Nailfold Video-Capillaroscopy in Sarcoidosis: New Perspectives and Challenges
Abstract
:1. Introduction
1.1. Nailfold Video-Capillaroscopy the History of Invention and Development of the Technique
1.2. The Capillaroscopy Applications
1.3. NVC and the Other Imaging Systems, Like Photoacoustic Microscopy (PAM), Diffuse Speckle Pulsatile Flowmetry (DSPF) and Optical Coherence Tomography (OCT)
- a-
- Photoacoustic Microscopy (PAM): combines optical and ultrasound imaging. It uses laser-induced ultrasound waves generated by the absorption of light, which can provide high-resolution images of tissue structures. This technique is particularly useful for imaging vascular structures, oxygenation levels, and tissue composition in real-time. It has applications in cancer research, dermatology, and other fields where vascular assessments are crucial [59,60,61].
- b-
- Diffuse Speckle Pulsatile Flowmetry (DSPF): employs laser speckle contrast imaging to assess blood flow dynamics. It detects the movement of scatterers (like red blood cells) within a tissue, evaluating blood flow based on the temporal changes in speckle patterns. It is used to monitor microcirculation and perfusion in various tissues, which can be vital in wound healing, tissue engineering, and assessing vascular health.
- c-
- Optical Coherence Tomography (OCT): OCT is an imaging technique that utilizes light waves to take cross-section images of biological tissues. It offers high-resolution images (in the micrometer range) without the need for contrast agents. Commonly used in ophthalmology for retinal imaging, OCT is being explored for skin imaging, cardiovascular assessments, and monitoring microvascular conditions similar to nailfold capillaroscopy.
1.4. The Sarcoidosis Disease
1.5. Blood Biomarkers for Lung Fibrosis in Sarcoidosis
- a-
- Signal Peptide-Cubilin mRNA (SP-C): Elevated levels have been associated with idiopathic pulmonary fibrosis (IPF) and could serve as a diagnostic marker.
- b-
- c-
- d-
- e-
- f-
- a-
- Angiotensin-Converting Enzyme (ACE): Elevated serum levels of ACE are com-monly observed in sarcoidosis and have been used as a marker for disease activity.
- b-
- Soluble Interleukin-2 Receptor (sIL-2R): High levels in serum can indicate T-cell activation and may correlate with disease activity and severity.
- c-
- C-reactive Protein (CRP): Though not specific, CRP can indicate systemic inflammation and might support diagnosis when elevated.
- d-
- Vascular Endothelial Growth Factor (VEGF): Elevated levels have been associated with sarcoidosis and can reflect disease activity.
- e-
- Interferon gamma (IFN-γ): Enhanced levels may play a role in the granulomatous response seen in sarcoidosis patients and can serve as an indirect biomarker.
