Segment and Recover: Defending Object Detectors Against Adversarial Patch Attacks
Abstract
1. Introduction
- By integration of the patch-agnostic defense-based frontend with an additional broken pixel restoration backend, we developed Segment and Recover (SAR) for detecting adversarial image patches and recovering the object detection accuracy;
- We revealed adversarial patches in the high-frequency domain and proposed a recompression-based patch localization frontend, which is agnostic to patch appearance, shape, and location;
- We conducted extensive evaluations and comparative studies on state-of-the-art approaches for adversarial patches of varying sizes, tasks, and attack models. The results demonstrate that our method outperforms all the evaluated state-of-the-art approaches, particularly in terms of object detection accuracy.
2. Related Work
2.1. Adversarial Patch Attacks
2.2. Defenses Against Patch Attacks
3. Problem Setup
3.1. Image Object Detector
3.2. Attack Formulation
4. “Detect-And-Inpaint” Strategy-Based Robust Vision Framework
4.1. Patch Localizing and Feature Extraction (Frontend)
Algorithm 1 Segment and Recover (SAR) | |
| |
| ▹ Adversary detection (frontend) ▹ Adversary localization ▹ Broken pixel restoration (backend) ▹ Conventional detection ▹ Trigger a caution ▹ Extract feature map ▹ Get the shape of fm ▹ Initialization ▹ Every window location ▹ Binarization |
| ▹ Extract segmentation layer by layer ▹Get the left, top, right, and bottom of seg ▹ Initialization area of segmentation ▹ Initialization area of adversarial patch map ▹ Every segmentation ▹ Every Am ▹ Area of intersection ▹ Area of union ▹ Calculate IoU ▹ No overlap ▹ Binarization ▹ Return patch map |
| ▹ Apply real FFT to input tensor ▹ Concatenate real and imaginary parts ▹ Apply a convolution block in the frequency domain ▹ Apply an inverse transform to recover a spatial structure |
4.2. Patch Mask Inpainting with Fourier Convolutions (Backend)
5. Evaluation Study
5.1. Metrics
5.1.1. Clean Performance Metrics
5.1.2. Provable Robustness Metrics
5.2. Evaluation Setup and Benchmarks
5.3. Results: Clean Performance
5.4. Results: Provable Robustness
5.4.1. Patch Localization Performance
5.4.2. Defense Against Adaptive Patches in Object Tracking
5.4.3. Defense Against Physical (Printable) Patch Attacks
5.4.4. Defense Against Localized Patch Attacks
5.5. Ablation Study
6. Generalization and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Yang, H.; Liu, Z.; Song, L.; Li, H.; Chen, Y. Dpatch: An adversarial patch attack on object detectors. arXiv 2018, arXiv:1806.02299. [Google Scholar]
- Song, D.; Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.; Tramer, F.; Prakash, A.; Kohno, T. Physical adversarial examples for object detectors. In Proceedings of the 12th USENIX Workshop on Offensive Technologies (WOOT 18), Baltimore, MD, USA, 13–14 August 2018. [Google Scholar]
- Wu, S.; Dai, T.; Xia, S. Dpattack: Diffused patch attacks against universal object detection. arXiv 2010, arXiv:2010.11679. [Google Scholar]
- Huang, H.; Wang, Y.; Chen, Z.; Tang, Z.; Zhang, W.; Ma, K.K. Rpattack: Refined patch attack on general object detectors. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar]
- Adhikari, A.; Hollander, R.d.; Tolios, I.; van Bekkum, M.; Bal, A.; Hendriks, S.; Kruithof, M.; Gross, D.; Jansen, N.; Pérez, G.; et al. Adversarial patch camouflage against aerial detection. arXiv 2020, arXiv:2008.13671. [Google Scholar] [CrossRef]
- Lu, M.; Li, Q.; Chen, L.; Li, H. Scale-adaptive adversarial patch attack for remote sensing image aircraft detection. Remote Sens. 2021, 13, 4078. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, H.; Wei, X. Object hider: Adversarial patch attack against object detectors. arXiv 2020, arXiv:2010.14974. [Google Scholar] [CrossRef]
