Crisscross Flower Fertilization Optimization (CCFFO): A Bio-Inspired Metaheuristic for Global and Reservoir Production Optimization
Abstract
1. Introduction
- A novel Crisscross Flower Fertilization Optimization (CCFFO) algorithm is introduced. By combining the balanced search strategy of FFO with a crisscross operator, CCFFO enhances population diversity, accelerates convergence, and improves overall optimization effectiveness.
- The proposed method is thoroughly evaluated on the CEC2017 benchmark suite, where it is compared against a wide range of established metaheuristics. Its superiority is further confirmed through rigorous statistical analyses, including the Friedman and Wilcoxon signed-rank tests.
- The practical value of CCFFO is demonstrated in a reservoir production optimization case study. Results show that the algorithm achieves higher economic returns (NPV) and exhibits strong robustness in tackling real-world optimization problems.
2. The Original FFO
3. Proposed CCFFO
3.1. Crisscross Strategy
3.2. The Proposed CCFFO
Algorithm 1 Pseudo-code of the CCFFO |
Set parameters: , population_size , , , , , γ Initialize population ← 0 For End For Sort population by Cost in ascending order While ← Initialize empty population For each pollen in Calculate Generate a Lévy step size Compute Update velocity Update position Clamp to Compute cost of Add the new pollen to End For Merge and Sort the merged population by Cost in ascending order ← Retain the top agents from the sorted population /* CC Strategy */ For Perform Horizontal crossover search to update Perform Vertical crossover search to update End For Sort population by Cost in ascending order End While Return |
4. Experimental Results and Analysis
4.1. Benchmark Functions Overview
4.2. Comparative Analysis on Benchmark Functions
5. Application to Production Optimization
5.1. Reservoir Model Description
5.2. Analysis and Discussion of Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bottou, L.; Curtis, F.E.; Nocedal, J. Optimization Methods for Large-Scale Machine Learning. SIAM Rev. 2018, 60, 223–311. [Google Scholar] [CrossRef]
- Chong, E.K.; Zak, S.H. An Introduction to Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hu, H.; Wang, J.; Huang, X.; Ablameyko, S.V. An Integrated Online-Offline Hybrid Particle Swarm Optimization Framework for Medium Scale Expensive Problems*. In Proceedings of the 2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS), Hangzhou, China, 16–18 August 2024; pp. 25–32. [Google Scholar]
- Ren, X.; Wang, H.; Hu, H.; Wang, J.; Ablameyko, S.V. Weighted Committee-Based Surrogate-Assisted Differential Evolution Framework for Efficient Medium-Scale Expensive Optimization. Int. J. Mach. Learn. Cybern. 2025, 16, 6513–6530. [Google Scholar] [CrossRef]
- Babaei, M.; Norouzi, A.M.; Nick, H.M.; Gluyas, J. Optimisation of Heat Recovery from Low-Enthalpy Aquifers with Geological Uncertainty Using Surrogate Response Surfaces and Simple Search Algorithms. Sustain. Energy Technol. Assess. 2022, 49, 101754. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Hu, H.; Shan, W.; Chen, J.; Xing, L.; Heidari, A.A.; Chen, H.; He, X.; Wang, M. Dynamic Individual Selection and Crossover Boosted Forensic-Based Investigation Algorithm for Global Optimization and Feature Selection. J. Bionic Eng. 2023, 20, 2416–2442. [Google Scholar] [CrossRef]