2. Sarcoidosis and Capillaroscopy
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cutolo, M.; Sulli, A.; Smith, V. How to perform and interpret capillaroscopy. Best Pract. Res. Clin. Rheumatol. 2013, 27, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Trombetta, A.C.; Melsens, K.; Pizzorni, C.; Sulli, A.; Ruaro, B.; Paolino, S.; Deschepper, E.; Smith, V. Automated assessment of absolute nailfold capillary number on videocapillaroscopic images: Proof of principle and validation in systemic sclerosis. Microcirculation 2018, 25, e12447. [Google Scholar] [CrossRef]
- Smith, V.; Pizzorni, C.; Riccieri, V.; Decuman, S.; Brusselle, G.; DE Pauw, M.; Deschepper, E.; Piette, Y.; Ruaro, B.; Sulli, A.; et al. Stabilization of Microcirculation in Patients with Early Systemic Sclerosis with Diffuse Skin Involvement following Rituximab Treatment: An Open-label Study. J. Rheumatol. 2016, 43, 995–996. [Google Scholar] [CrossRef] [PubMed]
- Crouser, E.D.; Maier, L.A.; Wilson, K.C.; Bonham, C.A.; Morgenthau, A.S.; Patterson, K.C.; Abston, E.; Bernstein, R.C.; Blankstein, R.; Chen, E.S.; et al. Diagnosis and Detection of Sarcoidosis. An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2020, 201, e26–e51. [Google Scholar] [CrossRef]
- Drent, M.; Crouser, E.D.; Grunewald, J. Challenges of Sarcoidosis and Its Management. N. Engl. J. Med. 2021, 385, 1018–1032. [Google Scholar] [CrossRef] [PubMed]
- Arkema, E.V.; Cozier, Y.C. Sarcoidosis epidemiology: Recent estimates of incidence, prevalence and risk factors. Curr. Opin. Pulm. Med. 2020, 26, 527–534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ungprasert, P.; Crowson, C.S.; Matteson, E.L. Influence of Gender on Epidemiology and Clinical Manifestations of Sarcoidosis: A Population-Based Retrospective Cohort Study 1976–2013. Lung 2017, 195, 87–91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Birnbaum, A.D.; Rifkin, L.M. Sarcoidosis: Sex-Dependent Variations in Presentation and Management. J. Ophthalmol. 2014, 2014, 236905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Judson, M.A. The Clinical Features of Sarcoidosis: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2015, 49, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.P.; Teirstein, A.S.; Judson, M.A.; Rossman, M.D.; Yeager, H., Jr.; Bresnitz, E.A.; DePalo, L.; Hunninghake, G.; Iannuzzi, M.C.; Johns, C.J.; et al. Clinical Characteristics of Patients in a Case Control Study of Sarcoidosis. Am. J. Respir. Crit. Care Med. 2001, 164 Pt 1, 1885–1889. [Google Scholar] [CrossRef] [PubMed]
- Torregiani, C.; Reale, M.; Confalonieri, M.; Dore, F.; Crisafulli, C.; Baratella, E.; Salton, F.; Confalonieri, P.; Ruaro, B.; Maiello, G. Cardiopulmonary exercise testing complements both spirometry and nuclear imaging for assessing sarcoidosis stage and for monitoring disease activity. Sarcoidosis Vasc Diffuse Lung Dis. 2024, 41, e2024017. [Google Scholar] [CrossRef] [PubMed]
- Chevalet, P.; Clément, R.; Rodat, O.; Moreau, A.; Brisseau, J.-M.; Clarke, J.-P. Sarcoidosis Diagnosed in Elderly Subjects: Retrospective study of 30 cases. Chest 2004, 126, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Ungprasert, P.; Carmona, E.M.; Utz, J.P.; Ryu, J.H.; Crowson, C.S.; Matteson, E.L. Epidemiology of Sarcoidosis 1946–2013: A Population-Based Study. Mayo Clin. Proc. 2015, 91, 183–188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rizzato, G.; Palmieri, G.; Agrati, A.M.; Zanussi, C. The organ-specific extrapulmonary presentation of sarcoidosis: A frequent occurrence but a challenge to an early diagnosis. A 3-year-long prospective observational study. Sarcoidosis Vasc. Diffus. Lung Dis. 2004, 21, 119–126. [Google Scholar] [PubMed]