- Chen, S.T.; Cornelius, C.; Martin, J.; Chau, D.H. Shapeshifter: Robust physical adversarial attack on faster r-cnn object detector. In Machine Learning and Knowledge Discovery in Databases, Proceedings of the European Conference, ECML PKDD 2018, Dublin, Ireland, 10–14 September 2018; Proceedings, Part I 18; Springer: Cham, Switzerland, 2019; pp. 52–68. [Google Scholar]
- Brown, T.B.; Mané, D.; Roy, A.; Abadi, M.; Gilmer, J. Adversarial patch. arXiv 2017, arXiv:1712.09665. [Google Scholar]
- Evtimov, I.; Eykholt, K.; Fernandes, E.; Kohno, T.; Li, B.; Prakash, A.; Rahmati, A.; Song, D. Robust physical-world attacks on machine learning models. arXiv 2017, arXiv:1707.08945. [Google Scholar]
- Karmon, D.; Zoran, D.; Goldberg, Y. Lavan: Localized and visible adversarial noise. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2507–2515. [Google Scholar]
- Chindaudom, A.; Siritanawan, P.; Sumongkayothin, K.; Kotani, K. AdversarialQR: An adversarial patch in QR code format. In Proceedings of the Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 26–29 August 2020; pp. 1–6. [Google Scholar]
- Liu, A.; Liu, X.; Fan, J.; Ma, Y.; Zhang, A.; Xie, H.; Tao, D. Perceptual-sensitive gan for generating adversarial patches. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 1028–1035. [Google Scholar]
- Zhou, X.; Pan, Z.; Duan, Y.; Zhang, J.; Wang, S. A data independent approach to generate adversarial patches. Mach. Vis. Appl. 2021, 32, 67. [Google Scholar] [CrossRef]
- Li, J.; Schmidt, F.; Kolter, Z. Adversarial camera stickers: A physical camera-based attack on deep learning systems. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 3896–3904. [Google Scholar]
- Athalye, A.; Engstrom, L.; Ilyas, A.; Kwok, K. Synthesizing robust adversarial examples. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 284–293. [Google Scholar]
- Hayes, J. On visible adversarial perturbations & digital watermarking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1597–1604. [Google Scholar]
- Chou, E.; Tramer, F.; Pellegrino, G. Sentinet: Detecting localized universal attacks against deep learning systems. In Proceedings of the IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 21 May 2020; pp. 48–54. [Google Scholar]
- Liu, J.; Levine, A.; Lau, C.P.; Chellappa, R.; Feizi, S. Segment and complete: Defending object detectors against adversarial patch attacks with robust patch detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 21–24 June 2022; pp. 14973–14982. [Google Scholar]
- Jing, L.; Wang, R.; Ren, W.; Dong, X.; Zou, C. Pad: Patch-agnostic defense against adversarial patch attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 24472–24481. [Google Scholar]
- Xu, K.; Xiao, Y.; Zheng, Z.; Cai, K.; Nevatia, R. Patchzero: Defending against adversarial patch attacks by detecting and zeroing the patch. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 4632–4641. [Google Scholar]
- Xiang, C.; Valtchanov, A.; Mahloujifar, S.; Mittal, P. Objectseeker: Certifiably robust object detection against patch hiding attacks via patch-agnostic masking. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–25 May 2023; pp. 1329–1347. [Google Scholar]
- McCoyd, M.; Park, W.; Chen, S.; Shah, N.; Roggenkemper, R.; Hwang, M.; Liu, J.X.; Wagner, D. Minority reports defense: Defending against adversarial patches. In Proceedings of the International Conference on Applied Cryptography and Network Security, Rome, Italy, 22–25 June 2020; pp. 564–582. [Google Scholar]
- Naseer, M.; Khan, S.; Porikli, F. Local gradients smoothing: Defense against localized adversarial attacks. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 1300–1307. [Google Scholar]
