Comparison of Fracture Resistance and Microleakage Properties of Two Different Prefabricated Zirconia Crowns After Thermocycling: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size Determination and Tooth Allocation
- Group 1: NuSmile® + GIC (Ketac™ Cem Radiopaque);
- Group 2: ProfZrCrown® + GIC;
- Group 3: NuSmile® + RMGIC (Ketac™ Cem Plus);
- Group 4: ProfZrCrown® + RMGIC.
- 10 teeth for fracture resistance testing;
- 10 teeth for microleakage testing.
2.2. Sample Preparation
2.3. Fracture Resistance Testing
2.4. Microleakage Testing
2.5. Statistical Analysis
3. Results
3.1. Fracture Resistance Test Results
3.2. Microleakage Test Results
4. Discussion
4.1. Clinical Requirements
4.2. Study Protocol
4.3. Cement Selection
4.4. Thermal Cycle
4.5. Fracture Resistance
4.6. Microleakage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAPD | American Academy of Pediatric Dentistry |
SSCs | Stainless steel crowns |
SCs | Resin composite strip crowns |
PVSSCs | Rre veneered stainless steel crowns |
PZCs | Prefabricated zirconia crowns |
GIC | Glass ionomer cement |
RMGIC | Resin-modified glass ionomer cement |
References
- Petersen, P.E.; Lennon, M.A. Effective use of fluorides for the prevention of dental caries in the 21st century: The WHO approach. Community Dent. Oral. Epidemiol. 2004, 32, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, N.K.L.; Nogueira, L.C.; Pinheiro, M.L.P.; Marques, L.S.; Ramos-Jorge, M.L.; Ramos-Jorge, J. Clinical consequences of untreated dental caries and toothache in preschool children. Pediatr. Dent. 2014, 36, 389–392. [Google Scholar] [PubMed]
- Eidelman, E.; Faibis, S.; Peretz, B. A comparison of restorations for children with early childhood caries treated under general anesthesia or conscious sedation. Pediatr. Dent. 2000, 22, 33–37. [Google Scholar]
- Mulder, R.; Medhat, R.; Mohamed, N. In vitro analysis of the marginal adaptation and discrepancy of stainless steel crowns. Acta Biomater. Odontol. Scand. 2018, 4, 20–29. [Google Scholar] [CrossRef]
- American Academy of Pediatric Dentistry. Overview. In The Reference Manual of Pediatric Dentistry; AAPD: Chicago, IL, USA, 2024; pp. 7–9. [Google Scholar]
- Çiftçi, Z.Z.; Şahin, İ.; Karayılmaz, H. Comparative evaluation of the fracture resistance of newly developed prefabricated fibreglass crowns and zirconium crowns. Int. J. Paediatr. Dent. 2022, 32, 756–763. [Google Scholar] [CrossRef]
- Lopez-Cazaux, S.; Aiem, E.; Velly, A.M.; Muller-Bolla, M. Preformed pediatric zirconia crown versus preformed pediatric metal crown: Study protocol for a randomized clinical trial. Trials 2019, 20, 530. [Google Scholar] [CrossRef]
- Mittal, G.K.; Verma, A.; Pahuja, H.; Agarwal, S.; Tomar, H. Esthetic crowns in pediatric dentistry: A review. Int. J. Contemp. Med. Res. 2016, 3, 1280–1282. [Google Scholar]
- Yanover, L.; Tickotsky, N.; Waggoner, W.; Kupietzky, A.; Moskovitz, M. Zirconia crown performance in primary maxillary anterior teeth: A retrospective photographic and radiographic cohort study. Eur. Arch. Paediatr. Dent. 2021, 22, 417–423. [Google Scholar] [CrossRef]
- Walia, T.; Salami, A.; Bashiri, R.; Hamoodi, O.; Rashid, F. A randomised controlled trial of three aesthetic full-coronal restorations in primary maxillary teeth. Eur. J. Paediatr. Dent. 2014, 15, 113–118. [Google Scholar]
- Yanover, L.; Waggoner, W.; Kupietzky, A.; Moskovitz, M.; Tickotsky, N. Parental and dentist satisfaction with primary anterior zirconia crowns: A case series analysis. Children 2021, 8, 451. [Google Scholar] [CrossRef] [PubMed]