- Huang, X.; Hu, H.; Wang, J.; Yuan, B.; Dai, C.; Ablameyk, S.V. Dynamic Strongly Convex Sparse Operator with Learning Mechanism for Sparse Large-Scale Multi-Objective Optimization. In Proceedings of the 2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS), Hangzhou, China, 16–18 August 2024; pp. 121–127. [Google Scholar]
- Hu, H.; Shan, W.; Tang, Y.; Heidari, A.A.; Chen, H.; Liu, H.; Wang, M.; Escorcia-Gutierrez, J.; Mansour, R.F.; Chen, J. Horizontal and Vertical Crossover of Sine Cosine Algorithm with Quick Moves for Optimization and Feature Selection. J. Comput. Des. Eng. 2022, 9, 2524–2555. [Google Scholar] [CrossRef]
- Shan, W.; Hu, H.; Cai, Z.; Chen, H.; Liu, H.; Wang, M.; Teng, Y. Multi-Strategies Boosted Mutative Crow Search Algorithm for Global Tasks: Cases of Continuous and Discrete Optimization. J. Bionic Eng. 2022, 19, 1830–1849. [Google Scholar] [CrossRef]
- Polyak, B.T. The Conjugate Gradient Method in Extremal Problems. USSR Comput. Math. Math. Phys. 1969, 9, 94–112. [Google Scholar] [CrossRef]
- Diwekar, U.M. Introduction to Applied Optimization; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 22. [Google Scholar]
- Gao, K.; Cao, Z.; Zhang, L.; Chen, Z.; Han, Y.; Pan, Q. A Review on Swarm Intelligence and Evolutionary Algorithms for Solving Flexible Job Shop Scheduling Problems. IEEE/CAA J. Autom. Sin. 2019, 6, 904–916. [Google Scholar] [CrossRef]
- Dréo, J.; Pétrowski, A.; Siarry, P.; Taillard, E. Metaheuristics for Hard Optimization: Methods and Case Studies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-30966-6. [Google Scholar]
- Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A Survey on New Generation Metaheuristic Algorithms. Comput. Ind. Eng. 2019, 137, 106040. [Google Scholar] [CrossRef]
- Hong, W.-J.; Yang, P.; Tang, K. Evolutionary Computation for Large-Scale Multi-Objective Optimization: A Decade of Progresses. Int. J. Autom. Comput. 2021, 18, 155–169. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2010, 15, 4–31. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle Swarm Optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Gu, J.; Liu, W.; Zhang, K.; Zhai, L.; Zhang, Y.; Chen, F. Reservoir Production Optimization Based on Surrograte Model and Differential Evolution Algorithm. J. Pet. Sci. Eng. 2021, 205, 108879. [Google Scholar] [CrossRef]
- Desbordes, J.K.; Zhang, K.; Xue, X.; Ma, X.; Luo, Q.; Huang, Z.; Hai, S.; Jun, Y. Dynamic Production Optimization Based on Transfer Learning Algorithms. J. Pet. Sci. Eng. 2022, 208, 109278. [Google Scholar] [CrossRef]
- Wang, J.-L.; Zhang, L.-M.; Zhang, K.; Wang, J.; Zhou, J.-P.; Peng, W.-F.; Yin, F.-L.; Zhong, C.; Yan, X.; Liu, P.-Y. Multi-Surrogate Framework with an Adaptive Selection Mechanism for Production Optimization. Pet. Sci. 2023, 21, 366–383. [Google Scholar] [CrossRef]
- Cao, C.; Xue, X.; Zhang, K.; Song, L.; Zhang, L.; Yan, X.; Yang, Y.; Yao, J.; Zhou, W.; Liu, C. Competitive Knowledge Transfer–Enhanced Surrogate-Assisted Search for Production Optimization. SPE J. 2024, 29, 3277–3292. [Google Scholar] [CrossRef]