- Cifaldi, R.; Salton, F.; Confalonieri, P.; Trotta, L.; Barbieri, M.; Ruggero, L.; Valeri, G.; Pozzan, R.; Della Porta, R.; Kodric, M.; et al. Pulmonary Sarcoidosis and Immune Dysregulation: A Pilot Study on Possible Correlation. Diagnostics 2023, 13, 2899. [Google Scholar] [CrossRef]
- Grutters, J.C. Establishing a Diagnosis of Pulmonary Sarcoidosis. J. Clin. Med. 2023, 12, 6898. [Google Scholar] [CrossRef]
- Cameli, P.; Biondini, D.; Carleo, A.; Stock, C.J.W. Editorial: New insights in sarcoidosis: From bench to bedside. Front. Med. 2023, 10, 1202435. [Google Scholar] [CrossRef] [PubMed]
- Casanova, N.G.; Reyes-Hernon, V.; Gregory, T.; Sun, B.; Bermudez, T.; Hufford, M.K.; Oita, R.C.; Camp, S.M.; Hernandez-Molina, G.; Serrano, J.R.; et al. Biochemical and genomic identification of novel biomarkers in progressive sarcoidosis: HBEGF, eNAMPT, and ANG-2. Front. Med. 2022, 9, 1012827. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Confalonieri, P.; Volpe, M.C.; Jacob, J.; Maiocchi, S.; Salton, F.; Ruaro, B.; Confalonieri, M.; Braga, L. Regeneration or Repair? The Role of Alveolar Epithelial Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). Cells 2022, 11, 2095. [Google Scholar] [CrossRef]
- Tuleta, I.; Skowasch, D.; Biener, L.; Pizarro, C.; Schueler, R.; Nickenig, G.; Schahab, N.; Schaefer, C.; Pingel, S. Impaired vascular function in sarcoidosis patients. Adv. Exp. Med. Biol. 2017, 980, 1–9. [Google Scholar] [CrossRef]
- Aciksari, G.; Kavas, M.; Atici, A.; Kul, S.; Erman, H.; Yilmaz, Y.; Demircioglu, K.; Yalcinkaya, E.; Kanbay, A.; Caliskan, M. Endocan Levels and Endothelial Dysfunction in Patients with Sarcoidosis. Angiology 2018, 69, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Ruaro, B.; Sulli, A.; Smith, V.; Pizzorni, C.; Paolino, S.; Alessandri, E.; Trombetta, A.C.; Cutolo, M. Advances in nailfold capillaroscopic analysis in systemic sclerosis. J. Scleroderma Relat. Disord. 2018, 3, 122–131. [Google Scholar] [CrossRef]
- Ingegnoli, F.; Smith, V.; Sulli, A.; Cutolo, M. Capillaroscopy in Routine Diagnostics: Potentials and Limitations. Curr. Rheumatol. Rev. 2018, 14, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.; Vanhaecke, A.; Herrick, A.L.; Distler, O.; Guerra, M.G.; Denton, C.P.; Deschepper, E.; Foeldvari, I.; Gutierrez, M.; Hachulla, E.; et al. Fast track algorithm: How to diferentiate a “scleroderma pattern” from a “non scleroderma pattern”. Autoimmun. Rev. 2019, 18, 102394. [Google Scholar] [CrossRef]
- Sulli, A.; Ruaro, B.; Smith, V.; Pizzorni, C.; Zampogna, G.; Gallo, M.; Cutolo, M. Progression of Nailfold Microvascular Damage and Antinuclear Antibody Pattern in Systemic Sclerosis. J. Rheumatol. 2013, 40, 634–639. [Google Scholar] [CrossRef]
- Ma, Z.; Mulder, D.J.; Gniadecki, R.; Tervaert, J.W.C.; Osman, M. Methods of Assessing Nailfold Capillaroscopy Compared to Video Capillaroscopy in Patients with Systemic Sclerosis—A Critical Review of the Literature. Diagnostics 2023, 13, 2204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grassi, W.; Del Medico, P.; Izzo, F.; Cervini, C. Microvascular involvement in systemic sclerosis: Capillaroscopic findings. Semin. Arthritis Rheum. 2001, 30, 397–402. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, R.; Cutolo, M.; Salaffi, F.; Restrepo, J.P.; Grassi, W. Quantitative and qualitative assessment of one rheumatology trainee’s experience with a self-teaching programme in videocapillaroscopy. Clin. Exp. Rheumatol. 2009, 27, 651–653. [Google Scholar]