- El Makawi, Y.; Khattab, N. In vitro comparative analysis of fracture resistance of lithium disilicate endocrown and prefabricated zirconium crown in pulpotomized primary molars. Open Access Maced. J. Med. Sci. 2019, 7, 4094. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Qiu, H.; Zhang, Y.; Zhang, F.; Gao, L.; Omran, M.; Chen, G. Microstructure and phase transformation behavior of Al2O3–ZrO2 under microwave sintering. Ceram. Int. 2023, 49, 4855–4862. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, N.; Liu, C.; Wu, Y.; Omran, M.; Tang, J.; Zhang, F.; Chen, G. Crystal growth mechanism of nano nSc-Y/ZrO2 ceramic powders prepared by co-precipitation method. Ceram. Int. 2025, 51, 11878–11888. [Google Scholar] [CrossRef]
- Zmener, O.; Pameijer, C.H.; Hernandez, S. Resistance against bacterial leakage of four luting agents used for cementation of complete cast crowns. Am. J. Dent. 2014, 27, 51–55. [Google Scholar]
- Waggoner, W.F. Restoring primary anterior teeth: Updated for 2014. Pediatr. Dent. 2015, 37, 163–170. [Google Scholar]
- Usha, M.; Deepak, V.; Venkat, S.; Gargi, M. Treatment of severely mutilated incisors: A challenge to the pedodontist. J. Indian. Soc. Pedod. Prev. Dent. 2007, 25, S34–S36. [Google Scholar] [CrossRef]
- Üstün, O.; Koruyucu, M. Crown restorations used in pediatric patients. J. Adv. Res. Health Sci. 2021, 4, 113–123. [Google Scholar]
- Zimmerman, J.; Feigal, R.; Till, M.J.; Hodges, J. Parental attitudes on restorative materials as factors influencing current use in pediatric dentistry. Pediatr. Dent. 2009, 31, 63–70. [Google Scholar]
- Alamoudi, R.A.; Walia, T.; Debaybo, D. Evaluation of the Clinical Performance of NuSmile Pedodontics Zirconia Crowns in Pulp-Treated Primary Teeth—2 Years Follow-Up Study. Eur. J. Dent. 2022, 17, 82–90. [Google Scholar] [CrossRef]
- Rekow, E.D.; Harsono, M.; Janal, M.; Thompson, V.P.; Zhang, G. Factorial analysis of variables influencing stress in all-ceramic crowns. Dent. Mater. 2006, 22, 125–132. [Google Scholar] [CrossRef]
- McLaren, E.A.; White, S.N. Survival of In-Ceram crowns in a private practice: A prospective clinical trial. J. Prosthet. Dent. 2000, 83, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Seddik, T.; Derelioglu, S. Effect of endocrowns on fracture strength and microleakage of endodontically treated primary molar teeth. J. Adv. Oral. Res. 2019, 10, 113–119. [Google Scholar] [CrossRef]
- Roberts, J.; Sherriff, M. The fate and survival of amalgam and preformed crown molar restorations placed in a specialist paediatric dental practice. Br. Dent. J. 1990, 169, 237–244. [Google Scholar] [CrossRef]
- Clark, L.; Wells, M.H.; Harris, E.F.; Lou, J. Comparison of amount of primary tooth reduction required for anterior and posterior zirconia and stainless steel crowns. Pediatr. Dent. 2016, 38, 42–46. [Google Scholar]
- Burke, F.; Fleming, G.J.; Nathanson, D.; Marquis, P.M. Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J. Adhes Dent. 2002, 4, 7–22. [Google Scholar] [PubMed]
- Stepp, P.; Morrow, B.R.; Wells, M.; Tipton, D.A.; Garcia-Godoy, F. Microleakage of cements in prefabricated zirconia crowns. Pediatr. Dent. 2018, 40, 136–139. [Google Scholar]
- Krämer, N.; Rudolph, H.; Garcia-Godoy, F.; Frankenberger, R. Effect of thermo-mechanical loading on marginal quality and wear of primary molar crowns. Eur. Arch. Paediatr. Dent. 2012, 13, 185–190. [Google Scholar] [CrossRef]
