Low-Profile, Shoe-Type Ankle–Foot Orthosis with Active Variable Ankle Stiffness via Wire–Fabric Compression Mechanism
Abstract
1. Introduction
- Variable stiffness range;
- Stiffness magnitude;
- Geometry dependency;
- Compactness;
- Controllability.
2. Design of AVC-Shoes
2.1. Implementation of Apparel Components: Customized Middle-Cut Boot and Shank Wrap
2.2. Implementation of Actuator Unit
2.3. Implementation of Control Unit
3. Evaluation of AVC-Shoes
3.1. Ankle Stiffness Modulation Performance
3.1.1. Principle of Ankle Stiffness Modulation Using Wire–Fabric Compression Mechanism
3.1.2. Evaluation of Ankle Stiffness Modulation
3.2. Human Test Under Walking Conditions
3.2.1. Experimental Protocol
3.2.2. Human Experiment Result
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garrick, J.G. The frequency of injury, mechanism of injury, and epidemiology of ankle sprains. Am. J. Sports Med. 1977, 5, 241–242. [Google Scholar] [CrossRef] [PubMed]
- Waterman, B.R.; Owens, B.D.; Davey, S.; Zacchilli, M.A.; Belmont, P.J. The epidemiology of ankle sprains in the United States. Jbjs 2010, 92, 2279–2284. [Google Scholar] [CrossRef] [PubMed]
- Fong, D.T.-P.; Hong, Y.; Chan, L.-K.; Yung, P.S.-H.; Chan, K.-M. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007, 37, 73–94. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Bleakley, C.M.; Caulfield, B.M.; Docherty, C.L.; Fourchet, F.; Fong, D.T.-P.; Hertel, J.; Hiller, C.E.; Kaminski, T.W.; O McKeon, P.; et al. Evidence review for the 2016 International Ankle Consortium consensus statement on the prevalence, impact and long-term consequences of lateral ankle sprains. Br. J. Sports Med. 2016, 50, 1496–1505. [Google Scholar] [CrossRef]
- McKay, G.D.; Goldie, P.A.; Payne, W.R.; Oakes, B.W. Ankle injuries in basketball: Injury rate and risk factors. Br. J. Sports Med. 2001, 35, 103. [Google Scholar] [CrossRef]
- Nelson, A.J.; Collins, C.L.; Yard, E.E.; Fields, S.K.; Comstock, R.D. Ankle injuries among United States high school sports athletes, 2005–2006. J. Athl. Train. 2007, 42, 381. [Google Scholar]
- Geboers, J.F.; Drost, M.R.; Spaans, F.; Kuipers, H.; Seelen, H.A. Immediate and long-term effects of ankle-foot orthosis on muscle activity during walking: A randomized study of patients with unilateral foot drop. Arch. Phys. Med. Rehabil. 2002, 83, 240–245. [Google Scholar] [CrossRef]
- Garrick, J.G.; Requa, R.K. Role of external support in the prevention of ankle sprains. Med. Sci. Sports Exerc. 1973, 5, 200–203. [Google Scholar] [CrossRef]
- Jerosch, J.; Thorwesten, L.; Bork, H.; Bischof, M. Is prophylactic bracing of the ankle cost effective? Orthopedics 1996, 19, 405–414. [Google Scholar] [CrossRef]
- Rovere, G.D.; Clarke, T.J.; Yates, C.S.; Burley, K. Retrospective comparison of taping and ankle stabilizers in preventing ankle injuries. Am. J. Sports Med. 1988, 16, 228–233. [Google Scholar] [CrossRef]
- Rome, K.; Handoll, H.H.; Ashford, R.L. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst. Rev. 2005, 2005, CD000450. [Google Scholar] [CrossRef]
- Sharpe, S.R.; Knapik, J.; Jones, B. Ankle braces effectively reduce recurrence of ankle sprains in female soccer players. J. Athl. Train. 1997, 32, 21. [Google Scholar]
- Surve, I.; Schwellnus, M.P.; Noakes, T.; Lombard, C. A fivefold reduction in the incidence of recurrent ankle sprains in soccer players using the Sport-Stirrup orthosis. Am. J. Sports Med. 1994, 22, 601–606. [Google Scholar] [CrossRef]