- Herrick, A.L.; Murray, A. The role of capillaroscopy and thermography in the assessment and management of Raynaud’s phenomenon. Autoimmun. Rev. 2018, 17, 465–472. [Google Scholar] [CrossRef]
- Blockmans, D.; Vermylen, J.; Bobbaers, H. Nailfold Capillaroscopy in Connective Tissue Disorders and in Raynaud’s Phenomenon. Acta Clin. Belg. 1993, 48, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Sulli, A.; Secchi, M.E.; Olivieri, M.; Pizzorni, C. The contribution of capillaroscopy to the differential diagnosis of connective autoimmune diseases. Best Pr. Res. Clin. Rheumatol. 2007, 21, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Maricq, H.R.; Maize, J.C. Nailfold Capillary Abnormalities. Clin. Rheum. Dis. 1982, 8, 455–478. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.E.C.; Gabriel, A.; Assad, R.L.; Ferrari, A.J.L.; Atra, E. Panoramic nailfold capillaroscopy: A new reading method and normal range. Semin. Arthritis Rheum. 1990, 20, 21–31. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Balasundaram, G.; Li, B.; Qi, Y.; Santosa, A.; Tan, T.C.; Olivo, M.; Bi, R. Hybrid Photoacoustic Ultrasound Imaging System for Cold-Induced Vasoconstriction and Vasodilation Monitoring. IEEE Trans. Biomed. Eng. 2024, 71, 712–716. [Google Scholar] [CrossRef]
- Kabasakal, Y.; Elvins, D.M.; Ring, E.F.; McHugh, N.J. Quantitative nailfold capillaroscopy findings in a population with connective tissue disease and in normal healthy controls. Ann. Rheum. Dis. 1996, 55, 507–512. [Google Scholar] [CrossRef]
- Cutolo, M.; Matucci Cerinic, M. Nailfold capillaroscopy and classification criteria for systemic sclerosis. Clin. Exp. Rheumatol. 2007, 25, 663–665. [Google Scholar]
- Bernero, E.; Sulli, A.; Ferrari, G.; Ravera, F.; Pizzorni, C.; Ruaro, B.; Zampogna, G.; Alessandri, E.; Cutolo, M. Prospective capillaroscopy-based study on transition from primary to secondary Raynaud’s phenomenon: Preliminary results. Reumatismo 2013, 65, 186–191. [Google Scholar] [CrossRef]
- Carpentier, P.H.; Maricq, H.R. Microvasculature in Systemic Sclerosis. Rheum. Dis. Clin. N. Am. 1990, 16, 75–91. [Google Scholar] [CrossRef]
- Maricq, H.R.; Weinberger, A.B.; LeRoy, E.C. Early detection of scleroderma-spectrum disorders by in vivo capillary microscopy: A prospective study of patients with Raynaud’s phenomenon. J. Rheumatol. 1982, 9, 289–291. [Google Scholar]
- Godziszewska, S.; Widuchowska, M.; Kopeć-Mędrek, M.; Kucharz, E.J. Coexistence of systemic sclerosis and sarcoidosis. Wiad. Lek. 2016, 69, 693–694. [Google Scholar] [PubMed]
- Alkutobi, Z.; Sidhu, A.; Nandagudi, A. O10 A case of sarcoidosis mimicking Sjögren’s syndrome along with abnormal nailfold capillaroscopy. Rheumatol. Adv. Pr. 2020, 4 (Suppl. S1), rkaa053.009. [Google Scholar] [CrossRef]
- Snow, M.H.; Saketkoo, L.A.; Frech, T.M.; Stever, J.R.; Lebedoff, N.; Herrick, A.L.; Cutolo, M.; Smith, V. Results from an American pilot survey among Scleroderma Clinical Trials Consortium members on capillaroscopy use and how to best implement nailfold capillaroscopy training. Clin. Exp. Rheumatol. 2019, 37 (Suppl. 119), 151. [Google Scholar] [PubMed]