- Holsinger, D.M.; Wells, M.H.; Scarbecz, M.; Donaldson, M. Clinical evaluation and parental satisfaction with pediatric zirconia anterior crowns. Pediatr. Dent. 2016, 38, 192–197. [Google Scholar]
- Raigrodski, A.J. Contemporary materials and technologies for all-ceramic fixed partial dentures: A review of the literature. J. Prosthet. Dent. 2004, 92, 557–562. [Google Scholar] [CrossRef]
- Quaas, A.; Yang, B.; Kern, M. Panavia F 2.0 bonding to contaminated zirconia ceramic after different cleaning procedures. Dent. Mater. 2007, 23, 506–512. [Google Scholar] [CrossRef]
- Azab, M.M.; Moheb, D.M.; El Shahawy, O.I.; Rashed, M.A.M. Influence of luting cement on the clinical outcomes of Zirconia pediatric crowns: A 3-year split-mouth randomized controlled trial. Int. J. Paediatr. Dent. 2020, 30, 314–322. [Google Scholar] [CrossRef]
- Mathew, M.G.; Roopa, K.B.; Soni, A.J.; Khan, M.M.; Kauser, A. Evaluation of clinical success, parental and child satisfaction of stainless steel crowns and zirconia crowns in primary molars. J. Family Med. Prim. Care 2020, 9, 1418. [Google Scholar] [CrossRef]
- Kist, S.; Stawarczyk, B.; Kollmuss, M.; Hickel, R.; Huth, K.C. Fracture load and chewing simulation of zirconia and stainless-steel crowns for primary molars. Eur. J. Oral. Sci. 2019, 127, 369–375. [Google Scholar] [CrossRef]
- Addison, O.; Fleming, G.J. The influence of cement lute, thermocycling and surface preparation on the strength of a porcelain laminate veneering material. Dent. Mater. 2004, 20, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.; Barco, M.; Billy, E. Temperature extremes produced orally by hot and cold liquids. J. Prosthet. Dent. 1992, 67, 325–327. [Google Scholar] [CrossRef]
- Addison, O.; Fleming, G.J.; Marquis, P.M. The effect of thermocycling on the strength of porcelain laminate veneer (PLV) materials. Dent. Mater. 2003, 19, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Amaral, F.L.; Colucci, V.; PALMA-DIBB, R.G.; Corona, S.A. Assessment of in vitro methods used to promote adhesive interface degradation: A critical review. J. Esthet. Restor. Dent. 2007, 19, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Al-Wahadni, A.M.; Hussey, D.L.; Grey, N.; Hatamleh, M.M. Fracture resistance of aluminium oxide and lithium disilicate-based crowns using different luting cements: An in vitro study. J. Contemp. Dent. Pract. 2009, 10, 51–58. [Google Scholar] [CrossRef]
- Braun, S.; Hnat, W.P.; Freudenthaler, J.W.; Marcotte, M.R.; Hönigle, K.; Johnson, B.E. A study of maximum bite force during growth and development. Angle Orthod. 1996, 66, 261–264. [Google Scholar]
- Kamegai, T.; Tatsuki, T.; Nagano, H.; Mitsuhashi, H.; Kumeta, J.; Tatsuki, Y.; Kamegai, T.; Inaba, D. A determination of bite force in northern Japanese children. Eur. J. Orthod. 2005, 27, 53–57. [Google Scholar] [CrossRef]
- Sahin, I.; Karayilmaz, H.; Çiftçi, Z.Z.; Kirzioglu, Z. Fracture resistance of prefabricated primary zirconium crowns cemented with different luting cements. Pediatr. Dent. 2018, 40, 443–448. [Google Scholar] [PubMed]
- Abushanan, A.; Sharanesha, R.B.; Aljuaid, B.; Alfaifi, T.; Aldurayhim, A. Fracture Resistance of Primary Zirconia Crowns: An In Vitro Study. Children 2022, 9, 77. [Google Scholar] [CrossRef]
- Kongkiatkamon, S.; Rokaya, D.; Kengtanyakich, S.; Peampring, C. Current classification of zirconia in dentistry: An updated review. PeerJ 2023, 11, e15669. [Google Scholar] [CrossRef]
