Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senguttuvan, P.; Han, S.-D.; Kim, S.; LipsonA, L.; Tepavcevic, S.; Fister, T.T.; Bloom, I.D.; Burrell, A.K.; Johnson, C.S. A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery. Adv. Energy Mater. 2016, 6, 1600826. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, J.; Xiao, X.; Xin, W.; Geng, Y.; Yan, Z.; Zhu, Z. Molecular engineering of self-assembled monolayers for highly utilized Zn anodes. eScience 2024, 4, 100205. [Google Scholar] [CrossRef]
- Yuan, L.; Hao, J.; Johannessen, B.; Ye, C.; Yang, F.; Wu, C.; Dou, S.; Liu, H.; Qiao, S. Hybrid working mechanism enables highly reversible Zn electrodes. eScience 2023, 3, 100096. [Google Scholar] [CrossRef]
- Al-Abbasi, M.; Zhao, Y.; He, H.; Liu, H.; Xia, H.; Zhu, T.; Wang, K.; Xu, Z.; Wang, H.; Zhang, W.; et al. Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries. Carbon Neutral. 2024, 3, 108–141. [Google Scholar] [CrossRef]
- Xue, T.; Mu, Y.; Wei, X.; Zhou, Z.; Zhou, Y.; Zhang, Z.; Yang, C.; Qiu, J.; Zang, L.; Zeng, L. From Fundamentals to Practice: Electrolyte Strategies for Zinc-Ion Batteries in Extreme Temperature. Carbon Neutral. 2025, 4, e183. [Google Scholar] [CrossRef]
- Li, Q.; Chen, A.; Wang, D.; Zhao, Y.; Wang, X.; Jin, X.; Xiong, B.; Zhi, C. Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 2022, 13, 3699. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, K.; Li, H.; Zhong, Q.; Yue, J.; Diao, J.; Wang, Z.; Huang, G.; Jiang, B.; Pan, F. Interlayer Cationic Defect Engineering in Lamellar Vanadate Cathodes Enables Ultralong-Lifespan Magnesium-Ion Batteries. ACS Energy Lett. 2025, 10, 2052–2060. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Y.; Wei, W.; Ji, X.; Chen, L. A Functional Organic Zinc-Chelate Formation with Nanoscaled Granular Structure Enabling Long-Term and Dendrite-Free Zn Anodes. ACS Nano 2022, 16, 9736–9747. [Google Scholar] [CrossRef]
- Wei, S.; Qi, Z.-H.; Xia, Y.; Chen, S.; Wang, C.; Wang, Y.; Zhang, P.; Zhu, K.; Cao, Y.; Guo, X.; et al. Monolayer Thiol Engineered Covalent Interface toward Stable Zinc Metal Anode. ACS Nano 2022, 16, 21152–21162. [Google Scholar] [CrossRef]
- Jian, Q.; Guo, Z.; Zhang, L.; Wu, M.; Zhao, T. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem. Eng. J. 2021, 425, 130643. [Google Scholar] [CrossRef]
- Fan, X.; Yang, H.; Wang, X.; Han, J.; Wu, Y.; Gou, L.; Li, D.-L.; Ding, Y.-L. Enabling Stable Zn Anode via a Facile Alloying Strategy and 3D Foam Structure. Adv. Mater. Interfaces 2021, 8, 2002184. [Google Scholar] [CrossRef]
- Li, C.; Shi, X.; Liang, S.; Ma, X.; Han, M.; Wu, X.; Zhou, J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 2020, 379, 122248. [Google Scholar] [CrossRef]
- Liu, M.; Yuan, W.; Ma, G.; Qiu, K.; Nie, X.; Liu, Y.; Shen, S.; Zhang, N. In-Situ Integration of a Hydrophobic and Fast-Zn2+-Conductive Inorganic Interphase to Stabilize Zn Metal Anodes. Angew. Chem. Int. Ed. 2023, 62, e202304444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ye, M.; Zhang, Y.; Tang, Y.; Liu, X.; Li, C.C. Regulation of Ionic Distribution and Desolvation Activation Energy Enabled by In Situ Zinc Phosphate Protective Layer toward Highly Reversible Zinc Metal Anodes. Adv. Funct. Mater. 2023, 33, 2208230. [Google Scholar] [CrossRef]
- Yu, N.; Li, Y.; She, W.; Li, H.; Chen, H.; Cheng, W.; Chen, J.; Liu, H.; Tu, Y.; Huang, Z.; et al. Binder-Free Sodium Zinc Phosphate Protection Layer Enabled Dendrite-Free Zn Metal Anode. ACS Appl. Mater. Interfaces 2022, 14, 50827–50835. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, Z.; Yang, T.; Yu, L.; Wei, N. Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes. Adv. Mater. 2020, 32, 2003425. [Google Scholar] [CrossRef]