- Oliver, D.S.; Raanes, P.N.; Skorstad, A.; Sætrom, J. Multi-Objective Reservoir Production Optimization: Minimizing CO2 Emissions and Maximizing Profitability. Geoenergy Sci. Eng. 2025, 244, 213396. [Google Scholar] [CrossRef]
- Zahedi-Seresht, M.; Sadeghi Bigham, B.; Khosravi, S.; Nikpour, H. Oil Production Optimization Using Q-Learning Approach. Processes 2024, 12, 110. [Google Scholar] [CrossRef]
- Albedran, H.; Alsamia, S.; Koch, E. Flower Fertilization Optimization Algorithm with Application to Adaptive Controllers. Sci. Rep. 2025, 15, 6273. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Lian, J.; Hui, G.; Ma, L.; Zhu, T.; Wu, X.; Heidari, A.A.; Chen, Y.; Chen, H. Parrot Optimizer: Algorithm and Applications to Medical Problems. Comput. Biol. Med. 2024, 172, 108064. [Google Scholar] [CrossRef]
- Askarzadeh, A. A Novel Metaheuristic Method for Solving Constrained Engineering Optimization Problems: Crow Search Algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger Games Search: Visions, Conception, Implementation, Deep Analysis, Perspectives, and towards Performance Shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
Function | Function Name | Class | Optimum |
---|---|---|---|
F1 | Shifted and Rotated Bent Cigar Function | Unimodal | 100 |
F2 | Shifted and Rotated Zakharov Function | Unimodal | 300 |
F3 | Shifted and Rotated Rosenbrock’s Function | Multimodal | 400 |
F4 | Shifted and Rotated Rastrigin’s Function | Multimodal | 500 |
F5 | Shifted and Rotated Expanded Schaffer’s F6 Function | Multimodal | 600 |
F6 | Shifted and Rotated Lunacek Bi-Rastrigin Function | Multimodal | 700 |
F7 | Shifted and Rotated Non-Continuous Rastrigin’s Function | Multimodal | 800 |
F8 | Shifted and Rotated Lévy Function | Multimodal | 900 |
F9 | Shifted and Rotated Schwefel’s Function | Multimodal | 1000 |
F10 | Hybrid Function 1 (N = 3) | Hybrid | 1100 |
F11 | Hybrid Function 2 (N = 3) | Hybrid | 1200 |
F12 | Hybrid Function 3 (N = 3) | Hybrid | 1300 |
F13 | Hybrid Function 4 (N = 4) | Hybrid | 1400 |
F14 | Hybrid Function 5 (N = 4) | Hybrid | 1500 |
F15 | Hybrid Function 6 (N = 4) | Hybrid | 1600 |
F16 | Hybrid Function 6 (N = 5) | Hybrid | 1700 |
F17 | Hybrid Function 6 (N = 5) | Hybrid | 1800 |
F18 | Hybrid Function 6 (N = 5) | Hybrid | 1900 |
F19 | Hybrid Function 6 (N = 6) | Hybrid | 2000 |
F20 | Composition Function 1 (N = 3) | Composition | 2100 |
F21 | Composition Function 2 (N = 3) | Composition | 2200 |
F22 | Composition Function 3 (N = 4) | Composition | 2300 |
F23 | Composition Function 4 (N = 4) | Composition | 2400 |
F24 | Composition Function 5 (N = 5) | Composition | 2500 |
F25 | Composition Function 6 (N = 5) | Composition | 2600 |
F26 | Composition Function 7 (N = 6) | Composition | 2700 |
F27 | Composition Function 8 (N = 6) | Composition | 2800 |
F28 | Composition Function 9 (N = 3) | Composition | 2900 |
F29 | Composition Function 10 (N = 3) | Composition | 3000 |
F1 | F2 | F3 | ||||
---|---|---|---|---|---|---|
Avg | Std | Avg | Std | Avg | Std | |
CCFFO | 3.3881 × 103 | 4.0890 × 103 | 4.7065 × 103 | 1.9089 × 103 | 4.6804 × 102 | 2.7523 × 101 |
FFO | 3.2720 × 1010 | 9.4736 × 109 | 7.3720 × 104 | 6.9991 × 103 | 7.9199 × 103 | 4.3161 × 103 |
DE | 1.3949 × 103 | 2.4372 × 103 | 1.9102 × 104 | 4.5464 × 103 | 4.8701 × 102 | 1.8843 × 100 |
GWO | 1.5882 × 109 | 1.2995 × 109 | 3.4227 × 104 | 1.2012 × 104 | 6.3126 × 102 | 1.8522 × 102 |
