, Y.; Xue, J. Predicting O6-Methylguanine-DNA Methyltransferase Protein Expression in Primary Low- and High-Grade Gliomas Using Certain Qualitative Characteristics of Amide Proton Transfer-Weighted Magnetic Resonance Imaging. World Neurosurg. 2018, 116, e814–e823. [Google Scholar] [CrossRef]
- Joo, B.; Han, K.; Ahn, S.S.; Choi, Y.S.; Chang, J.H.; Kang, S.G.; Kim, S.H.; Zhou, J.; Lee, S.K. Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma. Eur. Radiol. 2019, 29, 6643–6652. [Google Scholar] [CrossRef] [PubMed]
- Sotirios, B.; Demetriou, E.; Topriceanu, C.C.; Zakrzewska, Z. The role of APT imaging in gliomas grading: A systematic review and meta-analysis. Eur. J. Radiol. 2020, 133, 109353. [Google Scholar] [CrossRef]
- Knutsson, M.; Salomonsson, T.; Durmo, F.; Johansson, E.R.; Seidemo, A.; Lätt, J.; Rydelius, A.; Kinhult, S.; Englund, E.; Bengzon, J.; et al. Differentiation between glioblastoma and solitary brain metastases using perfusion and amide proton transfer weighted MRI. Front. Neurosci. 2025, 19, 1533799. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.G. The dynamics of water-protein interactions. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 29–53. [Google Scholar] [CrossRef]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17, 825–841. [Google Scholar] [CrossRef]
- Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002, 17, 143–155. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ohba, S.; Murayama, K.; Teranishi, T.; Kumon, M.; Nakae, S.; Yui, M.; Yamamoto, K.; Yamada, S.; Abe, M.; Hasegawa, M.; et al. Three-Dimensional Amide Proton Transfer-Weighted Imaging for Differentiating between Glioblastoma, IDH-Wildtype and Primary Central Nervous System Lymphoma. Cancers 2023, 15, 952. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Hachem, L.D.; Mansouri, S.; Nassiri, F.; Laperriere, N.J.; Xia, D.; Lindeman, N.I.; Wen, P.Y.; Chakravarti, A.; Mehta, M.P.; et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. Neuro Oncol. 2019, 21, 167–178. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Jiang, H.; Wang, T.; Da, R. BRAFnon-V600E more frequently co-occurs with IDH1/2 mutations in adult patients with gliomas than in patients harboring BRAFV600E but without a survival advantage. BMC Neurol. 2021, 21, 195. [Google Scholar] [CrossRef]
- Li, L.; Chen, W.; Yan, Z.; Feng, J.; Hu, S.; Liu, B.; Liu, X. Comparative Analysis of Amide Proton Transfer MRI and Diffusion-Weighted Imaging in Assessing p53 and Ki-67 Expression of Rectal Adenocarcinoma. J. Magn. Reson. Imaging 2020, 52, 1487–1496. [Google Scholar] [CrossRef]
- Jin, Y.; Xiao, W.; Song, T.; Feng, G.; Dai, Z. Expression and Prognostic Significance of p53 in Glioma Patients: A Meta-analysis. Neurochem. Res. 2016, 41, 1723–1731. [Google Scholar] [CrossRef]
- Sabapathy, K. The Contrived Mutant p53 Oncogene—Beyond Loss of Functions. Front. Oncol. 2015, 5, 276. [Google Scholar] [CrossRef]
- Sabapathy, K.; Lane, D.P. Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 2018, 15, 13–30. [Google Scholar] [CrossRef]