- Riemann, B.L.; Schmitz, R.J.; Gale, M.; McCaw, S.T. Effect of ankle taping and bracing on vertical ground reaction forces during drop landings before and after treadmill jogging. J. Orthop. Sports Phys. Ther. 2002, 32, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Ambegaonkar, J.P.; Redmond, C.J.; Winter, C.; Cortes, N.; Ambegaonkar, S.J.; Thompson, B.; Guyer, S.M. Ankle stabilizers affect agility but not vertical jump or dynamic balance performance. Foot Ankle Spec. 2011, 4, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Cordova, M.L.; Scott, B.D.; Ingersoll, C.D.; Leblanc, M.J. Effects of ankle support on lower-extremity functional performance: A meta-analysis. Med. Sci. Sports Exerc. 2005, 37, 635–641. [Google Scholar] [CrossRef]
- Jeffriess, M.D.; Schultz, A.B.; McGann, T.S.; Callaghan, S.J.; Lockie, R.G. Effects of preventative ankle taping on planned change-of-direction and reactive agility performance and ankle muscle activity in basketballers. J. Sports Sci. Med. 2015, 14, 864. [Google Scholar]
- Paris, D.L. The effects of the Swede-O, New Cross, and McDavid ankle braces and adhesive ankle taping on speed, balance, agility, and vertical jump. J. Athl. Train. 1992, 27, 253. [Google Scholar]
- Bot, S.D.M.; Van Mechelen, W. The effect of ankle bracing on athletic performance. Sports Med. 1999, 27, 171–178. [Google Scholar] [CrossRef]
- Fröberg, Å.; Mårtensson, M.; Arndt, A. The Effect of Ankle Foot Orthosis’ Design and Degree of Dorsiflexion on Achilles Tendon Biomechanics—Tendon Displacement, Lower Leg Muscle Activation, and Plantar Pressure During Walking. Front. Sports Act. Living 2020, 2, 16. [Google Scholar] [CrossRef]
- Dalvand, H.; Dehghan, L.; Feizi, A.; Hosseini, S.A.; Amirsalari, S. The impacts of hinged and solid ankle-foot orthoses on standing and walking in children with spastic diplegia. Iran. J. Child Neurol. 2013, 7, 12. [Google Scholar]
- Thalman, C.M.; Lee, H. Design and validation of a soft robotic ankle-foot orthosis (sr-afo) exosuit for inversion and eversion ankle support. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar]
- Thalman, C.M.; Hertzell, T.; Debeurre, M.; Lee, H. The multi-material actuator for variable stiffness (mavs): Design, modeling, and characterization of a soft actuator for lateral ankle support. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar]
- Thalman, C.M.; Hertzell, T.; Debeurre, M.; Lee, H. Multi-degrees-of-freedom soft robotic ankle-foot orthosis for gait assistance and variable ankle support. Wearable Technol. 2022, 3, e18. [Google Scholar] [CrossRef]
- Zhu, M.; Ferstera, A.; Dinulescu, S.; Kastor, N.; Linnander, M.; Hawkes, E.W.; Visell, Y. A peristaltic soft, wearable robot for compression therapy and massage. IEEE Robot. Autom. Lett. 2023, 8, 4665–4672. [Google Scholar] [CrossRef]
- Ham, S.; Kang, B.B.; Abishek, K.; Lee, H.; Kim, W. Design and Validation of Tunable Stiffness Actuator using Soft-Rigid Combined Layer Jamming Mechanism. In Proceedings of the 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, 4–6 April 2023. [Google Scholar]
- Ham, S.; Paing, S.L.; Kang, B.B.; Lee, H.; Kim, W. Design and Validation of Soft Sliding Structure with Adjustable Stiffness for Ankle Sprain Prevention. IEEE Robot. Autom. Lett. 2023, 9, 947–954. [Google Scholar] [CrossRef]
- Yang, S.T.; Ryu, J.W.; Park, S.-H.; Bin Lee, Y.; Koo, S.H.; Park, Y.-L.; Lee, G. An active compression sleeve with variable pressure levels using a wire-fabric mechanism and a soft sensor. Smart Mater. Struct. 2019, 28, 114002. [Google Scholar] [CrossRef]
- Choe, E.; Moon, J.; Ryu, J.; Yang, S.; Nasirzadeh, A.; Kong, S.; Choi, Y.; Lee, G. Active Variable Compression-Shoes: Design and Evaluation of External Ankle Supporter to Prevent Ankle Sprain via Active Compression Mechanism. In Proceedings of the 2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), Heidelberg, Germany, 1–4 September 2024. [Google Scholar]
- Hertel, J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J. Athl. Train. 2002, 37, 364. [Google Scholar]
- Peters, J. Assesing the Effectiveness of the Stirrup, Horseshoe, Heel-lock, and Figure-8 Components of the Closed Basket-Wave Ankle Taping Method in Various Combinations. Master’s Dissertation, Department of Kinesiology, Indiana University, Bloomington, IN, USA, 2011. [Google Scholar]