- Chen, Z.; Dash, P.; Pattabiraman, K. Jujutsu: A two-stage defense against adversarial patch attacks on deep neural networks. In Proceedings of the ACM Asia Conference on Computer and Communications Security, Melbourne, Australia, 5–9 June 2023; pp. 689–703. [Google Scholar]
- Chattopadhyay, N.; Guesmi, A.; Shafique, M. Anomaly unveiled: Securing image classification against adversarial patch attacks. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 27–30 October 2024; pp. 929–935. [Google Scholar]
- Bunzel, N.; Frick, R.A.; Klause, G.; Schwarte, A.; Honermann, J. Signals Are All You Need: Detecting and Mitigating Digital and Real-World Adversarial Patches Using Signal-Based Features. In Proceedings of the 2nd ACM Workshop on Secure and Trustworthy Deep Learning Systems, Singapore, 2 July 2024; pp. 24–34. [Google Scholar]
- Tarchoun, B.; Ben Khalifa, A.; Mahjoub, M.A.; Abu-Ghazaleh, N.; Alouani, I. Jedi: Entropy-based localization and removal of adversarial patches. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 4087–4095. [Google Scholar]
- Chen, J.; Wei, X. Defending Adversarial Patches via Joint Region Localizing and Inpainting. arXiv 2023, arXiv:2307.14242. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y. Zero-shot certified defense against adversarial patches with vision transformers. arXiv 2021, arXiv:2111.10481. [Google Scholar]
- Metzen, J.H.; Yatsura, M. Efficient certified defenses against patch attacks on image classifiers. arXiv 2021, arXiv:2102.04154. [Google Scholar] [CrossRef]
- Brendel, W.; Bethge, M. Approximating cnns with bag-of-local-features models works surprisingly well on imagenet. arXiv 2019, arXiv:1904.00760. [Google Scholar]
- Zhang, Z.; Yuan, B.; McCoyd, M.; Wagner, D. Clipped bagnet: Defending against sticker attacks with clipped bag-of-features. In Proceedings of the 2020 IEEE Security and Privacy Workshops (SPW), Francisco, CA, USA, 21 May 2020; pp. 55–61. [Google Scholar]
- Xiang, C.; Bhagoji, A.N.; Sehwag, V.; Mittal, P. {PatchGuard}: A provably robust defense against adversarial patches via small receptive fields and masking. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, Canada, 11–13 August 2021; pp. 2237–2254. [Google Scholar]
- Xiang, C.; Mittal, P. Patchguard++: Efficient provable attack detection against adversarial patches. arXiv 2021, arXiv:2104.12609. [Google Scholar]
- Xiang, C.; Mittal, P. Detectorguard: Provably securing object detectors against localized patch hiding attacks. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual, 15–19 November 2021; pp. 3177–3196. [Google Scholar]
- Levine, A.; Feizi, S. (De) randomized smoothing for certifiable defense against patch attacks. Adv. Neural Inf. Process. Syst. 2020, 33, 6465–6475. [Google Scholar]
- Lecuyer, M.; Atlidakis, V.; Geambasu, R.; Hsu, D.; Jana, S. Certified robustness to adversarial examples with differential privacy. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 23 May 2019; pp. 656–672. [Google Scholar]
- Lin, W.Y.; Sheikholeslami, F.; Shi, J.; Rice, L.; Kolter, J.Z. Certified robustness against physically-realizable patch attack via randomized cropping. In Proceedings of the ICLR 2021 Conference Blind Submission, Virtual, 5 October 2021. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Thys, S.; Van Ranst, W.; Goedemé, T. Fooling automated surveillance cameras: Adversarial patches to attack person detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Shrestha, S.; Pathak, S.; Viegas, E.K. Towards a robust adversarial patch attack against unmanned aerial vehicles object detection. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 3256–3263. [Google Scholar]
