Size and Ion-Doping Effects on Magnetic, Optical, and Phonon Properties of CuAlO2 Nanoparticles
Abstract
:1. Introduction
2. The Model and Green’s Functions
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000, 287, 1019. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Dederichs, P.H.; Katayama-Yoshida, H. Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 2003, 61, 403. [Google Scholar] [CrossRef]
- Sato, K.; Katayama-Yoshida, H. First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 2002, 2002. 17, 367. [Google Scholar] [CrossRef]
- Kizaki, H.; Sato, K.; Katayama-Yoshida, H. Materials Design of CuAlO2-Based Dilute Magnetic Semiconductors by First-Principles Calculations and Monte Carlo Simulations. Jpn. J. Appl. Phys. 2008, 47, 6488. [Google Scholar] [CrossRef]
- Iordanidou, K.; Persson, C. Stoner Ferromagnetism in Hole-Doped CuMIIIAO2 with MIIIA = Al, Ga, and In. ACS Appl. Mater. Interfaces 2021, 13, 29770. [Google Scholar] [CrossRef]
- Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H. P-Type Electrical Conduction in Transparent Thin Films of CuAlO2. Nature 1997, 389, 939. [Google Scholar] [CrossRef]
- Kizaki, H.; Sato, K.; Katayama-Yoshida, H. Carrier concentration dependence of Curie temperature in CuAlO2 based dilute magnetic semiconductor by first-principles calculations. Phys. Stat. Sol. (c) 2007, 3, 4135. [Google Scholar] [CrossRef]
- Aziziha, M.; Byard, S.A.; Beesely, R.; Lewis, J.P.; Seehra, M.S.; Johnson, M.B. Magnetic properties of Fe-doped CuAlO2 and role of impurities. AIP Adv. 2019, 9, 035030. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Dong, C.; Wang, B.; Huang, J.; Wang, Y. Synthesis and Room Temperature Ferromagnetism in Fe-Doped CuAlO2 Semiconductor. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2013, 28, 500. [Google Scholar] [CrossRef]
- Dong, C.J.; Yu, W.X.; Xu, M.; Cao, J.J.; Zhang, Y.; Chuai, Y.H.; Wang, Y.D. Evidence of room temperature ferromagnetism in Co-doped transparent CuAlO2 semiconductor. J. Alloys Compd. 2012, 512, 195. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, C.; Chuai, Y.; Wang, Y. Room temperature ferromagnetism in Codoped CuAlO2 nanofibers fabricated by electrospinning. J. Wuhan Univ. Technol.-Mater. Sci. 2015, 30, 1. [Google Scholar] [CrossRef]
- Ray, N.; Gupta, V.; Sarma, L.; Kush, P.; Nag, J.; Sapra, S. Tuning the Electronic and Magnetic Properties of CuAlO2 Nanocrystals Using Magnetic Dopants. ACS Omega 2018, 3, 509. [Google Scholar] [CrossRef] [Green Version]
- Hidetoshi, K.; Kazunori, S.; Akira, Y.; Katayama-Yoshida, H. First-Principles Materials Design of CuAlO2 Based Dilute Magnetic Semiconducting Oxide. Jpn. J. Appl. Phys. 2005, 44, L1187. [Google Scholar]
- Sun, C.Q. Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2010, 2, 1930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Li, P.G.; Chen, C.P.; Tu, Q.Y.; Tang, W.H. Magnetic properties of Mn-doped transparent CuAlO2 semiconductor. J. Alloys Compd. 2005, 396, 40. [Google Scholar]
- Lalic, M.V.; Mestnik-Filho, J.; Carbonari, A.W.; Saxena, R.N.; Moralles, M. Influence of Cd impurity on the electronic properties of CuAlO2 delafossite: First-principles calculations. J. Phys. Condens. Matter 2002, 14, 5517. [Google Scholar] [CrossRef]
- Jiang, H.F.; Zhu, X.B.; Lei, H.C.; Li, G.; Yang, Z.R.; Song, W.H.; Dai, J.M.; Sun, Y.P.; Fu, Y.K. Effect of Cr doping on the optical-electrical property of CuAlO2 thin films derived by chemical solution deposition. Thin Solid Films 2011, 519, 2559. [Google Scholar]
- Liu, Y.; Huang, Y.; Seo, H.J.; Wu, Y. Blueshift in near-band-edge emission in Y3+-doped CuAlO2 nanofibers. Opt. Mater. Express 2014, 4, 2602. [Google Scholar] [CrossRef]
- Liu, R.; Li, Y.; Yao, B.; Ding, Z.; Jiang, Y.; Meng, L.; Deng, R.; Zhang, L.; Zhang, Z.; Zhao, H.; et al. Shallow Acceptor State in Mg-Doped CuAlO2 and Its Effect on Electrical and Optical Properties: An Experimental and First-Principles Study. ACS Appl. Mater. Interfaces 2017, 9, 12608. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Bai, P.; Hou, X.; Liu, F.; Yan, H. Optical, electrical, and structural properties of Fe-doped CuAlO2 thin films. Funct. Mater. Lett. 2019, 12, 1850106. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Y.; Mellott, N.P.; Wang, L.; Ye, H.; Wu, Y. Luminescence of delafossitetype CuAlO2 fibers with Eu substitution for Al cations. Sci. Technol. Adv. Mater. 2016, 17, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.K.; Dussan, S.; Sharma, G.L.; Katiyar, R.S. Raman scattering measurements of phonon anharmonicity in thin films. J. Appl. Phys. 2008, 104, 113503. [Google Scholar] [CrossRef]