MFO | 1.0622 × 1010 | 6.1853 × 109 | 8.1494 × 104 | 6.5255 × 104 | 1.2362 × 103 | 7.1530 × 102 |
SCA | 1.2621 × 1010 | 1.9108 × 109 | 3.9515 × 104 | 5.5319 × 103 | 1.4592 × 103 | 2.6218 × 102 |
PSO | 2.5666 × 103 | 2.7181 × 103 | 3.0000 × 102 | 7.6775 × 10−3 | 4.6428 × 102 | 2.3198 × 101 |
PO | 6.0914 × 107 | 6.8054 × 107 | 5.1560 × 103 | 2.7670 × 103 | 5.1882 × 102 | 2.3781 × 101 |
CSA | 2.5045 × 103 | 3.3705 × 103 | 3.0001 × 102 | 8.1843e-03 | 5.0394 × 102 | 3.6066 × 101 |
HGS | 8.5018 × 103 | 7.6934 × 103 | 1.2486 × 103 | 2.8687 × 103 | 4.8301 × 102 | 3.2918 × 101 |
F4 | F5 | F6 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCFFO | 6.0979 × 102 | 2.9360 × 101 | 6.0000 × 102 | 9.0260 × 10−7 | 8.4065 × 102 | 3.9823 × 101 |
FFO | 7.8534 × 102 | 3.3318 × 101 | 6.6492 × 102 | 4.7096 × 100 | 1.2651 × 103 | 5.4144 × 101 |
DE | 6.0696 × 102 | 1.0359 × 101 | 6.0000 × 102 | 0.0000 × 100 | 8.4260 × 102 | 9.6547 × 100 |
GWO | 6.0753 × 102 | 2.9419 × 101 | 6.0657 × 102 | 3.1605 × 100 | 8.7307 × 102 | 4.6072 × 101 |
MFO | 7.1332 × 102 | 5.7166 × 101 | 6.3885 × 102 | 1.2289 × 101 | 1.1053 × 103 | 1.7602 × 102 |
SCA | 7.7198 × 102 | 1.8333 × 101 | 6.5144 × 102 | 4.9137 × 100 | 1.1250 × 103 | 4.7770 × 101 |
PSO | 7.0426 × 102 | 3.0113 × 101 | 6.4486 × 102 | 9.1094 × 100 | 1.0207 × 103 | 6.4600 × 101 |
PO | 7.1488 × 102 | 4.9183 × 101 | 6.5833 × 102 | 9.6541 × 100 | 1.1449 × 103 | 8.5649 × 101 |
CSA | 6.9130 × 102 | 3.2097 × 101 | 6.4821 × 102 | 8.4799 × 100 | 9.9714 × 102 | 7.1038 × 101 |
HGS | 6.2181 × 102 | 2.9955 × 101 | 6.0216 × 102 | 2.3036 × 100 | 9.0443 × 102 | 4.6124 × 101 |
F7 | F8 | F9 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCFFO | 8.9851 × 102 | 1.8968 × 101 | 1.7471 × 103 | 5.9355 × 102 | 3.9159 × 103 | 5.4702 × 102 |
FFO | 1.0194 × 103 | 2.2381 × 101 | 6.2413 × 103 | 3.8207 × 102 | 5.8887 × 103 | 6.3741 × 102 |
DE | 9.0837 × 102 | 1.0189 × 101 | 9.0000 × 102 | 9.6743e-14 | 5.7651 × 103 | 2.9940 × 102 |
GWO | 8.8904 × 102 | 2.8199 × 101 | 1.8415 × 103 | 5.0349 × 102 | 3.9461 × 103 | 4.7637 × 102 |
MFO | 1.0126 × 103 | 5.1630 × 101 | 7.7088 × 103 | 3.6124 × 103 | 5.5687 × 103 | 8.1903 × 102 |
SCA | 1.0507 × 103 | 1.7524 × 101 | 5.4695 × 103 | 9.7933 × 102 | 8.1652 × 103 | 2.6112 × 102 |
PSO | 9.5080 × 102 | 3.2770 × 101 | 4.2856 × 103 | 6.2042 × 102 | 4.8491 × 103 | 5.6152 × 102 |
PO | 9.7420 × 102 | 3.0895 × 101 | 4.8893 × 103 | 8.3169 × 102 | 5.7592 × 103 | 7.7801 × 102 |
CSA | 9.3647 × 102 | 1.6700 × 101 | 3.5509 × 103 | 7.7713 × 102 | 5.0778 × 103 | 6.1294 × 102 |
HGS | 9.1477 × 102 | 2.6506 × 101 | 3.5684 × 103 | 1.0017 × 103 | 3.9738 × 103 | 4.3318 × 102 |
F10 | F11 | F12 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCFFO | 1.1386 × 103 | 2.3581 × 101 | 2.6791 × 105 | 1.4828 × 105 | 1.3036 × 104 | 7.3841 × 103 |
FFO | 4.3646 × 103 | 1.5122 × 103 | 4.8593 × 109 | 2.6705 × 109 | 3.1396 × 109 | 3.2213 × 109 |
DE | 1.1643 × 103 | 2.3151 × 101 | 1.5039 × 106 | 6.3398 × 105 | 3.0019 × 104 | 1.7935 × 104 |
GWO | 1.8942 × 103 | 7.9974 × 102 | 7.6671 × 107 | 1.0500 × 108 | 1.5481 × 107 | 5.5450 × 107 |
MFO | 4.1124 × 103 | 3.5171 × 103 | 2.9710 × 108 | 6.8070 × 108 | 3.8744 × 107 | 1.9323 × 108 |
SCA | 2.0866 × 103 | 2.7922 × 102 | 1.1559 × 109 | 2.5813 × 108 | 4.0446 × 108 | 1.7268 × 108 |