- Li, C.; Kingsbury, R.; Thind, A.S.; Shyamsunder, A.; Fister, T.T.; Klie, R.F.; Persson, K.A.; Nazar, L.F. Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries. Nat. Commun. 2023, 14, 3067. [Google Scholar] [CrossRef]
- Zhong, Y.; Xie, X.; Zeng, Z.; Lu, B.; Chen, G.; Zhou, J. Triple-function Hydrated Eutectic Electrolyte for Enhanced Aqueous Zinc Batteries. Angew. Chem. Int. Ed. 2023, 62, e202310577. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Gu, C.; Zhang, X.; Okhawilai, M.; Wang, S.; Han, J.; Qin, J.; Huang, Y. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 2021, 89, 106322. [Google Scholar] [CrossRef]
- Chen, S.; Lan, R.; Humphreys, J.; Tao, S. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 2020, 28, 205–215. [Google Scholar] [CrossRef]
- Wang, L.; Yu, H.; Chen, D.; Jin, Y.; Jiang, L.; He, H.; Zhou, G.; Xie, Z.; Chen, Y. Steric hindrance and orientation polarization by a zwitterionic additive to stabilize zinc metal anodes. Carbon Neutral. 2024, 3, 996–1008. [Google Scholar] [CrossRef]
- Han, D.; Sun, T.; Zhang, R.; Zhang, W.; Ma, T.; Du, H.; Wang, Q.; He, D.; Zheng, S.; Tao, Z. Eutectic Electrolytes with Doubly-Bound Water for High-Stability Zinc Anodes. Adv. Funct. Mater. 2022, 32, 2209065. [Google Scholar] [CrossRef]
- Tang, Y.; Li, J.-H.; Xu, C.-L.; Liu, M.; Xiao, B.; Wang, P.-F. Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries. Carbon Neutral. 2023, 2, 186–212. [Google Scholar] [CrossRef]
- Zhi, J.; Zhao, S.; Zhou, M.; Wang, R.; Huang, F. A zinc-conducting chalcogenide electrolyte. Sci. Adv. 2023, 9, eade2217. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yun, J.; Feng, H.; Tian, T.; Xu, J.; Li, D.; Xia, X.; Yang, Z.; Zhang, W. Towards high-performance zinc anode for zinc ion hybrid capacitor: Concurrently tailoring hydrodynamic stability, zinc deposition and solvation structure via electrolyte additive. Energy Storage Mater. 2023, 55, 857–866. [Google Scholar] [CrossRef]
- Zhong, Y.; Cheng, Z.; Zhang, H.; Li, J.; Liu, D.; Liao, Y.; Meng, J.; Shen, Y.; Huang, Y. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy 2022, 98, 107220. [Google Scholar] [CrossRef]
- Luo, J.; Xu, L.; Zhou, Y.; Yan, T.; Shao, Y.; Yang, D.; Zhang, L.; Xia, Z.; Wang, T.; Zhang, L.; et al. Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Zn-Ion Batteries. Angew. Chem. Int. Ed. 2023, 135, e202302302. [Google Scholar] [CrossRef]
- Li, D.; Tang, Y.; Liang, S.; Lu, B.; Chen, G.; Zhou, J. Self-assembled multilayers direct a buffer interphase for long-life aqueous zinc-ion batteries. Energy Environ. Sci. 2023, 16, 3381–3390. [Google Scholar] [CrossRef]
- Zhou, Y.; Tong, H.; Wu, Y.; Chen, X.; Wu, C.; Xu, Z.; Shen, L.; Zhang, X. A Dendrite-Free Zn Anode Co-modified with In and ZnF2 for Long-Life Zn-Ion Capacitors. ACS Appl. Mater. Interfaces 2022, 14, 46665–46672. [Google Scholar] [CrossRef]
- Zhang, P.-F.; Wu, Z.; Zhang, S.-J.; Liu, L.-Y.; Tian, Y.; Dou, Y.; Lin, Z.; Zhang, S. Tannin acid induced anticorrosive film toward stable Zn-ion batteries. Nano Energy 2022, 102, 107721. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.-G.; Hua, W.; Ren, L.; Sun, H.; Hou, Z.; Huyan, Y.; Cao, Y.; Wei, C.; Kang, F. Navigating fast and uniform zinc deposition via a versatile metal–organic complex interphase. Energy Environ. Sci. 2022, 15, 1872–1881. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 16, 1746. [Google Scholar] [CrossRef]