- Radic, M.; Snow, M.; Frech, T.M.; Saketkoo, L.A.; Cutolo, M.; Smith, V. Consensus-based evaluation of dermatoscopy versus nailfold videocapillaroscopy in Raynaud’s phenomenon linking USA and Europe: A European League against Rheumatism study group on microcirculation in rheumatic diseases project. Clin. Exp. Rheumatol. 2020, 38 (Suppl. 125), 132–136. [Google Scholar] [PubMed]
- Cattelan, F.; Hysa, E.; Gotelli, E.; Pizzorni, C.; Bica, P.F.; Grosso, M.; Barisione, E.; Paolino, S.; Carmisciano, L.; Sulli, A.; et al. Microvascular capillaroscopic abnormalities and occurrence of antinuclear autoantibodies in patients with sarcoidosis. Rheumatol. Int. 2022, 42, 2199–2210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Acemoğlu, Z.; Türk, I.; Aşık, M.A.; Bircan, A.; Deniz, P.P.; Arslan, D.; Hanta, I.; Ünal, I. Microvascular damage evaluation based on nailfold videocapillarosopy in sarcoidosis. Clin. Rheumatol. 2023, 42, 1951–1957. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, W.J.; Kiszałkiewicz, J.; Pastuszak-Lewandoska, D.; Górski, P.; Antczak, A.; Migdalska-Sęk, M.; Górski, W.; Czarnecka, K.H.; Domańska, D.; Nawrot, E.; et al. Expression of HIF-1A/VEGF/ING-4 axis in pulmonary sarcoidosis. Adv. Exp. Med. Biol. 2015, 866, 61–69. [Google Scholar] [CrossRef]
- Pabst, S.; Karpushova, A.; Diaz-Lacava, A.; Herms, S.; Walier, M.; Zimmer, S.; Cichon, S.; Nickenig, G.; Nöthen, M.M.; Wienker, T.F.; et al. VEGF gene haplotypes are associated with sarcoidosis. Chest 2010, 137, 156–163. [Google Scholar] [CrossRef]
- Michalska-Jakubus, M.; Cutolo, M.; Smith, V.; Krasowska, D. Imbalanced serum levels of Ang1, Ang2 and VEGF in systemic sclerosis: Integrated efects on microvascular reactivity. Microvasc. Res. 2019, 125, 103881. [Google Scholar] [CrossRef]
- Laohaburanakit, P.; Chan, A. Obstructive Sarcoidosis. Clin. Rev. Allergy Immunol. 2003, 25, 115–130. [Google Scholar] [CrossRef]
- Rabahoğlu, B.; Oymak, F.S.; Ketencioğlu, B.B.; Tutar, N.; Gülmez, İ.; Yılmaz, İ. Frequency of peripheral blood eosinophilia and obstructive airway disease in sarcoidosis. Turk. J. Med. Sci. 2021, 51, 3001–3007. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.; Riccieri, V.; Pizzorni, C.; Decuman, S.; Deschepper, E.; Bonroy, C.; Sulli, A.; Piette, Y.; De Keyser, F.; Cutolo, M. Nailfold capillaroscopy for prediction of novel future severe organ involvement in systemic sclerosis. J. Rheumatol. 2013, 40, 2023–2028. [Google Scholar] [CrossRef]
- Wu, W.; Jordan, S.; Becker, M.O.; Dobrota, R.; Maurer, B.; Fretheim, H.; Ye, S.; Siegert, E.; Allanore, Y.; Hoffmann-Vold, A.M.; et al. Prediction of progression of interstitial lung disease in patients with systemic sclerosis: The SPAR model. Ann. Rheum. Dis. 2018, 77, 1326–1332. [Google Scholar] [CrossRef]
- Ruaro, B.; Confalonieri, M.; Salton, F.; Wade, B.; Baratella, E.; Geri, P.; Confalonieri, P.; Kodric, M.; Biolo, M.; Bruni, C. The Relationship between Pulmonary Damage and Peripheral Vascular Manifestations in Systemic Sclerosis Patients. Pharmaceuticals 2021, 14, 403. [Google Scholar] [CrossRef] [PubMed]
- Castellví, I.; Simeón-Aznar, C.P.; Sarmiento, M.; Fortuna, A.; Mayos, M.; Geli, C.; Diaz-Torné, C.; Moya, P.; De Llobet, J.M.; Casademont, J. Association between nailfold capillaroscopy findings and pulmonary function tests in patients with systemic sclerosis. J. Rheumatol. 2015, 42, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Caetano, J.; Paula, F.S.; Amaral, M.; Oliveira, S.; Alves, J.D. Nailfold Videocapillaroscopy Changes Are Associated with the Presence and Severity of Systemic Sclerosis-Related Interstitial Lung Disease. J. Clin. Rheumatol. 2019, 25, e12–e15. [Google Scholar] [CrossRef]
