Fusion of External and Internal Prior Information for the Removal of Gaussian Noise in Images
Abstract
1. Introduction
2. Algorithm Description
2.1. Input Image for Using Internal Information
2.2. Finding the 1-D Sorted Image
2.3. Finding the 2-D Image of Lxl Size and Patch Matrix
2.4. PCA and Noise Removal
2.5. Finding the Estimated Lxl Size Image and Its 1-D Sorted Image
2.6. Finding the Indices of the 2-D Training Image as an External Information
2.7. Mapping Process
2.8. Algorithm Termination
3. Simulation Results
4. Conclusions
Funding
Conflicts of Interest
References
- Xie, J.; Xu, L.; Chen, E. Image denoising and inpainting with deep neural networks. In Advances in Neural Information Processing Systems 25; Curran Associates Inc.: New York, NY, USA, 2012; pp. 341–349. [Google Scholar]
- Jain, A.; Bhateja, V. A versatile denoising method for images contaminated with Gaussian noise. In Proceedings of the CUBE International Information Technology Conference, Pune, India, 3–5 September 2012; Association for Computing Machinery (ACM): New York, NY, USA, 2012; pp. 65–68. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. A Review of Image Denoising Algorithms, with a New One. Multiscale Model. Simul. 2005, 4, 490–530. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Deledalle, C.-A.; Salmon, J.; Dalalyan, A. Image Denoising with Patch Based PCA: Local Versus Global. In Proceedings of the British Machine Vision Conference, Dundee, Scotland, UK, 29 August–2 September 2011; British Machine Vision Association and Society for Pattern Recognition: Dundee, Scotland, UK, 2011; pp. 1–25. [Google Scholar]
- Zhang, K.; Dong, W.; Zhang, L.; Shi, G. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognit. 2010, 43, 1531–1549. [Google Scholar] [CrossRef]
- Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, K. Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision. Int. J. Comput. Vis. 2016, 121, 183–208. [Google Scholar] [CrossRef]
- Zoran, D.; Weiss, Y. From learning models of natural image patches to whole image restoration. In Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 479–486. [Google Scholar]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration. In Proceedings of the IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2272–2279. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, K. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Mosseri, I.; Zontak, M.; Irani, M. Combining the power of Internal and External denoising. In Proceedings of the IEEE International Conference on Computational Photography (ICCP), Cambridge, MA, USA, 19–21 April 2013; pp. 1–9. [Google Scholar]
- Burger, H.C.; Schüler, C.; Harmeling, S. Learning How to Combine Internal and External Denoising Methods. Comput. Vis. 2013, 8142, 121–130. [Google Scholar] [CrossRef]
- Chan, S.H.; Luo, E.; Nguyen, T.Q. Adaptive patch-based image denoising by EM-adaptation. In Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015; pp. 810–814. [Google Scholar]
- Parameswaran, S.; Luo, E.; Nguyen, T.Q. Patch Matching for Image Denoising Using Neighborhood-Based Collaborative Filtering. IEEE Trans. Circuits Syst. Video Technol. 2016, 28, 392–401. [Google Scholar] [CrossRef]
- Donoho, D. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224. [Google Scholar] [CrossRef]
- Portilla, J.; Strela, V.; Wainwright, M.J.; Simoncelli, E.P. Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 2003, 12, 1338–1351. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, B. An Analysis and Improvement of the BLS-GSM Denoising Method. Image Process. Line 2014, 4, 44–70. [Google Scholar] [CrossRef]
- Schmidt, U.; Roth, S. Shrinkage fields for effective image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2014, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Chen, Y.; Yu, W.; Pock, T. On learning optimized reaction diffusion processes for effective image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5261–5269. [Google Scholar]
- Wang, S.; Zhang, K.; Liang, Y. Nonlocal Spectral Prior Model for Low-Level Vision. In Proceedings of the Computer Vision, Daejeon, Korea, 5–9 November 2012; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2013; pp. 231–244. [Google Scholar]