- Muller, P.A.; Vousden, K.H. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell 2014, 25, 304–317. [Google Scholar] [CrossRef]
- Freed-Pastor, W.A.; Prives, C. Mutant p53: One name, many proteins. Genes. Dev. 2012, 26, 1268–1286. [Google Scholar] [CrossRef]
- Kikuchi, S.; Nishimura, R.; Osako, T.; Okumura, Y.; Nishiyama, Y.; Toyozumi, Y.; Arima, N. Definition of p53 overexpression and its association with the clinicopathological features in luminal/HER2-negative breast cancer. Anticancer Res. 2013, 33, 3891–3897. [Google Scholar] [PubMed]
- Shifeng, T.; Yue, W.; Wen, Z.; Lihua, C.; Nan, W.; Liangjie, L.; Ailian, L. The value of multimodal functional magnetic resonance imaging in differentiating p53abn from p53wt endometrial carcinoma. Acta Radiol. 2023, 64, 2948–2956. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Zhang, T.; Li, S.W.; Qian, T.Y.; Fan, X.; Peng, X.X.; Ma, J.; Wang, L.; Jiang, T. Mapping p53 mutations in low-grade glioma: A voxel-based neuroimaging analysis. AJNR Am. J. Neuroradiol. 2015, 36, 70–76. [Google Scholar] [CrossRef]
- Khalid, F.; Goya-Outi, J.; Escobar, T.; Dangouloff-Ros, V.; Grigis, A.; Philippe, C.; Boddaert, N.; Grill, J.; Frouin, V.; Frouin, F. Multimodal MRI radiomic models to predict genomic mutations in diffuse intrinsic pontine glioma with missing imaging modalities. Front. Med. 2023, 10, 1071447. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Z.; Xu, K.; Wang, K.; Fan, X.; Li, S.; Jiang, T.; Liu, X.; Wang, Y. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Neuroimage Clin. 2018, 17, 306–311. [Google Scholar] [CrossRef]
- Calabrese, E.; Rudie, J.D.; Rauschecker, A.M.; Villanueva-Meyer, J.E.; Clarke, J.L.; Solomon, D.A.; Cha, S. Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neurooncol Adv. 2022, 4, vdac060. [Google Scholar] [CrossRef]
- Durmo, F.; Rydhog, A.; Testud, F.; Latt, J.; Schmitt, B.; Rydelius, A.; Englund, E.; Bengzon, J.; van Zijl, P.; Knutsson, L.; et al. Assessment of Amide proton transfer weighted (APTw) MRI for pre-surgical prediction of final diagnosis in gliomas. PLoS ONE 2020, 15, e0244003. [Google Scholar] [CrossRef]
- Zhou, J.; Zaiss, M.; Knutsson, L.; Sun, P.Z.; Ahn, S.S.; Aime, S.; Bachert, P.; Blakeley, J.O.; Cai, K.; Chappell, M.A.; et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn. Reson. Med. 2022, 88, 546–574. [Google Scholar] [CrossRef]
- Herz, K.; Mueller, S.; Perlman, O.; Zaitsev, M.; Knutsson, L.; Sun, P.Z.; Zhou, J.; van Zijl, P.; Heinecke, K.; Schuenke, P.; et al. Pulseq-CEST: Towards multi-site multi-vendor compatibility and reproducibility of CEST experiments using an open-source sequence standard. Magn. Reson. Med. 2021, 86, 1845–1858. [Google Scholar] [CrossRef]
Histological or Demographic Features | Count | |
---|---|---|
Biological sex | Female | 12 |
Male | 30 | |
ATXR wild type | No | 6 |
Yes | 36 | |
IDH wild type | No | 6 |
Yes | 36 | |
Ki-67 index > 10% (%) | No | 11 |
Yes | 30 | |
MGMT promoter methylation ** | No | 17 |
Yes | 21 | |
p53 wild type | No | 16 |
Yes | 26 | |
Age at APTw MRI exam (years) | Overall (y) | 56 |
Male vs. female (y) | 56 vs. 58 | |