- Guillen-del-Castillo, A.; Simeòn-Aznar, C.P.; Callejas-Moraga, E.L.; Tolosa-Vilella, C.; Alonso-Vila, S.; Fonollosa-Pla, V. Quantitative Videocapillaroscopy Correlates with Functional Respiratory Parameter: A Clue for Vasculopathy as a Pathogenic Mechanism for Lung Injury in Systemic Sclerosis. Arthritis Res. Ther. 2018, 20, 281. [Google Scholar] [CrossRef]
- Corrado, A.; Carpagnano, G.E.; Gaudio, A.; Foschino-Barbaro, M.P.; Cantatore, F.P. Nailfold capillaroscopic findings in systemic sclerosis related lung fibrosis and in idiopathic lung fibrosis. Jt. Bone Spine 2010, 77, 570–574. [Google Scholar] [CrossRef]
- D’Oria, M.; Gandin, I.; Riccardo, P.; Hughes, M.; Lepidi, S.; Salton, F.; Confalonieri, P.; Confalonieri, M.; Tavano, S.; Ruaro, B. Correlation between Microvascular Damage and Internal Organ Involvement in Scleroderma: Focus on Lung Damage and Endothelial Dysfunction. Diagnostics 2022, 13, 55. [Google Scholar] [CrossRef]
- Ruaro, B.; Smith, V.; Sulli, A.; Pizzorni, C.; Tardito, S.; Patané, M.; Paolino, S.; Cutolo, M. Innovations in the Assessment of Primary and Secondary Raynaud’s Phenomenon. Front. Pharmacol. 2019, 10, 360. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wang, L.; Wang, L.V. In vivo photoacoustic microscopy of human cuticle microvasculature with single-cell resolution. J. Biomed. Opt. 2016, 21, 056004. [Google Scholar] [CrossRef] [PubMed]
- Baratella, E.; Bussani, R.; Zanconati, F.; Marrocchio, C.; Fabiola, G.; Braga, L.; Maiocchi, S.; Berlot, G.; Volpe, M.C.; Moro, E.; et al. Radiological–pathological signatures of patients with COVID-19-related pneumomediastinum: Is there a role for the Sonic hedgehog and Wnt5a pathways? ERJ Open Res. 2021, 7, 00346–02021. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Zhang, R.; Meng, L.; Du, Y.; Low, J.; Qi, Y.; Rajarahm, P.; Lai, A.Y.F.; Tan, V.S.Y.; Ho, P.; et al. A portable optical pulsatile flowmetry demonstrates strong clinical relevance for diabetic foot perfusion assessment. APL Bioeng. 2024, 8, 016109. [Google Scholar] [CrossRef] [PubMed]
- Ruaro, B.; Confalonieri, P.; Santagiuliana, M.; Wade, B.; Baratella, E.; Kodric, M.; Berria, M.; Jaber, M.; Torregiani, C.; Bruni, C.; et al. Correlation between Potential Risk Factors and Pulmonary Embolism in Sarcoidosis Patients Timely Treated. J. Clin. Med. 2021, 10, 2462. [Google Scholar] [CrossRef]
- Mansueto, N.; Rotondo, C.; Corrado, A.; Cantatore, F.P. Nailfold capillaroscopy: A comprehensive review on common findings and clinical usefulness in non-rheumatic disease. J. Med. Investig. 2021, 68, 6–14. [Google Scholar] [CrossRef]
Capillary Caratheristics | Normal Findings |
---|---|
Morphology | Hairpin or U-shape, with some degree of tortuosity frequent in healthy subjects |
Density (nr capillary/mm) | 9–13/mm (average 9/mm) |
Limb dimensions | 6–19 μm (average 11 μm) for afferent limbs8–20 μm (average 12 μm) for efferent limbs |
Venous limb to arterial limb diameter ratio | >2:1 |
Subpapillary venular plexus (SPVP) | Visible, in approximately one third of subjects |
Capillary loops | <35 μm |
Microhemorrhages | Single hemosiderin store in normal capillaries can be observed in healthy subjects, especially after trauma |
Article | Study Methods | Exclusion Criteria | Capillaroscopic Strategy and Methods | Capillaroscopy Findings |
---|---|---|---|---|
