Evaluation of Plastic Waste Degradation Using Terahertz Spectroscopy for Material Recycling
Abstract
1. Introduction
2. Previous Research
3. Experiment Methodology
3.1. Samples
3.2. Thermal Degradation
3.3. UV Degradation
4. Measurement Methods and Equipment
4.1. Fourier Transform Infrared Spectrophotometry (IRAffinity-1S)
4.2. Terahertz Spectrophotometry (VIR-F)
5. Experimental Results
5.1. Degradation BASED on FTIR Results
5.1.1. HDPE
5.1.2. LDPE
5.1.3. PP
5.2. THz Spectral Altimeter
5.2.1. Undegraded Sample
5.2.2. Result of Thermal Degradation
5.2.3. Result of UV Degradation
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.S.; Sampath, V.; Prunicki, M.; Aguilera, J.; Allen, H.; LaBeaud, D.; Veidis, E.; Barry, M.; Erny, B.; Patel, L.; et al. Characterization and regulation of microplastic pollution for protecting planetary and human health. Environ. Pollut. 2022, 315, 120442. [Google Scholar] [CrossRef]
- Zhao, S.; Kvale, K.F.; Zhu, L.; Zettler, E.R.; Egger, M.; Mincer, T.J.; Amaral-Zettler, L.A.; Lebreton, L.; Niemann, H.; Nakajima, R.; et al. The distribution of subsurface microplastics in the ocean. Nature 2025, 641, 51–61. Available online: https://www.nature.com/articles/s41586-025-08818-1 (accessed on 2 May 2025). [CrossRef]
- Hamba, M.; Ida, H. Current Status and Business Trends for Plastics Recyclingin Japan. J. Jpn. Soc. Mater. Cycles Waste Manag. 2018, 29, 99–107. [Google Scholar] [CrossRef]
- Yao, S.; Tominaga, A. Novel Technology Development on Plastic Material Recycling. J. Jpn. Soc. Mater. Cycles Waste Manag. 2018, 29, 116–124. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Xu, Q.; Liu, W.; Gao, S.; Qin, P.; Chen, Z.; Wang, A. Towards carbon neutrality: Sustainable recycling and upcycling strategies and mechanisms for polyethylene terephthalate via biotic/abiotic pathways. Eco-Environ. Health 2024, 3, 117–130. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Gnatowski, A. Recycling of Plastic Waste, with Particular Emphasis on Thermal Methods—Review. Energies 2022, 15, 2114. [Google Scholar] [CrossRef]
- Plastic Waste Management Institute. Basic Knowledge of Plastic Recycling, Japanese Title Was Translated by Author 2024, Pages 5. Available online: https://www.pwmi.or.jp/pdf/panf1.pdf (accessed on 30 April 2025).
- Official Journal of the European Union. Laying Down Rules for the Calculation, Verification and Reporting of Data on Waste in Accordance with Directive 2008/98/EC of the European Parliament and of the Council and Repealing Commission Implementing Decision C. Off. J. Eur. Union 2012, 2384, 3. Available online: https://eur-lex.europa.eu/eli/dir/2018/851/oj (accessed on 30 April 2025).
- Abis, M.; Bruno, M.; Kuchta, K.; Simon, F.-G.; Grönholm, R.; Hoppe, M.; Fiore, S. Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe Authors. Energies 2020, 13, 6412. [Google Scholar] [CrossRef]
- Kharmoudi, H.; Lamtai, A.; Elkoun, S.; Robert, M.; Diez, C. Effect of Additives on Thermal Degradation and Crack Propagation Properties of Recycled Polyethylene Blends. Polymers 2024, 16, 2060. [Google Scholar] [CrossRef]
- Broek, W.v.D.; Wienke, D.; Melssen, W.; Buydens, L. Plastic material identification with spectroscopic near infrared imaging and artificial neural networks. Anal. Chim. Acta 1998, 361, 161–176. [Google Scholar] [CrossRef]
- Sonohata, H.; Manago, G.; Tanabe, T.; Kitawaki, H. Research on the Wettability of Plastic Container and Packaging Waste for the Purpose of Countermeasures Aedes Mosquito in Republic of Panama. Macro Rev. 2022, 34, 79–86. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). From Pollution to Solution a Global Assessment of Marine Litter and Plastic Pollution. 2021. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/36965/POLSOLSum.pdf (accessed on 30 April 2025).
