Mechanical Detection of Magnetic Phase Transition in Suspended CrOCl Heterostructures
Abstract
:1. Introduction
2. Materials and Fabrications
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Tang, J.; Xia, X.; He, C.; Zhang, J.; Liu, Y.; Wan, C.; Fang, C.; Guo, C.; Yang, W.; et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhang, T.; Ding, M.; Dong, B.; Li, Y.; Chen, M.; Li, X.; Huang, J.; Wang, H.; Zhao, X.; et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, B.; Sun, X.; Wang, H.; Yang, T.; Yu, G.; Han, Z.V. Perspectives on exfoliated two-dimensional spintronics. J. Semicond. 2019, 40, 081508. [Google Scholar] [CrossRef]
- Niu, J.; Yan, B.; Ji, Q.; Liu, Z.; Li, M.; Gao, P.; Zhang, Y.; Yu, D.; Wu, X. Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys. Rev. B 2017, 96, 075402. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, 706. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Sun, Q.; Anderson, E.; Wang, C.; Qian, J.; Taniguchi, T.; Watanabe, K.; McGuire, M.A.; Stöhr, R.; Xiao, D.; et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 2021, 374, 1140–1144. [Google Scholar] [CrossRef]
- Telford, E.J.; Dismukes, A.H.; Lee, K.; Cheng, M.; Wieteska, A.; Bartholomew, A.K.; Chen, Y.; Xu, X.; Pasupathy, A.N.; Zhu, X.; et al. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van Der Waals Semiconductor CrSBr. Adv. Mater. 2020, 32, 2003240. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.; Johansson, N.T.; Quezel, S. Preparation and Magnetic Properties of CrOCl. Acta Chem. Scand. A 1975, 28, 1171–1174. [Google Scholar] [CrossRef] [Green Version]
- Angelkort, J.; Wölfel, A.; Schönleber, A.; van Smaalen, S. Observation of strong magnetoelastic coupling in a first-order phase transition of CrOCl. Phys. Rev. B 2019, 80, 144416. [Google Scholar] [CrossRef] [Green Version]
- Miao, N.; Xu, B.; Zhu, L.; Zhou, J.; Sun, Z. 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. J. Am. Chem. Soc. 2018, 140, 2417–2420. [Google Scholar] [CrossRef]
- Bykov, M.; Bykova, E.; Dubrovinsky, L.; Hanfland, M.; Liermann, H.; van Smaalen, S. Pressure-induced normal-incommensurate and incommensurate- commensurate phase transitions in CrOCl. Sci. Rep. 2015, 5, 9647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Guo, X.; Schwartz, J.; Xie, H.; Dhale, N.U.; Sung, S.H.; Kondusamy, A.L.N.; Wang, X.; Zhao, H.; Berman, D.; et al. A three-stage magnetic phase transition revealed in ultrahigh-quality van der Waals bulk magnet CrSBr. ACS Nano 2022, 16, 15917–15926. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Li, H.; Zhong, F.; Shi, J.; Wu, M.; Sun, Z.; Shen, W.; Wei, B.; Hu, W.; et al. Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl. ACS Nano 2019, 13, 11353–11362. [Google Scholar] [CrossRef]
- Gu, P.; Sun, Y.; Wang, C.; Peng, Y.; Zhu, Y.; Cheng, X.; Yuan, K.; Lyu, C.; Liu, X.; Tan, Q.; et al. Magnetic Phase Transitions and Magnetoelastic Coupling in a Two-Dimensional Stripy Antiferromagnet. Nano Lett. 2022, 22, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Qing, X.; Li, H.; Zhong, C.; Zhou, P.; Dong, Z.; Liu, J. Magnetism and spin exchange coupling in strained monolayer CrOCl. Phys. Chem. Chem. Phys. 2020, 22, 17255–17262. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wei, Y.; Zhang, X.; Wei, Z.; Luo, W.; Guo, X.; Liu, J.; Peng, G.; Cai, W.; Huang, H.; et al. Symmetry Engineering Induced In-Plane Polarization in MoS2 through Van der Waals Interlayer Coupling. Adv. Funct. Mater. 2022, 32, 2202658. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Yang, K.; Gu, P.; Dong, B.; Jiang, Y.; Watanabe, K.; Taniguchi, T.; Kang, J.; Lou, W.; et al. Flavoured quantum Hall phase in graphene/CrOCl heterostructures. Nat. Nanotechnol. 2022. [Google Scholar] [CrossRef]