Microvascular capillaroscopic abnormalities and occurrence of antinuclear autoantibodies in patients with sarcoidosis. [45] | Files from an NVC database were extracted for 26 histologically diagnosed sarcoidosis and 30 PRP patients, age- and sex-matched. 30 HCs mainly recruited among health professionals willing to participate to the study. NVC figures, detailed analysis and scores, baseline performance, complete medical history and laboratory findings of all enrolled patients were achieved from patient file. | <18 years old, active smokers, underlying malignancies, systemic untreated infections (i.e., HBV, HCV and HIV), overlapping CTD, diabetes, severe uncontrolled systemic hypertension and peripheral atherosclerotic diseases. Other overlapping autoimmune diseases which could have biased the results of the immunological profile (ANA and ENA). | NVC was performed using a 200× magnification optical probe connected to an image analysis software (DS Medica Srl Videocap ©, Ver 10.00.13, Milan, Italy), evaluation by the same physician, blinded to the patient’s clinical history. Waited for a minimum of 15 min in a room at a temperature range of 20–22 °C before NVC. Two digital pictures of two-millimetre area in the middle of the nailfold bed of eight fingers, thumbs excluded, collected for each subject. Capillary density calculated with the same standardized methodology, considering all the 16 images collected for each subject. | Giant capillaries were not reported in any group. SA patients displayed a significantly higher rate of capillary dilations than HC (p for trend = 0.046). Mean lower capillary number for mm in comparison with both PRP and HC (p < 0.001). SA had higher percentage of abnormal shapes than both PRP patients (p < 0.001) and HC (p = 0.003). Microhemorrhages frequency showed no statistically significant difference through a direct comparison of the three subgroups, but a trend of increase in the percentage of microhemorrhages in SA patients > PRP patient > HC NVC parameters did not significantly change when stratifying patients according to previous treatment. |
Microvascular damage evaluation based on nailfold video-capillaroscopy in sarcoidosis. [46] | 42 biopsy proven sarcoidosis patients and 42 age- and sex-matched patients with SSc and healthy individuals underwent NVC | Interstitial lung disease other than sarcoidosis and systemic sclerosis, primary Raynaud’s phenomenon, obesity (BMI ≥ 30), diabetes mellitus, heart failure, coronary artery disease, pulmonary hypertension, oxygen saturation < 92 on room air, pregnancy, malignancy, haematological diseases. | NVC with digital microscope (Dino-Lite CapillaryScope 200, MEDL4N PRO, Almere, Netherlands) and software program (DinoCapture v2.0 software from AnMo Electronics Corp.) The same, blinded to the study groups certified investigator. Not smoked in the last half hour set down in a room with a temperature of 22–25 C° for at least 15 min before NVC. ×200 magnification NVC technique. The second-Fifth fingers of both hands were evaluated. | Median capillary density similar in SA and HC groups, lower in patients with SSc compared to other groups (p < 0.001). In patients with SA and elongated capillary ratio, rate of tortuosity and crossing capillaries of 50% and above statistically significantly higher than patients with SSc and HC. Hemorrhage, dilated capillary, avascular area, and neoangiogenesis higher in patients with SSc compared to other groups (p < 0.05). |