PSO | 1.2121 × 103 | 3.1334 × 101 | 4.1419 × 104 | 1.9971 × 104 | 2.0171 × 104 | 1.8112 × 104 |
PO | 1.3175 × 103 | 6.6615 × 101 | 2.0095 × 107 | 2.4767 × 107 | 1.2096 × 105 | 6.0060 × 104 |
CSA | 1.2498 × 103 | 4.9018 × 101 | 2.0200 × 106 | 1.5415 × 106 | 2.3269 × 104 | 1.2670 × 104 |
HGS | 1.2216 × 103 | 3.7360 × 101 | 9.1223 × 105 | 7.7382 × 105 | 3.0920 × 104 | 2.5837 × 104 |
F13 | F14 | F15 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCFFO | 2.5111 × 104 | 2.7365 × 104 | 2.2860 × 103 | 1.1378 × 103 | 2.5904 × 103 | 2.9099 × 102 |
FFO | 1.4639 × 106 | 9.7417 × 105 | 1.1528 × 108 | 2.1154 × 108 | 3.7903 × 103 | 4.2718 × 102 |
DE | 5.1970 × 104 | 3.9254 × 104 | 6.9884 × 103 | 3.3943 × 103 | 2.0457 × 103 | 1.4870 × 102 |
GWO | 2.6527 × 105 | 3.5817 × 105 | 5.7499 × 105 | 1.0704 × 106 | 2.3967 × 103 | 2.6304 × 102 |
MFO | 2.0365 × 105 | 4.2357 × 105 | 8.6397 × 104 | 1.2295 × 105 | 3.0842 × 103 | 3.8883 × 102 |
SCA | 1.2206 × 105 | 6.5504 × 104 | 1.0715 × 107 | 1.0103 × 107 | 3.5441 × 103 | 2.5708 × 102 |
PSO | 7.9298 × 103 | 6.2803 × 103 | 8.7293 × 103 | 9.5830 × 103 | 2.9752 × 103 | 3.3283 × 102 |
PO | 4.5665 × 104 | 2.8233 × 104 | 6.1031 × 104 | 6.3175 × 104 | 3.2313 × 103 | 4.0381 × 102 |
CSA | 1.6431 × 103 | 6.1823 × 101 | 1.0536 × 104 | 5.9958 × 103 | 2.9307 × 103 | 3.1545 × 102 |
HGS | 4.0731 × 104 | 3.3024 × 104 | 1.9925 × 104 | 1.5766 × 104 | 2.6777 × 103 | 2.9716 × 102 |
F16 | F17 | F18 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCFFO | 2.0061 × 103 | 1.6557 × 102 | 2.5342 × 105 | 1.9617 × 105 | 5.1152 × 103 | 1.6276 × 103 |
FFO | 2.7891 × 103 | 6.1977 × 102 | 1.2063 × 107 | 2.4887 × 107 | 3.0165 × 107 | 6.5274 × 107 |
DE | 1.8430 × 103 | 4.1259 × 101 | 3.3449 × 105 | 1.7845 × 105 | 8.2305 × 103 | 4.5262 × 103 |
GWO | 2.0128 × 103 | 1.6275 × 102 | 5.9358 × 105 | 1.0739 × 106 | 7.2434 × 105 | 1.6454 × 106 |
MFO | 2.5180 × 103 | 2.3231 × 102 | 3.6811 × 106 | 7.2508 × 106 | 1.2124 × 107 | 3.6755 × 107 |
SCA | 2.3980 × 103 | 1.8503 × 102 | 2.8225 × 106 | 1.7072 × 106 | 2.4757 × 107 | 1.1562 × 107 |
PSO | 2.3648 × 103 | 2.3968 × 102 | 1.5927 × 105 | 1.0753 × 105 | 7.4746 × 103 | 9.8525 × 103 |
PO | 2.3028 × 103 | 2.4955 × 102 | 5.5040 × 105 | 4.3576 × 105 | 8.2365 × 105 | 6.6923 × 105 |
CSA | 2.2590 × 103 | 2.3853 × 102 | 2.4300 × 104 | 1.1406 × 104 | 5.2186 × 103 | 5.8926 × 103 |
HGS | 2.3202 × 103 | 1.9175 × 102 | 2.9100 × 105 | 2.5191 × 105 | 1.7732 × 104 | 1.6537 × 104 |
F19 | F20 | F21 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCFFO | 2.2693 × 103 | 1.3807 × 102 | 2.3694 × 103 | 3.6153 × 101 | 2.3000 × 103 | 3.5827e-13 |
FFO | 2.5874 × 103 | 1.3039 × 102 | 2.6041 × 103 | 4.8142 × 101 | 7.0276 × 103 | 1.0755 × 103 |
DE | 2.1296 × 103 | 8.1035 × 101 | 2.4093 × 103 | 1.0166 × 101 | 4.1104 × 103 | 2.0812 × 103 |
GWO | 2.3629 × 103 | 1.4547 × 102 | 2.3832 × 103 | 1.6838 × 101 | 4.3958 × 103 | 1.6311 × 103 |
MFO | 2.7506 × 103 | 1.9564 × 102 | 2.5059 × 103 | 3.8579 × 101 | 6.4952 × 103 | 1.5493 × 103 |
SCA | 2.5935 × 103 | 1.1895 × 102 | 2.5506 × 103 | 1.8541 × 101 | 8.2068 × 103 | 2.4221 × 103 |
PSO | 2.6340 × 103 | 2.2488 × 102 | 2.4535 × 103 | 5.6795 × 101 | 4.4673 × 103 | 2.2543 × 103 |
PO | 2.5393 × 103 | 1.7828 × 102 | 2.5153 × 103 | 5.4875 × 101 | 3.3303 × 103 | 1.8239 × 103 |