- Lv, X.; Xu, Z.; Li, J.; Chen, J.; Liu, Q. Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles. Appl. Surf. Sci. 2016, 376, 97–104. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, Y.; Chen, R.; Xu, Z.; Li, J.; Zong, W.; Li, H.; Li, Z.; Zhang, Z.; Zhu, J.; et al. Highly Reversible Zinc Metal Anode in a Dilute Aqueous Electrolyte Enabled by a pH Buffer Additive. Angew. Chem. Int. Ed. 2023, 135, e202212695. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, C.; Du, Y.; Wang, X.; Ding, L.; Omar, A.; Mikhailova, D. Uniform Zn Deposition Achieved by Ag Coating for Improved Aqueous Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 16869–16875. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.; Liu, W.; Ni, X.; Qing, P.; Zhao, Q.; Wei, W.; Ji, X.; Ma, J.; Chen, L. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 2021, 9, 8452–8461. [Google Scholar] [CrossRef]
- Zhang, Y.; Howe, J.D.; Ben-Yoseph, S.; Wu, Y.; Liu, N. Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Lett. 2021, 6, 404–412. [Google Scholar] [CrossRef]
- Park, J.B.; Choi, C.; Jung, S.W.; Min, B.C.; Park, J.H.; Kim, D.-W. Designing Chemically Replaced Interfacial Layer via Unveiling The Influence of Zn Crystal Facets for Practical Zn-Metal Anodes. Adv. Mater. 2024, 36, 2308684. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.; Heo, K.; Lim, J.; Yashiro, H.; Shin, H.; Jung, H.; Lee, Y.M.; Myung, S. Gold-Nanolayer-Derived Zincophilicity Suppressing Metallic Zinc Dendrites and Its Efficacy in Improving Electrochemical Stability of Aqueous Zinc-Ion Batteries. Adv. Mater. 2024, 36, 2308592. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, F.; Zeng, S.; Gao, X.; Liu, X.; Cao, X.; Yu, P.; Lu, X. Zincophilic Cu Sites Induce Dendrite-Free Zn Anodes for Robust Alkaline/Neutral Aqueous Batteries. Adv. Funct. Mater. 2022, 32, 2110829. [Google Scholar] [CrossRef]
- Ma, C.; Wang, X.; Lu, W.; Wang, C.; Yue, H.; Sun, G.; Zhang, D.; Du, F. Achieving stable Zn metal anode via a simple NiCo layered double hydroxides artificial coating for high performance aqueous Zn-ion batteries. Chem. Eng. J. 2022, 429, 132576. [Google Scholar] [CrossRef]
- Mu, Y.; Zhou, T.; Li, D.; Liu, W.; Jiang, P.; Chen, L.; Zhou, H.; Ge, G. Highly stable and durable Zn-metal anode coated by bi-functional protective layer suppressing uncontrollable dendrites growth and corrosion. Chem. Eng. J. 2022, 430, 132839. [Google Scholar] [CrossRef]
- Liu, M.; Yao, L.; Ji, Y.; Zhang, M.; Gan, Y.; Cai, Y.; Li, H.; Zhao, W.; Zhao, Y.; Zou, Z.; et al. Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries. Nano Lett. 2023, 23, 541–549. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, Z.; Xu, X.; Nie, Y.; Tu, J.; Zhou, A.; Zhang, J.; Qiu, L.; Chen, F.; Xie, J.; et al. Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration. Energy Storage Mater. 2023, 48, 192–204. [Google Scholar] [CrossRef]
- Ma, G.; Miao, L.; Dong, Y.; Yuan, W.; Nie, X.; Di, S.; Wang, Y.; Wang, L.; Zhang, N. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 2022, 47, 203–210. [Google Scholar] [CrossRef]
- Chang, N.; Li, T.; Li, R.; Wang, S.; Yin, Y.; Zhang, H.; Li, X. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 2020, 13, 3527–3535. [Google Scholar] [CrossRef]
- Cao, L.; Li, D.; Hu, E.; Xu, J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X.-Q.; Wang, C. Solvation Structure Design for Aqueous Zn Metal Batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409. [Google Scholar] [CrossRef]