- Cafiero, L.M.; De Angelis, D.; Tuccinardi, L.; Tuffi, R. Current State of Chemical Recycling of Plastic Waste: A Focus on the Italian Experience. Sustainability 2025, 17, 1293. [Google Scholar] [CrossRef]
- Hayashi, S.; Saho, K.; Isobe, D.; Masugi, M. Pedestrian Detection in Blind Area and Motion Classification Based on Rush-Out Risk Using Micro-Doppler Radar. Sensors 2021, 21, 3388. [Google Scholar] [CrossRef]
- Oyama, Y.; Zhen, L.; Tanabe, T.; Kagaya, M. Sub-terahertz imaging of defects in building blocks. NDTE Int. 2009, 42, 28–33. [Google Scholar] [CrossRef]
- Tanabe, T.; Watanabe, K.; Oyama, Y.; Seo, K. Polarization sensitive THz absorption spectroscopy for the evaluation of uniaxially deformed ultra-high molecular weight polyethylene. NDTE Int. 2010, 43, 329–333. [Google Scholar] [CrossRef]
- Takahashi, S.; Hamano, T.; Nakajima, K.; Tanabe, T.; Oyama, Y. Observation of damage in insulated copper cables by THz imaging. NDTE Int. 2014, 61, 75–79. [Google Scholar] [CrossRef]
- Kobayashi, C.; Nishiwaki, T.; Tanabe, T.; Oohashi, T.; Hamasaki, H.; Hikishima, S.; Tanaka, A.; Arita, K.; Fujii, S.; Sato, D.; et al. Non-destructive testing of reinforced concrete structures using sub-terahertz reflected waves. Dev. Built Environ. 2024, 18, 100423. [Google Scholar] [CrossRef]
- Iwasaki, K.; Tanabe, T. Terahertz Detection Device Development and Application Development for Social Implementation: From Non Destructive Testing to Crystal Growth. Jpn. Inst. Met. Mater. Rev. 2025, 89, 143–151. [Google Scholar] [CrossRef]
- Zhang, M.; Peng, Z.; Xu, X.; Xie, X.; Liu, Y.; Song, Q. Rapid and non-destructive identification of plastic particles through THz technology and machine learning. Infrared Phys. Technol. 2024, 140, 105350. [Google Scholar] [CrossRef]
- Okubo, K.; Manago, G.; Tanabe, T.; Yu, J.; Liu, X.; Sasaki, T. Identifying plastic materials in post-consumer food containers and packaging waste using terahertz spectroscopy and machine learning. Waste Manag. 2025, 196, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Niiyama, T.; Tanabe, T.; Yu, J. Secondary Treatment Facilitating the Mechanical Recycling of Film-Coated Waste Automobile Bumpers. Recycling 2025, 10, 74. [Google Scholar] [CrossRef]
- Manago, G.; Okubo, K.; Yu, J.; Tanabe, T.; Sasaki, T. Identification of the Compounds Used in Waste Bottle Caps Using Terahertz Radiation for Sustainable Resource Recycling to Benefit International Cooperation. Sustainability 2024, 16, 10864. [Google Scholar] [CrossRef]
- Manago, G.; Tanabe, T.; Okubo, K.; Sasaki, T.; Yu, J. Development of Smart Material Identification Equipment for Sustainable Recycling in Future Smart Cities. Polymers 2025, 17, 462. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Manago, G.; Tanabe, T.; Osanai, S.; Okubo, K. New Terahertz Wave Sorting Technology to Improve Plastic Containers and Packaging Waste Recycling in Japan. Recycling 2022, 7, 66. [Google Scholar] [CrossRef]
- Yoshizumi, T.; Iwasaki, K.; Fujii, S.; Kimura, T.; Yamamoto, M.; Manago, G.; Yu, J.; Tanabe, T. Extraction of Terahertz Wave Parameters that Characterize Woolen Clothes. Text. Res. J. 2025, 95, 399–403. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, X.; Zhu, Y.; Zhuang, S. Unified description on principles of fourier transform infrared spectroscopy and terahertz time-domain spectroscopy. Infrared Phys. Technol. 2019, 101, 105–109. [Google Scholar] [CrossRef]
- Sasaki, T.; Tanabe, T.; Nishizawa, J. Development of Continuous Wave Terahertz Signal Generator based on Difference Frequency Generation in Gallium Phosphide Crystal. J. Jpn. Soc. Infrared Sci. Technol. 2016, 26, 74–81. [Google Scholar]
- THz Spectral Database for Pharmaceuticals. Available online: www.rie.shizuoka.ac.jp/~thz/shizuoka_univ_sasaki_lab_database/index_j.html (accessed on 30 April 2025).