CSA | 2.4747 × 103 | 1.2842 × 102 | 2.4713 × 103 | 4.1592 × 101 | 2.4707 × 103 | 9.2913 × 102 |
HGS | 2.4980 × 103 | 2.0102 × 102 | 2.4187 × 103 | 2.8084 × 101 | 4.8602 × 103 | 1.5246 × 103 |
F22 | F23 | F24 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCFFO | 2.7272 × 103 | 2.2919 × 101 | 2.8987 × 103 | 1.8880 × 101 | 2.8939 × 103 | 1.5141 × 101 |
FFO | 3.2560 × 103 | 1.4457 × 102 | 3.6733 × 103 | 2.8431 × 102 | 3.7793 × 103 | 4.3463 × 102 |
DE | 2.7578 × 103 | 7.9885 × 100 | 2.9590 × 103 | 1.2101 × 101 | 2.8874 × 103 | 3.9882 × 10−1 |
GWO | 2.7478 × 103 | 3.3344 × 101 | 2.9121 × 103 | 3.3407 × 101 | 2.9764 × 103 | 3.5718 × 101 |
MFO | 2.8316 × 103 | 3.5175 × 101 | 3.0006 × 103 | 4.2546 × 101 | 3.2953 × 103 | 4.8754 × 102 |
SCA | 2.9844 × 103 | 2.6955 × 101 | 3.1613 × 103 | 2.3055 × 101 | 3.1830 × 103 | 5.7385 × 101 |
PSO | 3.3144 × 103 | 1.7054 × 102 | 3.3819 × 103 | 1.0675 × 102 | 2.8817 × 103 | 1.2739 × 101 |
PO | 2.9581 × 103 | 7.0920 × 101 | 3.1055 × 103 | 6.3218 × 101 | 2.9414 × 103 | 2.6784 × 101 |
CSA | 3.0959 × 103 | 1.0424 × 102 | 3.2092 × 103 | 1.2090 × 102 | 2.9316 × 103 | 2.1021 × 101 |
HGS | 2.7752 × 103 | 3.1514 × 101 | 3.0324 × 103 | 4.8507 × 101 | 2.8883 × 103 | 7.5245 × 100 |
F25 | F26 | F27 | ||||
Avg | Std | Avg | Std | Avg | Std | |
CCFFO | 3.4728 × 103 | 1.1033 × 103 | 3.2210 × 103 | 1.0616 × 101 | 3.1424 × 103 | 4.7079 × 101 |
FFO | 9.3492 × 103 | 7.9015 × 102 | 3.8081 × 103 | 2.2961 × 102 | 5.2444 × 103 | 5.5411 × 102 |
DE | 4.6204 × 103 | 1.0661 × 102 | 3.2060 × 103 | 2.9832 × 100 | 3.1768 × 103 | 5.6392 × 101 |
GWO | 4.7008 × 103 | 3.8852 × 102 | 3.2534 × 103 | 2.9753 × 101 | 3.4148 × 103 | 9.1294 × 101 |
MFO | 6.0385 × 103 | 4.9203 × 102 | 3.2464 × 103 | 2.0168 × 101 | 4.5376 × 103 | 9.7285 × 102 |
SCA | 7.0123 × 103 | 2.9692 × 102 | 3.4056 × 103 | 3.4502 × 101 | 3.8128 × 103 | 1.2535 × 102 |
PSO | 6.7644 × 103 | 2.1414 × 103 | 3.2406 × 103 | 2.7363 × 102 | 3.1621 × 103 | 6.3606 × 101 |
PO | 6.3874 × 103 | 1.4138 × 103 | 3.3174 × 103 | 7.8114 × 101 | 3.2975 × 103 | 3.5404 × 101 |
CSA | 4.9366 × 103 | 2.2006 × 103 | 3.6000 × 103 | 1.8595 × 102 | 3.2145 × 103 | 1.8546 × 101 |
HGS | 4.8055 × 103 | 4.8203 × 102 | 3.2264 × 103 | 1.4534 × 101 | 3.1937 × 103 | 5.3486 × 101 |
F28 | F29 | |||||
Avg | Std | Avg | Std | |||
CCFFO | 3.5697 × 103 | 1.7701 × 102 | 6.5019 × 103 | 7.9346 × 102 | ||
FFO | 5.3737 × 103 | 6.4659 × 102 | 1.4443 × 108 | 5.4055 × 108 | ||
DE | 3.5174 × 103 | 6.2973 × 101 | 1.1730 × 104 | 2.0397 × 103 | ||
GWO | 3.7025 × 103 | 1.2777 × 102 | 5.0522 × 106 | 4.5566 × 106 | ||
MFO | 4.2545 × 103 | 3.4156 × 102 | 4.7871 × 105 | 5.8888 × 105 | ||
SCA | 4.6363 × 103 | 2.3954 × 102 | 7.2163 × 107 | 3.8671 × 107 | ||
PSO | 4.0002 × 103 | 2.8736 × 102 | 5.3397 × 103 | 2.7270 × 103 | ||
PO | 4.5231 × 103 | 3.4208 × 102 | 7.1810 × 106 | 5.2589 × 106 | ||
CSA | 4.4017 × 103 | 3.6065 × 102 | 1.1669 × 105 | 9.3591 × 104 | ||
HGS | 3.7414 × 103 | 1.9507 × 102 | 1.2730 × 105 | 1.6515 × 105 | ||
Overall Rank | ||||||
RANK | +/=/− | AVG | ||||
CCFFO | 1 | ~ | 1.931 | |||
FFO | 10 | 29/0/0 | 9.6897 | |||
DE | 2 | 17/5/7 | 2.8276 | |||
GWO | 6 | 21/7/1 | 4.7931 | |||
MFO | 8 | 29/0/0 | 7.4828 | |||
SCA | 9 | 29/0/0 | 8.5172 | |||
PSO | 4 | 18/5/6 | 4.4138 | |||
PO | 7 | 28/1/0 | 6.5517 | |||