- Saha, A.; Subramanya, A.; Patil, K.; Pirsiavash, H. Adversarial patches exploiting contextual reasoning in object detection. arXiv 2019, arXiv:1910.00068. [Google Scholar]
- Zolfi, A.; Kravchik, M.; Elovici, Y.; Shabtai, A. The translucent patch: A physical and universal attack on object detectors. In Proceedings of the IEEE/CVF Conference On Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15232–15241. [Google Scholar]
- Rao, S.; Stutz, D.; Schiele, B. Adversarial training against location-optimized adversarial patches. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 429–448. [Google Scholar]
- Papernot, N.; McDaniel, P.; Sinha, A.; Wellman, M. Towards the science of security and privacy in machine learning. arXiv 2016, arXiv:1611.03814. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv 2017, arXiv:1706.06083. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst. 2016, 29, 379–387. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Li, H.; Zhang, S.; Li, X.; Su, L.; Huang, H.; Jin, D.; Chen, L.; Huang, J.; Yoo, J. Detectornet: Transformer-enhanced spatial temporal graph neural network for traffic prediction. In Proceedings of the 29th International Conference on Advances in Geographic Information Systems, Beijing, China, 2–5 November 2021; pp. 133–136. [Google Scholar]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229. [Google Scholar]
- Barbier, J.; Filiol, É.; Mayoura, K. Universal JPEG steganalysis in the compressed frequency domain. In Proceedings of the International Workshop on Digital Watermarking, Jeju Island, Republic of Korea, 8–10 November 2006; pp. 253–267. [Google Scholar]
- Zhao, X.; Ding, W.; An, Y.; Du, Y.; Yu, T.; Li, M.; Tang, M.; Wang, J. Fast segment anything. arXiv 2023, arXiv:2306.12156. [Google Scholar] [CrossRef]
- Zhu, M. Recall, Precision and Average Precision; Department of Statistics and Actuarial Science, University of Waterloo: Waterloo, ON, USA, 2004; Volume 2, p. 6. [Google Scholar]
- Banerjee, A.; Chitnis, U.B.; Jadhav, S.L.; Bhawalkar, J.S.; Chaudhury, S. Hypothesis testing, type I and type II errors. Ind. Psychiatry J. 2009, 18, 127–131. [Google Scholar] [CrossRef]
- Oksuz, K.; Cam, B.C.; Akbas, E.; Kalkan, S. Localization recall precision (LRP): A new performance metric for object detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 504–519. [Google Scholar]
- Zhu, P.; Wen, L.; Du, D.; Bian, X.; Fan, H.; Hu, Q.; Ling, H. Detection and tracking meet drones challenge. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7380–7399. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part v 13; Springer: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field and Service Robotics: Results of the 11th International Conference; Springer: Cham, Switzerland, 2017; pp. 621–635. [Google Scholar]
- Lee, M.; Kolter, Z. On physical adversarial patches for object detection. arXiv 2019, arXiv:1906.11897. [Google Scholar] [CrossRef]
- Hoory, S.; Shapira, T.; Shabtai, A.; Elovici, Y. Dynamic adversarial patch for evading object detection models. arXiv 2020, arXiv:2010.13070. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, H.; Kuang, X.; Zhao, G.; Tan, Y.A.; Zhang, Q.; Hu, J. Towards a physical-world adversarial patch for blinding object detection models. Inf. Sci. 2021, 556, 459–471. [Google Scholar] [CrossRef]
- Shack, J.; Petrovic, K.; Saukh, O. Breaking the Illusion: Real-world Challenges for Adversarial Patches in Object Detection. arXiv 2024, arXiv:2410.19863. [Google Scholar]
- Hu, Y.C.T.; Kung, B.H.; Tan, D.S.; Chen, J.C.; Hua, K.L.; Cheng, W.H. Naturalistic physical adversarial patch for object detectors. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 7848–7857. [Google Scholar]