- Yassin, O.A.; Alamri, S.N.; Joraid, A.A. Effect of particle size and laser power on the Raman spectra of CuAlO2 delafossite nanoparticles. J. Phys. D Appl. Phys. 2013, 46, 235301. [Google Scholar] [CrossRef]
- Benreguia, N.; Barnabe, A.; Trari, M. Sol–gel synthesis and characterization of the delafossite CuAlO2. J. Sol-Gel Sci. Technol. 2015, 75, 670. [Google Scholar] [CrossRef] [Green Version]
- Byrne, D.; Cowley, A.; Bennettc, N.; McGlynn, E. The luminescent properties of CuAlO2. J. Mater. Chem. C 2014, 2, 7859. [Google Scholar] [CrossRef] [Green Version]
- Pellicer-Porres, J.; Martinez-Garcia, D.; Segura, A.; Rodriguez-Hernandez, P.; Munoz, A.; Chervin, J.C.; Garro, N.; Kim, D. Pressure and temperature dependence of the lattice dynamics of CuAlO2 investigated by Raman scattering experiments and abinitio calculations. Phys. Rev. B 2006, 74, 184301. [Google Scholar] [CrossRef]
- Wesselinowa, J.M.; Apostolov, A.T. Self-consistent theory of spin–phonon interactions in ferromagnetic semiconductors. J. Phys. Condens. Matter 1993, 5, 3555. [Google Scholar] [CrossRef]
- Agrawal, S.; Parveen, A.; Azam, A. Influence of Mg on structural, electrical and magnetic properties of CuAlO2 nanoparticles. Mater. Lett. 2016, 168, 125. [Google Scholar] [CrossRef]
- Luo, J.; Lin, Y.-J. Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities. Appl. Phys. A 2016, 122, 163. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, M.; Lan, W.; Dong, P.; Yan, H. Structural and physical properties of Mg-doped CuAlO2 thin films. Vacuum 2008, 82, 1321. [Google Scholar] [CrossRef]
- Ghosh, C.K.; Popuri, S.R.; Sarkar, D.; Chattopadhyay, K.K. Sb-doped CuAlO2: Widening of band gap and nonlinear J-E characteristics. J. Mater. Sci. 2011, 46, 1613. [Google Scholar] [CrossRef]
- Zou, Y.S.; Wang, H.P.; Zhang, S.L.; Lou, D.; Dong, Y.H.; Song, X.F.; Zeng, H.B. Structural, electrical and optical properties of Mg-doped CuAlO2 films by pulsed laser deposition. RSC Adv. 2014, 4, 41294. [Google Scholar] [CrossRef]
- Daichakomphu, N.; Klongratog, B.; Rodpun, P.; Pluengphon, P.; Harnwunggmoung, A.; Poo-arporn, Y.; Sakulkalavek, A.; Sakdanuphab, R. Improving the photo-thermoelectric performance of CuAlO2via doping with Bi. Mater. Res. Bull. 2021, 144, 111479. [Google Scholar] [CrossRef]
- Wesselinowa, J.M.; Apostolov, A.T. Anharmonic effects in ferromagnetic semiconductors. J. Phys. Condens. Matter 1996, 8, 473. [Google Scholar] [CrossRef]
- Li, J.; Sleight, A.; Jones, C.Y.; Toby, B. Trends in negative thermal expansion behavior for AMO2 (A=Cu or Ag; M=Al, Sc, In, or La) compounds with the delafossite structure. J. Solid State Chem. 2005, 178, 285. [Google Scholar] [CrossRef]
- Miller, W.; Smith, C.W.; Mackenzie, D.S.; Evans, K.E. Negative Thermal Expansion: A Review. J. Mater. Sci. 2009, 44, 5441. [Google Scholar] [CrossRef]
- Salke, N.P.; Rao, R.; Achary, S.N.; Tyagi, A.K. Raman spectroscopic investigations on delafossite CuLaO2 at high pressures. J. Phys. Conf. Ser. 2012, 377, 012020. [Google Scholar] [CrossRef]
- Aziziha, M.; Akbarshahi, S.; Ghosh, S.; Pramanik, P.; Lewis, J.P.; Romero, A.H.; Thota, S.; Seehra, M.S.; Johnson, M.B. Phonon Dynamics in Anisotropic Dilute CuAl1−xFexO2 Delafossite Alloys by a Weighted Dynamical Matrix Approach. J. Phys. Chem. C 2019, 123, 30604. [Google Scholar] [CrossRef]
- Nakanishi, A.; Katayama-Yoshida, H. Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2. Solid State Commun. 2012, 152, 2078. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolova, I.N.; Apostolov, A.T.; Wesselinowa, J.M. Size and Ion-Doping Effects on Magnetic, Optical, and Phonon Properties of CuAlO2 Nanoparticles. Magnetochemistry 2022, 8, 169. https://doi.org/10.3390/magnetochemistry8120169
Apostolova IN, Apostolov AT, Wesselinowa JM. Size and Ion-Doping Effects on Magnetic, Optical, and Phonon Properties of CuAlO2 Nanoparticles. Magnetochemistry. 2022; 8(12):169. https://doi.org/10.3390/magnetochemistry8120169
Chicago/Turabian StyleApostolova, Iliana Naumova, Angel Todorov Apostolov, and Julia Mihailova Wesselinowa. 2022. "Size and Ion-Doping Effects on Magnetic, Optical, and Phonon Properties of CuAlO2 Nanoparticles" Magnetochemistry 8, no. 12: 169. https://doi.org/10.3390/magnetochemistry8120169
APA StyleApostolova, I. N., Apostolov, A. T., & Wesselinowa, J. M. (2022). Size and Ion-Doping Effects on Magnetic, Optical, and Phonon Properties of CuAlO2 Nanoparticles. Magnetochemistry, 8(12), 169. https://doi.org/10.3390/magnetochemistry8120169