- Yoo, H.J.; Lee, J.; Cho, K.-J. Arm Back Support Suit (Abs-suit) for Parcel Delivery with a Passive Load Redistribution Mechanism. IEEE Robot. Autom. Lett. 2023, 9, 1238–1245. [Google Scholar] [CrossRef]
- Mentiplay, B.F.; Banky, M.; Clark, R.A.; Kahn, M.B.; Williams, G. Lower limb angular velocity during walking at various speeds. Gait Posture 2018, 65, 190–196. [Google Scholar] [CrossRef]
- Fong, D.T.; Chan, Y.-Y.; Mok, K.-M.; Yung, P.S.; Chan, K.-M. Understanding acute ankle ligamentous sprain injury in sports. BMC Sports Sci. Med. Rehabil. 2009, 1, 14. [Google Scholar] [CrossRef]
- Perez-Ibarra, J.C.; Siqueira, A.A.G.; Krebs, H.I. Real-time identification of gait events in impaired subjects using a single-IMU foot-mounted device. IEEE Sens. J. 2019, 20, 2616–2624. [Google Scholar] [CrossRef]
- Akizuki, K.H.; Gartman, E.J.; Nisonson, B.; Ben-Avi, S.; McHugh, M.P. The relative stress on the Achilles tendon during ambulation in an ankle immobiliser: Implications for rehabilitation after Achilles tendon repair. Br. J. Sports Med. 2001, 35, 329–333. [Google Scholar] [CrossRef]
- Kearney, R.S.; Lamb, S.E.; Achten, J.; Parsons, N.R.; Costa, M.L. In-shoe plantar pressures within ankle-foot orthoses: Implications for the management of Achilles tendon ruptures. Am. J. Sports Med. 2011, 39, 2679–2685. [Google Scholar] [CrossRef]
- Farjad Pezeshk, S.A.; Shariat Zadeh, M.; Ilbeigi, S.; Yousefi, M. Comparison of Muscle Activity and Timing between a Custom Shoe with Hydrodynamic Mechanism and Regular Ethylene-Vinyl Acetate Shoe. J. Adv. Sport Technol. 2019, 3, 129–145. [Google Scholar]
- Wulandari, I.; Wibawa, A.D.; Wulandari, D.P.; Pawana, I.P.A.; Rahayu, S. The Influence of Footwear with Different Sole on the EMG Activity of Lower Limb Muscle During Walking. In Proceedings of the 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 22–23 July 2020. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological; Waterloo Biomechanics: Waterloo, ON, Canada, 1991. [Google Scholar]
- Barlow, G.; Donovan, L.; Hart, J.M.; Hertel, J. Effect of lace-up ankle braces on electromyography measures during walking in adults with chronic ankle instability. Phys. Ther. Sport 2015, 16, 16–21. [Google Scholar] [CrossRef]
- Nasirzadeh, A.; Yang, J.; Yang, S.; Yun, J.; Bae, Y.Y.; Park, J.; Ahn, J.; Lee, G. The Effects of a Custom–Designed High–Collar Shoe on Muscular Activity, Dynamic Stability, and Leg Stiffness: A Biomimetic Approach Study. Biomimetics 2023, 8, 274. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, E.; Moon, J.; Ryu, J.; Yang, S.; Nasirzadeh, A.; Kong, S.; Choi, Y.; Lee, G. Low-Profile, Shoe-Type Ankle–Foot Orthosis with Active Variable Ankle Stiffness via Wire–Fabric Compression Mechanism. Biomimetics 2025, 10, 539. https://doi.org/10.3390/biomimetics10080539
Choe E, Moon J, Ryu J, Yang S, Nasirzadeh A, Kong S, Choi Y, Lee G. Low-Profile, Shoe-Type Ankle–Foot Orthosis with Active Variable Ankle Stiffness via Wire–Fabric Compression Mechanism. Biomimetics. 2025; 10(8):539. https://doi.org/10.3390/biomimetics10080539
Chicago/Turabian StyleChoe, Eunbin, Junyoung Moon, Jaewook Ryu, Seungtae Yang, Alireza Nasirzadeh, Sejin Kong, Youngsuk Choi, and Giuk Lee. 2025. "Low-Profile, Shoe-Type Ankle–Foot Orthosis with Active Variable Ankle Stiffness via Wire–Fabric Compression Mechanism" Biomimetics 10, no. 8: 539. https://doi.org/10.3390/biomimetics10080539
APA StyleChoe, E., Moon, J., Ryu, J., Yang, S., Nasirzadeh, A., Kong, S., Choi, Y., & Lee, G. (2025). Low-Profile, Shoe-Type Ankle–Foot Orthosis with Active Variable Ankle Stiffness via Wire–Fabric Compression Mechanism. Biomimetics, 10(8), 539. https://doi.org/10.3390/biomimetics10080539