- Chen, X.; Xu, M.; Yuan, L.-M.; Huang, G.; Chen, X.; Shi, W. Degradation degree analysis of environmental microplastics by micro FT-IR imaging technology. Chemosphere 2021, 274, 129779. [Google Scholar] [CrossRef]
- Ainali, N.M.; Bikiaris, D.N.; Lambropoulou, D.A. Aging effects on low- and high-density polyethylene, polypropylene and polystyrene under UV irradiation: An insight into decomposition mechanism by Py-GC/MS for microplastic analysis. J. Anal. Appl. Pyrolysis 2021, 158, 105207. [Google Scholar] [CrossRef]
- Chang, T.; Zhang, X.; Cui, H.-L. Terahertz Dielectric Spectroscopic Analysis of Polypropylene Aging Caused by Exposure to Ultraviolet Radiation. Polymers 2019, 11, 2001. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Liu, Y.; Cheng, Z.; Chen, R.; Zhang, S.; Liao, R.; Yuan, Y. A novel aging characterization method for silicone rubber based on terahertz absorption spectroscopy. Polym. Test. 2022, 115, 107723. [Google Scholar] [CrossRef]
- Lepodise, L.M.; Billy, R.; Tsenang, M.; Pheko-Ofitlhile, T. Far Infrared/Terahertz Spectroscopy as a Complementary Method for the Analysis of the Spectral Features of Thymol and Carvacrol Structural Isomers. Nat. Prod. Commun. 2024, 19, 1–9. [Google Scholar] [CrossRef]
- Yamada, R. Highly sensitive analysis using weak luminescence measurements—Capturing trace oxidative degradation of materials. Jpn. Soc. Anal. Chem. 2021, 7, 329–336. Available online: https://bunseki.jsac.jp/wp-content/uploads/2021/07/09%E6%8A%80%E8%A1%93%E7%B4%B9%E4%BB%8B%EF%BC%88%E5%BE%AE%E5%BC%B1%E7%99%BA%E5%85%89%E6%B8%AC%E5%AE%9A%E3%83%BB%E3%83%BB%E3%83%BB%EF%BC%89.pdf (accessed on 30 April 2025).
- Tasumi, M.; Shimanouchi, T. Crystal Vibrations and Intermolecular Forces of Polymethylene Crystals. J. Chem. Phys. 1965, 43, 1245–1258. [Google Scholar] [CrossRef]
- Naftaly, M.; Foulds, A.P.; Miles, R.E.; Davies, A.G. Terahertz Transmission Spectroscopy of Nonpolar Materials and Relationship with Composition and Properties. Int. J. Infrared Millim. Waves 2005, 26, 55–64. [Google Scholar] [CrossRef]
- Karaliūnas, M.; Nasser, K.E.; Urbanowicz, A.; Kašalynas, I.; Bražinskienė, D.; Asadauskas, S.; Valušis, G. Non-destructive inspection of food and technical oils by terahertz spectroscopy. Sci. Rep. 2018, 8, 18025. [Google Scholar] [CrossRef]
- Krumbholz, N.; Hochrein, T.; Vieweg, N.; Radovanovic, I.; Pupeza, I.; Schubert, M.; Kretschmer, K.; Koch, M. Degree of dispersion of polymeric compounds determined with terahertz time-domain spectroscopy. Polym. Eng. Sci 2011, 51, 109–116. [Google Scholar] [CrossRef]
- Tanabe, T.; Makino, Y.; Shiota, A.; Suzuki, M.; Tanuma, R.; Miyajima, M.; Sato, N.; Oyama, Y. Terahertz detection of halogen additive-containing plastics. Opt. Photonics J. 2020, 10, 265–272. [Google Scholar] [CrossRef]
- Iwasaki, F.; Tanabe, I.K.T. Material Identification and Thermal Degradation Diagnosis of Olefin Plastics using Terahertz Waves. Insp. Eng. 2023, 28, 1–7. [Google Scholar]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Munajad, A.; Subroto, C.; Suwarno. Fourier Transform Infrared (FTIR) Spectroscopy Analysis of Transformer Paper in Mineral Oil-Paper Composite Insulation under Accelerated Thermal Aging. Energies 2018, 11, 364. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef] [PubMed]