Articles | Autoantibodies | PFT | Laboratory Investigations | Correlating NVC Variables with Other Features |
---|---|---|---|---|
Microvascular capillaroscopic abnormalities and occurrence of antinuclear autoantibodies in patients with sarcoidosis. [45] | Blood tests for ANA and ENA. PRP patients were, for definition, all negative for ANA and ENA tests. In the prevalence of ANA positivity in SA patients were significantly higher in comparison with PRP patients (p = 0.001) and HCs (p = 0.015). | SA patients underwent PFTs (including plethysmography) to measure percent predicted forced vital capacity (FVC%), forced expiratory volume in 1 s (FEV1%), diffusing capacity of carbon monoxide (DLCO%) and total lung capacity (TLC%). | (WBC), (Hb), (PLT) (CRP), (25OH-D), (Ca) and (ACE) concentrations, the latter two being considered most correlating with sarcoidosis disease activity. Blood samples collected, at most, 3 months before NVC examination. | Negative correlation between capillary dilations and serum ACE concentrations and between the mean capillary number and CRP serum concentrations, positive correlation between mean absolute capillary count and the FVC%. |
Microvascular damage evaluation based on nailfold video-capillaroscopy in sarcoidosis. [46] | All patients with a diagnosis of sarcoidosis included in the study had negative ANA test results. | FEV1, forced vital capacity (FVC), and diffusion capacity for carbon monoxide (DLCO)] were measured at admission. | The acute phase reactants (ESR and CRP), antinuclear antibody (ANA), hematological (white blood cells, haemoglobin, and thrombocyte), and biochemical test results (creatinine, calcium, albumin, glucose, and uric acid) at the last visit of sarcoidosis patients were obtained from the hospital database. | No significant correlation was found between the laboratory results, CT stage, treatments, disease duration (chronic-acute disease), and capillaroscopy findings of the patients with SA. In patients with SA, the FEV1 value was lower in patients with a crossing rate > 50% than in those with a crossing ratio below 50%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chianese, M.; Screm, G.; Confalonieri, P.; Salton, F.; Trotta, L.; Da Re, B.; Romallo, A.; Galantino, A.; D’Oria, M.; Hughes, M.; et al. Nailfold Video-Capillaroscopy in Sarcoidosis: New Perspectives and Challenges. Tomography 2024, 10, 1547-1563. https://doi.org/10.3390/tomography10100114
Chianese M, Screm G, Confalonieri P, Salton F, Trotta L, Da Re B, Romallo A, Galantino A, D’Oria M, Hughes M, et al. Nailfold Video-Capillaroscopy in Sarcoidosis: New Perspectives and Challenges. Tomography. 2024; 10(10):1547-1563. https://doi.org/10.3390/tomography10100114
Chicago/Turabian StyleChianese, Maria, Gianluca Screm, Paola Confalonieri, Francesco Salton, Liliana Trotta, Beatrice Da Re, Antonio Romallo, Alessandra Galantino, Mario D’Oria, Michael Hughes, and et al. 2024. "Nailfold Video-Capillaroscopy in Sarcoidosis: New Perspectives and Challenges" Tomography 10, no. 10: 1547-1563. https://doi.org/10.3390/tomography10100114
APA StyleChianese, M., Screm, G., Confalonieri, P., Salton, F., Trotta, L., Da Re, B., Romallo, A., Galantino, A., D’Oria, M., Hughes, M., Bandini, G., Confalonieri, M., Baratella, E., Mondini, L., & Ruaro, B. (2024). Nailfold Video-Capillaroscopy in Sarcoidosis: New Perspectives and Challenges. Tomography, 10(10), 1547-1563. https://doi.org/10.3390/tomography10100114