- Ji, H.; Liu, C.; Shen, Z.; Xu, Y. Robust video denoising using low rank matrix completion. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1791–1798. [Google Scholar]
- Oh, T.-H.; Kim, H.; Tai, Y.-W.; Bazin, J.-C.; Kweon, I.S. Partial Sum Minimization of Singular Values in RPCA for Low-Level Vision. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 145–152. [Google Scholar]
- Isogawa, K.; Ida, T.; Shiodera, T.; Takeguchi, T. Deep Shrinkage Convolutional Neural Network for Adaptive Noise Reduction. IEEE Signal. Process. Lett. 2017, 25, 224–228. [Google Scholar] [CrossRef]
- Wang, X.; Tao, Q.; Wang, L.; Li, D.; Zhang, M.; Xuejiao, W.; Qiuyan, T.; Lianghao, W.; Dongxiao, L.; Ming, Z. Deep convolutional architecture for natural image denoising. In Proceedings of the International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–4. [Google Scholar]
- Min, C.; Wen, G.; Li, B.; Fan, F. Blind Deblurring via a Novel Recursive Deep CNN Improved by Wavelet Transform. IEEE Access 2018, 6, 69242–69252. [Google Scholar] [CrossRef]
- Xiu, C.; Su, X. Composite Convolutional Neural Network for Noise Deduction. IEEE Access 2019, 7, 117814–117828. [Google Scholar] [CrossRef]
σ = 20 | 512 × 512 | 1024 × 256 | 2048 × 128 | 4096 × 64 | 8192 × 32 | 16,384 × 16 |
---|---|---|---|---|---|---|
Lena | 33.36 | 33.92 | 35.12 | 36.86 | 37.2 | 28.26 |
Pepper | 33.7 | 34.07 | 34.35 | 36.75 | 35.62 | 30.88 |
Bridge | 36.05 | 36.38 | 36.80 | 37.20 | 34.44 | 28.32 |
σ = 20 | 7 × 7 | 9 × 9 | 11 × 11 | 13 × 13 | 15 × 15 | 17 × 17 |
---|---|---|---|---|---|---|
Lena(original) | 35.44 | 35.4 | 37.2 | 36.54 | 36.12 | 34.00 |
Lena(BM3D,5) | 34.07 | 34.05 | 35.31 | 34.92 | 34.62 | 32.98 |
Pepper(original) | 36.21 | 36.63 | 35.62 | 33.42 | 33.46 | 33.72 |
Bridge(original) | 35.02 | 34.51 | 34.44 | 33.34 | 33.25 | 32.54 |
Lake(original) | 33.87 | 37.19 | 35.41 | 31.64 | 31.34 | 32.02 |
σ = 30 | Th = 0.1 | Th = 0.2 | Th = 0.3 | Th = 0.4 | Th = 0.5 | Th = 0.6 |
---|---|---|---|---|---|---|
Lena | 31.52/28.3 | 31.24/29.1 | 31.17/29.4 | 30.63/32 | 30.46/33.3 | 30.79/31 |
Pepper | 31.43/28.6 | 31.25/29.2 | 31.15/29.6 | 30.75/31.4 | 30.41/34 | 30.82/31 |
Bridge | 31.06/29.94 | 31.02/30.14 | 30.79/31.18 | 30.5/33.17 | 30.7/31.76 | 31.35/28.88 |
Baboon | 31.57/28.3 | 31.4/28.8 | 31.17/29.5 | 30.550/32.9 | 30.554/32.76 | 30.80/31.12 |
Lake | 32.55/26.1 | 32.27/26.6 | 32.15/26.9 | 32/27.2 | 30.53/33 | 30.50/33.2 |
σ = 20 | New(original) | New, BM3D(5) | BM3D | PGPCA | EPLL |
Lena | 20.20 | 20.49 | 8.43 | 16.76 | 821.04 |
Pepper | 20.96 | 20.42 | 8.96 | 17.51 | 870.67 |
σ = 20 | Original, New | PGPCA(5), New | BM3D | PGPCA | EPLL |
---|---|---|---|---|---|
Lena(0.5) | 37.2 | 35.24 | 33.29 | 32.45 | 32.9 |
Pepper(0.4) | 35.62 | 34.06 | 33.64 | 32.59 | 33.29 |
Lake(0.6) | 35.41 | 32.92 | 30.33 | 30 | 30.39 |
Boat(0.3) | 33.08 | 31.79 | 31.12 | 30.39 | 30.96 |
Baboon(0.4) | 37.68 | 33.57 | 26.57 | 26.23 | 26.73 |
Fruits(0.3) | 36.80 | 34.64 | 32.76 | 31.70 | 32.67 |
Cat(0.3) | 36.93 | 34.22 | 29.85 | 29.55 | 29.65 |
σ = 30 | Original, New | BM3D(5), New | BM3D(10), New | BM3D | PGPCA |
---|---|---|---|---|---|
Lena(0.5) | 33.3 | 32.36 | 31.44 | 31.5 | 31.29 |
Pepper(0.5) | 34 | 32.91 | 31.99 | 31.94 | 31.46 |
Bridge(0.4) | 33.17 | 31.34 | 29.01 | 25.43 | 25.92 |
Baboon(0.4) | 32.9 | 30.96 | 28.48 | 24.52 | 25 |
Lake(0.6) | 33.2 | 31.36 | 29.71 | 28.53 | 28.87 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, A.S. Fusion of External and Internal Prior Information for the Removal of Gaussian Noise in Images. J. Imaging 2020, 6, 103. https://doi.org/10.3390/jimaging6100103
Awad AS. Fusion of External and Internal Prior Information for the Removal of Gaussian Noise in Images. Journal of Imaging. 2020; 6(10):103. https://doi.org/10.3390/jimaging6100103
Chicago/Turabian StyleAwad, Ali S. 2020. "Fusion of External and Internal Prior Information for the Removal of Gaussian Noise in Images" Journal of Imaging 6, no. 10: 103. https://doi.org/10.3390/jimaging6100103
APA StyleAwad, A. S. (2020). Fusion of External and Internal Prior Information for the Removal of Gaussian Noise in Images. Journal of Imaging, 6(10), 103. https://doi.org/10.3390/jimaging6100103