- Kongkiatkamon, S.; Booranasophone, K.; Tongtaksin, A.; Kiatthanakorn, V.; Rokaya, D. Comparison of fracture load of the four translucent zirconia crowns. Molecules 2021, 26, 5308. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Dalmis, A.; Gurbuz, T.; Simsek, S. Retentive force and microleakage of stainless steel crowns cemented with three different luting agents. Dent. Mater. J. 2004, 23, 577–584. [Google Scholar] [CrossRef]
- Al-Saleh, S.; Aboghosh, T.W.; Hazazi, M.S.; Binsaeed, K.A.; Almuhaisen, A.M.; Tulbah, H.I.; Al-Qahtani, A.S.; Shabib, S.; Binhasan, M.; Vohra, F. Polymer-based bioactive luting agents for cementation of all-ceramic crowns: An SEM, EDX, microleakage, fracture strength, and color stability study. Polymers 2021, 13, 4227. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Koçoğullari, M.E. Clinical evaluation of two different methods of stainless steel esthetic crowns. J. Dent. Child. 2004, 71, 212–214. [Google Scholar]
- Özcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes. Dent. 2015, 17, 7–26. [Google Scholar]
- Scaminaci Russo, D.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to zirconia: A systematic review of current conditioning methods and bonding materials. Dent. J. 2019, 7, 74. [Google Scholar] [CrossRef]
- Ye, S.; Chuang, S.-F.; Hou, S.-S.; Lin, J.-C.; Kang, L.-L.; Chen, Y.-C. Interaction of silane with 10-MDP on affecting surface chemistry and resin bonding of zirconia. Dent. Mater. 2022, 38, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Alrashdi, M.; Ardoin, J.; Liu, J.A. Zirconia crowns for children: A systematic review. Int. J. Paediatr. Dent. 2022, 32, 66–81. [Google Scholar] [CrossRef] [PubMed]
Crown Brand | Chemical Composition | Manufacturer |
---|---|---|
ProfZrCrown® | ZrO2 71.9% Y2O3 5.6% HfO2 12.9% Al2O3 < 0.05%, other oxides < 1% | ProfZrCrown, Istanbul, Turkey |
NuSmile® | ZrO2 88–96% Y2O3 4–6% HfO2 5% | NuSmile, Houston, TX, USA |
Category | Description |
---|---|
0 | Microleakage at crown margins only |
1 | Microleakage at crown margins and around cement |
2 | Microleakage at crown margins and throughout cement |
3 | Microleakage to 1/3 of tooth structure |
4 | Microleakage throughout tooth structure and pulp |
Crown Type | Luting Cement | n | Mean ± SD | Min | Max | p † |
---|---|---|---|---|---|---|
NuSmile | GIC | 10 | 884.58 ± 263.65 a | 653.11 | 1452.00 | 0.021 |
RMGIC | 10 | 736.05 ± 165.12 b | 561.68 | 966.09 | ||
ProfZrCrown | GIC | 10 | 947.50 ± 274.65 c | 443.03 | 1288.96 | |
RMGIC | 10 | 1145.58 ± 306.56 a | 640.17 | 1599.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pehlivan, N.; Öztaş Kırmızı, N.; Alim, M. Comparison of Fracture Resistance and Microleakage Properties of Two Different Prefabricated Zirconia Crowns After Thermocycling: An In Vitro Study. Biomimetics 2025, 10, 538. https://doi.org/10.3390/biomimetics10080538
Pehlivan N, Öztaş Kırmızı N, Alim M. Comparison of Fracture Resistance and Microleakage Properties of Two Different Prefabricated Zirconia Crowns After Thermocycling: An In Vitro Study. Biomimetics. 2025; 10(8):538. https://doi.org/10.3390/biomimetics10080538
Chicago/Turabian StylePehlivan, Nazile, Nurhan Öztaş Kırmızı, and Menekşe Alim. 2025. "Comparison of Fracture Resistance and Microleakage Properties of Two Different Prefabricated Zirconia Crowns After Thermocycling: An In Vitro Study" Biomimetics 10, no. 8: 538. https://doi.org/10.3390/biomimetics10080538
APA StylePehlivan, N., Öztaş Kırmızı, N., & Alim, M. (2025). Comparison of Fracture Resistance and Microleakage Properties of Two Different Prefabricated Zirconia Crowns After Thermocycling: An In Vitro Study. Biomimetics, 10(8), 538. https://doi.org/10.3390/biomimetics10080538