YOLOv11x [40] | Faster RCNN [41] | DETR [42] | |
---|---|---|---|
PAD | |||
SAR |
Notation | Description |
---|---|
image space | |
label space | |
model predictor from | |
constraint set | |
binary pixel block | |
adversarial patch mask map |
Detector | Defense | Clean | FAR | Printable Patch (EAVISE [47]) | Localized Noise (DPatch [1]) | Adaptive Patch (Ad_yolo [48]) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OBJ-CLS | OBJ | CLS | % | % | % | |||||||
Undefended | 0.66 | n/a | 0.53 | 0.57 | 0.61 | 0.55 | 0.39 | 0.55 | 0.30 | 0.53 | 0.36 | |
LGS [24] | 0.55 | 0.083 | 0.42 | 0.56 | 0.60 | 0.32 | 0.33 | 0.57 | 0.43 | 0.35 | 0.25 | |
DETR | Jedi [28] | 0.39 | 0.07 | 0.62 | 0.58 | 0.48 | 0.55 | 0.39 | 0.55 | 0.61 | 0.46 | 0.35 |
RLID [29] | 0.62 | 0.022 | 0.54 | 0.69 | 0.38 | 0.69 | 0.68 | 0.41 | 0.46 | 0.52 | 0.55 | |
Jujutsu [25] | 0.58 | 0.068 | 0.62 | 0.58 | 0.68 | 0.32 | 0.33 | 0.57 | 0.43 | 0.35 | 0.25 | |
SAR (Ours) | 0.70 | 0.002 | 0.82 | 0.86 | 0.70 | 0.69 | 0.68 | 0.74 | 0.66 | 0.62 | 0.75 | |
Undefended | 0.57 | n/a | 0.61 | 0.46 | 0.35 | 0.35 | 0.51 | 0.49 | 0.64 | 0.69 | 0.58 | |
LGS [24] | 0.71 | 0.019 | 0.33 | 0.25 | 0.34 | 0.37 | 0.32 | 0.35 | 0.59 | 0.70 | 0.62 | |
YOLOv11 | Jedi [28] | 0.62 | 0.021 | 0.35 | 0.44 | 0.26 | 0.35 | 0.49 | 0.37 | 0.68 | 0.34 | 0.61 |
RLID [29] | 0.61 | 0.07 | 0.46 | 0.62 | 0.55 | 0.49 | 0.68 | 0.55 | 0.64 | 0.69 | 0.58 | |
Jujutsu [25] | 0.59 | 0.065 | 0.43 | 0.35 | 0.25 | 0.32 | 0.33 | 0.57 | 0.62 | 0.58 | 0.68 | |
SAR (Ours) | 0.74 | 0.003 | 0.75 | 0.66 | 0.61 | 0.55 | 0.71 | 0.74 | 0.72 | 0.76 | 0.70 | |
Undefended | 0.61 | n/a | 0.35 | 0.51 | 0.49 | 0.30 | 0.53 | 0.36 | 0.53 | 0.57 | 0.61 | |
LGS [24] | 0.57 | 0.083 | 0.37 | 0.32 | 0.35 | 0.66 | 0.46 | 0.55 | 0.54 | 0.69 | 0.70 | |
Faster | Jedi [28] | 0.35 | 0.022 | 0.35 | 0.49 | 0.37 | 0.35 | 0.44 | 0.26 | 0.68 | 0.74 | 0.61 |
R-CNN | RLID [29] | 0.57 | 0.316 | 0.29 | 0.68 | 0.44 | 0.33 | 0.25 | 0.34 | 0.59 | 0.78 | 0.62 |
Jujutsu [25] | 0.62 | 0.019 | 0.32 | 0.33 | 0.57 | 0.43 | 0.35 | 0.25 | 0.62 | 0.58 | 0.68 | |
SAR (Ours) | 0.65 | 0.006 | 0.65 | 0.69 | 0.75 | 0.71 | 0.62 | 0.55 | 0.82 | 0.86 | 0.88 |
Defense | SAR | PAD | SentiNet | Jujutsu | |
---|---|---|---|---|---|
Patch + Dataset | |||||
LaVAN [11] | ImageNet [70] | 87.2 | 44.5 | 39.60 | 12.17 |
DPatch [1] | Pascal VOC [69] | 91.47 | 39.60 | 26.94 | 28.03 |
EAVISE [47] | Inria [71] | 74.20 | 28.03 | 35.02 | 27.08 |
Ad_yolo [48] | VisDrone-2019 [67] | 93.29 | 10.85 | 19.22 | 34.30 |
Base Detector | Objectness | Objectness | Inpaint | SAR | |
---|---|---|---|---|---|
yolov11 | Predictor | Detector | Lama | yolov11 | |
Small | 69.0 ms | 0.2 ms | 0.55 ms | 54.2 ms | 54.95 ms |
Medium | 32.2 ms | 0.4 ms | 0.25 ms | 56.5 ms | 57.15 ms |
Large | 54.8 ms | 0.3 ms | 0.35 ms | 56.2 ms | 56.85 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Jafarnejadsani, H. Segment and Recover: Defending Object Detectors Against Adversarial Patch Attacks. J. Imaging 2025, 11, 316. https://doi.org/10.3390/jimaging11090316
Gu H, Jafarnejadsani H. Segment and Recover: Defending Object Detectors Against Adversarial Patch Attacks. Journal of Imaging. 2025; 11(9):316. https://doi.org/10.3390/jimaging11090316
Chicago/Turabian StyleGu, Haotian, and Hamidreza Jafarnejadsani. 2025. "Segment and Recover: Defending Object Detectors Against Adversarial Patch Attacks" Journal of Imaging 11, no. 9: 316. https://doi.org/10.3390/jimaging11090316
APA StyleGu, H., & Jafarnejadsani, H. (2025). Segment and Recover: Defending Object Detectors Against Adversarial Patch Attacks. Journal of Imaging, 11(9), 316. https://doi.org/10.3390/jimaging11090316