- Yang, K.; Gao, X.; Wang, Y.; Zhang, T.; Gu, P.; Luo, Z.; Zheng, R.; Cao, S.; Wang, H.; Sun, X.; et al. Realization of graphene logics in an exciton-enhanced insulating phase. arXiv 2021. [Google Scholar] [CrossRef]
- Jiang, S.; Xie, H.; Shan, J.; Mak, K.F. Exchange magnetostriction in two-dimensional antiferromagnets. Nat. Mater. 2022, 19, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, H.; Xia, X.; Yan, N.; Sha, X.; Huang, J.; Watanabe, K.; Taniguchi, T.; Zhu, M.; Wang, L.; et al. A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler. Light Sci. Appl. 2022, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Šiškins, M.; Lee, M.; Mañas-Valero, S.; Coronado, E.; Blanter, Y.M.; van der Zant, H.S.J.; Steeneken, P.G. Magnetic and electronic phase transitions probed by nanomechanical resonators. Nat. Commun. 2020, 11, 2698. [Google Scholar] [CrossRef] [PubMed]
- Šiškins, M.; Sokolovskaya, E.; Lee, M.; Mañas-Valero, S.; Davidovikj, D.; van der Zant, H.S.J.; Steeneken, P.G. Tunable strong coupling of mechanical resonance between spatially separated FePS3 nanodrums. Nano Lett. 2022, 22, 36–42. [Google Scholar] [CrossRef]
- Lee, M.; Šiškins, M.; Mañas-Valero, S.; Coronado, E.; Steeneken, P.G.; van der Zant, H.S.J. Study of charge density waves in suspended 2H-TaS2 and 2H-TaSe2 by nanomechanical resonance. Appl. Phys. Lett. 2021, 118, 193105. [Google Scholar] [CrossRef]
- Šiškins, M.; Kurdi, S.; Lee, M.; Slotboom, B.J.M.; Xing, W.; Mañas-Valero, S.; Coronado, E.; Jia, S.; Han, W.; van der Sar, T.; et al. Nanomechanical probing and strain tuning of the Curie temperature in suspended Cr2Ge2Te6 heterostructures. npj 2D Mater. Appl. 2022, 6, 41. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H.S.J.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Soler-Crespo, R.A.; Mao, L.; Wen, J.; Nguyen, H.T.; Zhang, X.; Wei, X.; Huang, J.; Nguyen, S.T.; Espinosa, H.D. Atomically thin polymer layer enhances toughness of graphene oxide monolayers. Matter 2019, 1, 369–388. [Google Scholar] [CrossRef]
- Wei, X.; Mao, L.; Soler-Crespo, R.A.; Paci, J.T.; Huang, J.; Nguyen, S.T.; Espinosa, H.D. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism. Nat. Commun. 2015, 6, 8029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazonova, V.S. A Tunable Carbon Nanotube Resonator. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2006. [Google Scholar]
- Chen, C. Graphene NanoElectroMechanical Resonators and Oscillators. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2013. [Google Scholar]
- Jiang, J.; Wang, J.; Li, B. Young’s modulus of graphene: A molecular dynamics study. Phys. Rev. B 2009, 80, 113405. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Sha, X.; Yan, N.; Zhang, T. Mechanical Detection of Magnetic Phase Transition in Suspended CrOCl Heterostructures. Magnetochemistry 2022, 8, 170. https://doi.org/10.3390/magnetochemistry8120170
Li X, Sha X, Yan N, Zhang T. Mechanical Detection of Magnetic Phase Transition in Suspended CrOCl Heterostructures. Magnetochemistry. 2022; 8(12):170. https://doi.org/10.3390/magnetochemistry8120170
Chicago/Turabian StyleLi, Xiaoxi, Xuanzhe Sha, Ning Yan, and Tongyao Zhang. 2022. "Mechanical Detection of Magnetic Phase Transition in Suspended CrOCl Heterostructures" Magnetochemistry 8, no. 12: 170. https://doi.org/10.3390/magnetochemistry8120170
APA StyleLi, X., Sha, X., Yan, N., & Zhang, T. (2022). Mechanical Detection of Magnetic Phase Transition in Suspended CrOCl Heterostructures. Magnetochemistry, 8(12), 170. https://doi.org/10.3390/magnetochemistry8120170