MGMTp meth vs. non-meth (y) | 58 vs. 56 | |
ATRX-wt vs. ATRX-mut (y) | 57 vs. 49 * | |
IDH-wt vs. IDH-mut (y) | 59 vs. 38 * | |
Ki-67-low vs. Ki-67-high (y) | 56 vs. 56 | |
P53-wt vs. p53-overexpressed | 58 vs. 51 | |
Lesion location | Frontal dx | 4 |
Frontal sin | 8 | |
Fronto–parietal dx | 1 | |
Fronto–parietal sin | 1 | |
Fronto–insulo–parietal dx | 1 | |
Fronto–insulo–parietal sin | 1 | |
Fronto–insulo–temporal dx | 1 | |
Fronto–tempero-–parietal dx | 1 | |
Midline CC | 3 | |
Occipital sin | 2 | |
Parietal dx | 4 | |
Parietal sin | 2 | |
Parieto–occipital dx | 1 | |
Parieto–occipital sin | 1 | |
Temporal dx | 2 | |
Temporal sin | 6 | |
Tempero–parietal dx | 1 | |
Tempero–parietal sin | 1 | |
Tempero–occipital dx | 1 |
Anatomical Lesion Location | Frontal | Temporal | Parietal | |||
---|---|---|---|---|---|---|
High-grade glioma and molecular characteristic | Sin | Dx | Sin | Dx | Sin | Dx |
Overexpressed p53 | 5 | 3 | - | - | - | - |
Normally expressed p53 | 5 | 5 | 4 | 4 | 3 | 6 |
Non-methylated MGMTp | 5 | 1 | - | - | 6 | 2 |
Methylated MGMTp | 4 | 6 | 4 | 3 | 0 | 6 |
Area Under the Curve (AUC) | p-Value | 95% Confidence Interval | Cutoff/Sensitivity/Specificity | ||
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Mean APTw | 0.786 | 0.002 | 0.65 | 0.92 | 1.25%/76.9%/50.0% |
Median APTw | 0.757 | 0.006 | 0.61 | 0.90 | 1.33%/76.9%/66.2% |
Mean + median APTw | 0.788 | 0.002 | 0.65 | 0.92 | 0.57 */76.9%/66.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durmo, F.; Lätt, J.; Rydelius, A.; Englund, E.; Salomonsson, T.; Liebig, P.; Bengzon, J.; van Zijl, P.C.M.; Knutsson, L.; Sundgren, P.C. Role of Amide Proton Transfer Weighted MRI in Predicting MGMTp Methylation Status, p53-Status, Ki-67 Index, IDH-Status, and ATRX Expression in WHO Grade 4 High Grade Glioma. Tomography 2025, 11, 64. https://doi.org/10.3390/tomography11060064
Durmo F, Lätt J, Rydelius A, Englund E, Salomonsson T, Liebig P, Bengzon J, van Zijl PCM, Knutsson L, Sundgren PC. Role of Amide Proton Transfer Weighted MRI in Predicting MGMTp Methylation Status, p53-Status, Ki-67 Index, IDH-Status, and ATRX Expression in WHO Grade 4 High Grade Glioma. Tomography. 2025; 11(6):64. https://doi.org/10.3390/tomography11060064
Chicago/Turabian StyleDurmo, Faris, Jimmy Lätt, Anna Rydelius, Elisabet Englund, Tim Salomonsson, Patrick Liebig, Johan Bengzon, Peter C. M. van Zijl, Linda Knutsson, and Pia C. Sundgren. 2025. "Role of Amide Proton Transfer Weighted MRI in Predicting MGMTp Methylation Status, p53-Status, Ki-67 Index, IDH-Status, and ATRX Expression in WHO Grade 4 High Grade Glioma" Tomography 11, no. 6: 64. https://doi.org/10.3390/tomography11060064
APA StyleDurmo, F., Lätt, J., Rydelius, A., Englund, E., Salomonsson, T., Liebig, P., Bengzon, J., van Zijl, P. C. M., Knutsson, L., & Sundgren, P. C. (2025). Role of Amide Proton Transfer Weighted MRI in Predicting MGMTp Methylation Status, p53-Status, Ki-67 Index, IDH-Status, and ATRX Expression in WHO Grade 4 High Grade Glioma. Tomography, 11(6), 64. https://doi.org/10.3390/tomography11060064