CSA | 5 | 25/1/3 | 4.5862 | |||
HGS | 3 | 21/7/1 | 4.2069 |
CCFFO | FFO | DE | GWO | MFO | |
---|---|---|---|---|---|
F1 | / | 1.7344 × 10−6 | 8.7297 × 10−3 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F2 | / | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 6.9838 × 10−6 |
F3 | / | 1.7344 × 10−6 | 1.3820 × 10−3 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F4 | / | 1.7344 × 10−6 | 9.7539 × 10−1 | 4.5281 × 10−1 | 2.8786 × 10−6 |
F5 | / | 1.7344 × 10−6 | 3.9063 × 10−3 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F6 | / | 1.7344 × 10−6 | 7.0356 × 10−1 | 1.1079 × 10−2 | 2.1266 × 10−6 |
F7 | / | 1.7344 × 10−6 | 1.8519 × 10−2 | 7.1903 × 10−2 | 1.7344 × 10−6 |
F8 | / | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.8462 × 10−1 | 1.7344 × 10−6 |
F9 | / | 2.3534 × 10−6 | 1.7344 × 10−6 | 8.6121 × 10−1 | 2.8786 × 10−6 |
F10 | / | 1.7344 × 10−6 | 3.8811 × 10−4 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F11 | / | 1.7344 × 10−6 | 2.1266 × 10−6 | 1.7344 × 10−6 | 2.8786 × 10−6 |
F12 | / | 1.7344 × 10−6 | 4.8603 × 10−5 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F13 | / | 1.7344 × 10−6 | 1.1973 × 10−3 | 1.7423 × 10−4 | 1.3820 × 10−3 |
F14 | / | 1.7344 × 10−6 | 2.8786 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F15 | / | 1.7344 × 10−6 | 2.8786 × 10−6 | 3.3789 × 10−3 | 1.2506 × 10−4 |
F16 | / | 1.9209 × 10−6 | 1.3595 × 10−4 | 9.0993 × 10−1 | 2.8786 × 10−6 |
F17 | / | 1.7344 × 10−6 | 1.2044 × 10−1 | 2.4308 × 10−2 | 4.5336 × 10−4 |
F18 | / | 1.7344 × 10−6 | 2.2551 × 10−3 | 1.7344 × 10−6 | 6.9838 × 10−6 |
F19 | / | 1.1265 × 10−5 | 1.0357 × 10−3 | 1.3975 × 10−2 | 2.3534 × 10−6 |
F20 | / | 1.7344 × 10−6 | 2.1266 × 10−6 | 8.2206 × 10−2 | 1.7344 × 10−6 |
F21 | / | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F22 | / | 1.7344 × 10−6 | 5.2165 × 10−6 | 4.7162 × 10−2 | 1.7344 × 10−6 |
F23 | / | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.5286 × 10−1 | 1.7344 × 10−6 |
F24 | / | 1.7344 × 10−6 | 3.4935 × 10−1 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F25 | / | 1.7344 × 10−6 | 1.0570 × 10−4 | 1.1499 × 10−4 | 2.8786 × 10−6 |
F26 | / | 1.7344 × 10−6 | 2.6033 × 10−6 | 4.2857 × 10−6 | 3.1123 × 10−5 |
F27 | / | 1.7344 × 10−6 | 1.3194 × 10−2 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F28 | / | 1.7344 × 10−6 | 2.0589 × 10−1 | 1.4839 × 10−3 | 2.3534 × 10−6 |
F29 | / | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
SCA | PSO | PO | CSA | HGS | |
F1 | 1.7344 × 10−6 | 7.3433 × 10−1 | 1.7344 × 10−6 | 1.9152 × 10−1 | 1.2866 × 10−3 |
F2 | 1.7344 × 10−6 | 1.7344 × 10−6 | 5.4401 × 10−1 | 1.7344 × 10−6 | 1.3595 × 10−4 |
F3 | 1.7344 × 10−6 | 9.7539 × 10−1 | 5.2165 × 10−6 | 2.6134 × 10−4 | 6.2683 × 10−2 |
F4 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 2.6033 × 10−6 | 8.9718 × 10−2 |
F5 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.9209 × 10−6 | 1.7988 × 10−5 |
F7 | 1.7344 × 10−6 | 1.0246 × 10−5 | 1.7344 × 10−6 | 3.5152 × 10−6 | 3.8723 × 10−2 |
F8 | 1.7344 × 10−6 | 1.9209 × 10−6 | 1.7344 × 10−6 | 1.9209 × 10−6 | 4.7292 × 10−6 |
F9 | 1.7344 × 10−6 | 8.9187 × 10−5 | 1.9209 × 10−6 | 8.4661 × 10−6 | 7.4987 × 10−1 |
F10 | 1.7344 × 10−6 | 4.2857 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 2.6033 × 10−6 |