- Miao, L.; Wang, R.; Di, S.; Qian, Z.; Zhang, L.; Xin, W.; Liu, M.; Zhu, Z.; Chu, S.; Du, Y.; et al. Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes. ACS Nano 2022, 16, 9667–9678. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, R.; Ma, Q.; Wan, J.; Zhang, S.; Zhang, L.; Li, H.; Luo, Q.; Wu, J.; Zhou, T.; et al. A Dual-Functional Organic Electrolyte Additive with Regulating Suitable Overpotential for Building Highly Reversible Aqueous Zinc Ion Batteries. Adv. Funct. Mater. 2023, 34, 2214538. [Google Scholar] [CrossRef]
- Li, T.C.; Lim, Y.; Li, X.L.; Luo, S.; Lin, C.; Fang, D.; Xia, S.; Wang, Y.; Yang, H.Y. A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn Storage. Adv. Energy Mater. 2022, 12, 2103231. [Google Scholar] [CrossRef]
- Li, C.; Kingsbury, R.; Zhou, L.; Shyamsunder, A.; Persson, K.A.; Nazar, L.F. Tuning the Solvation Structure in Aqueous Zinc Batteries to Maximize Zn-Ion Intercalation and Optimize Dendrite-Free Zinc Plating. ACS Energy Lett. 2022, 7, 533–540. [Google Scholar] [CrossRef]
- Wang, M.; Meng, Y.; Li, K.; Ahmad, T.; Chen, N.; Xu, Y.; Sun, J.; Chuai, M.; Zheng, X.; Yuan, Y.; et al. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2022, 2, 509–517. [Google Scholar] [CrossRef]
- Liu, C.; Luo, Z.; Deng, W.; Wei, W.; Chen, L.; Pan, A.; Ma, J.; Wang, C.; Zhu, L.; Xie, L.; et al. Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Lett. 2021, 6, 675–683. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, Z.; Zeng, Y.; Liu, W.; Wei, B.; Qi, Z.; Wang, Z.; Xia, C.; Liang, H. Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings Enables Highly Reversible Zinc Anodes. Nano Lett. 2022, 22, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, C.; Zhang, S.; Luo, B.; Tian, M.; Liu, S.; Wang, L. Mass-producible in-situ amorphous solid/electrolyte interface with high ionic conductivity for long-cycling aqueous Zn-ion batteries. J. Colloid Interface Sci. 2023, 641, 229–238. [Google Scholar] [CrossRef]
- Han, C.; Li, W.; Liu, H.K.; Dou, S.; Wang, J. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 2020, 74, 104880. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Wang, H.; Gao, Y.; Tang, Z.; Wang, J.; Feng, Y.; Yang, Z.; Zhou, D.; Chen, J.; et al. Regulation and Stabilization of the Zinc Metal Anode Interface by Electroless Plating of a Multifunctionalized Polydopamine Layer. ACS Appl. Mater. Interfaces 2022, 14, 43215–43225. [Google Scholar] [CrossRef]
- Lu, H.; Hu, J.; Wei, X.; Zhang, K.; Xiao, X.; Zhao, J.; Hu, Q.; Yu, J.; Zhou, G.; Xu, B. A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 2023, 14, 4435. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, M.; Xia, X.; Qian, S.; Wang, Z.; Zhu, C.; Zeng, X.; Ji, H.; Wang, S.; Zhou, X.; et al. New Type of Dynamically ‘Solid–Liquid’ Interconvertible Electrolyte for High-Rate Zn Metal Battery. Nano Lett. 2022, 22, 2898–2906. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, N.; Zeng, Q.; Fu, Y.; Li, H.; Li, J.; Wang, R.; Meng, L.; Wu, H.; Li, Z.; Guo, K.; et al. Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes. Batteries 2025, 11, 284. https://doi.org/10.3390/batteries11080284
Yu N, Zeng Q, Fu Y, Li H, Li J, Wang R, Meng L, Wu H, Li Z, Guo K, et al. Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes. Batteries. 2025; 11(8):284. https://doi.org/10.3390/batteries11080284
Chicago/Turabian StyleYu, Neng, Qingpu Zeng, Yiming Fu, Hanbin Li, Jiating Li, Rui Wang, Longlong Meng, Hao Wu, Zhuyao Li, Kai Guo, and et al. 2025. "Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes" Batteries 11, no. 8: 284. https://doi.org/10.3390/batteries11080284
APA StyleYu, N., Zeng, Q., Fu, Y., Li, H., Li, J., Wang, R., Meng, L., Wu, H., Li, Z., Guo, K., & Wang, L. (2025). Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes. Batteries, 11(8), 284. https://doi.org/10.3390/batteries11080284