- Alqaheem, Y.; Alomair, A.A. Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes 2020, 10, 33. [Google Scholar] [CrossRef]
- Fischer, E.R.; Hansen, B.T.; Nair, V.; Hoyt, F.H.; Dorward, D.W. Scanning Electron Microscopy. Curr Protoc Microbiol. 2012, 25, 2B.2.1–2B.2.47. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Solís, V.; Martínez-Guerra, E.; Piñón-Balderrama, C.I.; Martínez, I.C.; Saavedra-Leos, M.Z. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers 2020, 12, 5. [Google Scholar] [CrossRef]
- Groenewoud, W.M. Chapter 2—Thermogravimetry. Characterisation Polym. Therm. Anal. 2001, 61–76. [Google Scholar] [CrossRef]
- Moseson, D.E.; Jordan, M.A.; Shah, D.D.; Corum, I.D.; Alvarenga, B.R., Jr.; Taylor, L.S. Application and limitations of thermogravimetric analysis to delineate the hot melt extrusion chemical stability processing window. Int. J. Pharm. 2020, 90, 119916. [Google Scholar] [CrossRef]
- Debnath, S.; Das, M.; Mondal, S.; Sarkar, B.K.; Babu, G. Advances in chromatography: Contemporary techniques and applications. Essent. Chem 2025, 2, 1–27. [Google Scholar] [CrossRef]
- van Bommel, M.R.; Berghe, I.V.; Wallert, A.M.; Boitelle, R.; Wouters, J. High-performance liquid chromatography and non-destructive three-dimensional fluorescence analysis of early synthetic dyes. J. Chromatogr. A 2007, 1157, 260–272. [Google Scholar] [CrossRef]
Analysis and Evaluation Methods | Degradation Analysis Items | General Analysis Benefits | General Analysis Limitations |
---|---|---|---|
Fourier transform infrared spectroscopy (FTIR) | Molecular structure |
| |
Scanning electron microscopy (SEM) | Morphology |
|
|
Differential scanning calorimetry (DSC) | Crystallinity |
|
|
Thermogravimetry (TG) | Pyrolysis |
|
|
Chromatography (CG) | Additive extraction |
|
|
Chemical luminescence (CL) | Degree of oxidation | Under development | |
Terahertz spectroscopy (THz) | Molecular chain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonohata, H.; Manago, G.; Seike, S.; Kitawaki, H.; Tanabe, T. Evaluation of Plastic Waste Degradation Using Terahertz Spectroscopy for Material Recycling. Recycling 2025, 10, 134. https://doi.org/10.3390/recycling10040134
Sonohata H, Manago G, Seike S, Kitawaki H, Tanabe T. Evaluation of Plastic Waste Degradation Using Terahertz Spectroscopy for Material Recycling. Recycling. 2025; 10(4):134. https://doi.org/10.3390/recycling10040134
Chicago/Turabian StyleSonohata, Hitomi, Gaku Manago, Shun Seike, Hidetoshi Kitawaki, and Tadao Tanabe. 2025. "Evaluation of Plastic Waste Degradation Using Terahertz Spectroscopy for Material Recycling" Recycling 10, no. 4: 134. https://doi.org/10.3390/recycling10040134
APA StyleSonohata, H., Manago, G., Seike, S., Kitawaki, H., & Tanabe, T. (2025). Evaluation of Plastic Waste Degradation Using Terahertz Spectroscopy for Material Recycling. Recycling, 10(4), 134. https://doi.org/10.3390/recycling10040134