F11 | 1.7344 × 10−6 | 2.3534 × 10−6 | 1.7344 × 10−6 | 2.1266 × 10−6 | 1.0357 × 10−3 |
F12 | 1.7344 × 10−6 | 1.4139 × 10−1 | 1.7344 × 10−6 | 1.8326 × 10−3 | 1.1138 × 10−3 |
F13 | 2.6033 × 10−6 | 8.9443 × 10−4 | 6.4242 × 10−3 | 1.7344 × 10−6 | 4.9498 × 10−2 |
F14 | 1.7344 × 10−6 | 3.0650 × 10−4 | 1.7344 × 10−6 | 1.7344 × 10−6 | 2.8786 × 10−6 |
F15 | 2.1266 × 10−6 | 1.2506 × 10−4 | 1.2381 × 10−5 | 8.9443 × 10−4 | 2.0589 × 10−1 |
F16 | 2.1266 × 10−6 | 2.8434 × 10−5 | 4.8603 × 10−5 | 2.5967 × 10−5 | 4.7292 × 10−6 |
F17 | 1.7344 × 10−6 | 3.8723 × 10−2 | 1.1138 × 10−3 | 1.7344 × 10−6 | 6.4352 × 10−1 |
F18 | 1.7344 × 10−6 | 5.3044 × 10−1 | 1.7344 × 10−6 | 2.3038 × 10−2 | 1.1499 × 10−4 |
F19 | 6.3391 × 10−6 | 4.2857 × 10−6 | 4.2857 × 10−6 | 1.9729 × 10−5 | 6.3198 × 10−5 |
F20 | 1.7344 × 10−6 | 3.1123 × 10−5 | 1.7344 × 10−6 | 1.7344 × 10−6 | 5.7517 × 10−6 |
F21 | 1.7344 × 10−6 | 1.3101 × 10−4 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F22 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 5.2165 × 10−6 |
F23 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F24 | 1.7344 × 10−6 | 5.2872 × 10−4 | 5.2165 × 10−6 | 2.5967 × 10−5 | 8.9718 × 10−2 |
F25 | 1.7344 × 10−6 | 2.5970 × 10−5 | 3.5152 × 10−6 | 1.8326 × 10−3 | 2.0515 × 10−4 |
F26 | 1.7344 × 10−6 | 3.5888 × 10−4 | 1.7344 × 10−6 | 1.7344 × 10−6 | 8.2206 × 10−2 |
F27 | 1.7344 × 10−6 | 2.7116 × 10−1 | 1.7344 × 10−6 | 3.1817 × 10−6 | 2.8308 × 10−4 |
F28 | 1.7344 × 10−6 | 9.3157 × 10−6 | 1.7344 × 10−6 | 1.9209 × 10−6 | 2.9575 × 10−3 |
F29 | 1.7344 × 10−6 | 7.2710 × 10−3 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
Algorithm | NPV (USD) | |||
---|---|---|---|---|
Mean | Std | Best | Worst | |
CCFFO | 9.6172 × 107 | 1.2971 × 106 | 9.9131 × 107 | 9.3212 × 107 |
FFO | 8.9711 × 107 | 2.1932 × 106 | 9.3259 × 107 | 8.4846 × 107 |
DE | 9.2935 × 107 | 1.8852 × 106 | 9.7418 × 107 | 8.8915 × 107 |
GWO | 9.0331 × 107 | 2.2142 × 106 | 9.5422 × 107 | 8.5497 × 107 |
MFO | 8.2722 × 107 | 1.9501 × 106 | 8.6192 × 107 | 7.7980 × 107 |
SCA | 8.2555 × 107 | 2.9418 × 106 | 8.7861 × 107 | 7.6303 × 107 |
PSO | 7.7534 × 107 | 3.6438 × 106 | 8.6419 × 107 | 7.0297 × 107 |
PO | 8.5447 × 107 | 2.4544 × 106 | 8.9692 × 107 | 7.9498 × 107 |
CSA | 7.9733 × 107 | 3.5607 × 106 | 8.5280 × 107 | 7.1727 × 107 |
HGS | 8.8127 × 107 | 2.0721 × 106 | 9.2660 × 107 | 8.3578 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Shan, J. Crisscross Flower Fertilization Optimization (CCFFO): A Bio-Inspired Metaheuristic for Global and Reservoir Production Optimization. Biomimetics 2025, 10, 633. https://doi.org/10.3390/biomimetics10090633
Wang X, Shan J. Crisscross Flower Fertilization Optimization (CCFFO): A Bio-Inspired Metaheuristic for Global and Reservoir Production Optimization. Biomimetics. 2025; 10(9):633. https://doi.org/10.3390/biomimetics10090633
Chicago/Turabian StyleWang, Xu, and Jingfu Shan. 2025. "Crisscross Flower Fertilization Optimization (CCFFO): A Bio-Inspired Metaheuristic for Global and Reservoir Production Optimization" Biomimetics 10, no. 9: 633. https://doi.org/10.3390/biomimetics10090633
APA StyleWang, X., & Shan, J. (2025). Crisscross Flower Fertilization Optimization (CCFFO): A Bio-Inspired Metaheuristic for Global and Reservoir Production Optimization. Biomimetics, 10(9), 633. https://doi.org/10.3390/biomimetics10090633