Corn Steep Liquor Application Improves Pepper (Capsicum annum L.) Tolerance to Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design
2.3. Aerial Biomass and Leaf Area
2.4. Gas Exchange Measurements
2.5. Fluorescence of Chlorophyll a (Chl a)
2.6. Oxidative Stress
2.7. Antioxidant Activity
2.7.1. Antioxidant Compounds (Total Phenols, Ascorbate, Glutathione)
2.7.2. Antioxidant Tests FRAP and TEAC
2.8. Proline
2.9. Na+, Cl−, and K+ Concentrations
2.10. Statistical Analysis
3. Results
3.1. Aerial Biomass and Leaf Area in Pepper Plants (Capsicum annuum, cv. Alycum)
3.2. Gas Exchange Parameters in Pepper Plants (Capsicum annuum, cv. Alycum)
3.3. Chl a Fluorescence in Pepper Plants (Capsicum annuum, cv. Alycum)
3.4. Oxidative Stress
3.5. Antioxidant Compounds in Pepper Plants (Capsicum annuum, cv. Alycum)
3.6. Proline Concentration in Pepper Plants (Capsicum annuum, cv. Alycum)
3.7. Specific Toxicity in Pepper Plants (Capsicum annuum, cv. Alycum)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velmurugan, A.; Swarnam, P.; Subramani, T.; Meena, B.; Kaledhonkar, M. Water Demand and Salinity. In Desalination-Challenges and Opportunities, 1st ed.; Farahani, M.H.D.A., Vatanpour, V., Taheri, A.H., Eds.; IntechOpen: Rijeka, Croatia, 2020; Chapter 3; pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alfosea-Simón, M.; Zavala-Gonzalez, E.A.; Cámara-Zapata, J.M.; Martinez-Nicolás, J.J.; Simón, I.; Simón-Grao, S.; Garcia-Sánchez, F. Effect of foliar application of amino acids on the salinity tolerance of tomato plants cultivated under hydroponic system. Sci. Hortic. 2020, 272, 109509. [Google Scholar] [CrossRef]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Sarwar, M.I. Abbas Shoukat, Maqsood Ul Hussan. Impact of salinity on plant growth: A review. Nat. Sci. 2019, 1, 34–40. [Google Scholar] [CrossRef]
- Syvertsen, J.; Garcia-Sanchez, F. Multiple abiotic stresses occurring with salinity stress in citrus. Environ. Exp. Bot. 2014, 103, 128–137. [Google Scholar] [CrossRef]
- Negrao, S.; Schmöckel, S.; Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2016, 119, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- He, M.; He, C.Q.; Ding, N.Z. Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Front. Plant Sci. 2018, 9, 1771. [Google Scholar] [CrossRef] [Green Version]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef]
- Navarro-León, E.; López-Moreno, F.; Torre-González, A.; Ruiz, J.; Esposito, S.; Blasco Leon, M.B. Study of salt-stress tolerance and defensive mechanisms in Brassica rapa CAX1a TILLING mutants. Environ. Exp. Bot. 2020, 175, 104061. [Google Scholar] [CrossRef]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Aazami, M.A.; Maleki, M.; Rasouli, F.; Gohari, G. Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv. ‘Sultana’) under salinity stress. Sci. Rep. 2023, 13, 883. [Google Scholar] [CrossRef]
- Pintó-Marijuan, M.; Turon-Orra, M.; González-Betancort, A.; Muñoz, P.; Munné-Bosch, S. Improved production and quality of peppers irrigated with regenerated water by the application of 24-epibrassinolide. Plant Sci. 2023, 334, 111764. [Google Scholar] [CrossRef]
- Zamljem, T.; Medic, A.; Veberic, R.; Hudina, M.; Grohar, M.C.; Slatnar, A. Influence of hydrolyzes animal protein-based biostimulant on primary, soluble and volatile secondary metabolism of Genovese and Greek-type basil grown under salt stress. Sci. Hortic. 2023, 319, 112178. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Cristofano, F.; Colla, G.; Pii, Y.; Lucini, L.; Rouphael, Y.A. Graminaceae-derived protein hydrolysate and its fractions provide differential growth and modulate qualitative traits of lettuce grown non-saline and mild salinity conditions. Sci. Hortic. 2023, 319, 112130. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Cozzolino, E.; Ottaiano, L.; Petropoulos, S.A.; Nocerino, S.; Pelosi, M.E.; Rouphael, Y.; Mori, M.; Di Mola, I. Effect of Biostimulant Application on Plant Growth, Chlorophylls and Hydrophilic Antioxidant Activity of Spinach (Spinacia oleracea L.) Grown under Saline Stress. Horticulturae 2022, 8, 971. [Google Scholar] [CrossRef]
- Sariñana-Aldaco, O.; Benavides-Mendoza, A.; Robledo-Olivo, A.; González-Morales, S. The Biostimulant Effect of Hydroalcoholic Extracts of Sargassum spp. in Tomato Seedlings under Salt Stress. Plants 2022, 11, 3180. [Google Scholar] [CrossRef] [PubMed]
- Ennoury, A.; BenMrid, R.; Nhhala, N.; Roussi, Z.; Latique, S.; Zouaoui, Z.; Nhiri, M. River’s Ulva intestinalis extract protects common bean plants (Phaseolus vulgaris L.) against salt stress. S. Afr. J. Bot. 2022, 150, 334–341. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, J.; Ma, Y.; Cai, L.; Zheng, L.; Gong, W.; Liu, Q.A. Corn Steep Liquor: Green Biological Resources for Bioindustry. Appl. Biochem. Biotechnol. 2022, 194, 3280–3295. [Google Scholar] [CrossRef] [PubMed]
- Salam, L.B.; Ishaq, A. Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech 2019, 9, 46. [Google Scholar] [CrossRef]
- Obayori, O.; Adebusoye, S.; Ilori, M.; Oyetibo, G.; Omotayo, A.; Amund, O. Effects of Corn Steep Liquor on Growth Rate and Pyrene Degradation by Pseudomonas strains. Curr. Microbiol. 2009, 60, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Obayori, O.; Salam, L.; Anifowoshe, W.; Odunewu, Z.; Amosu, O.; Ofulue, B. Enhanced Degradation of Petroleum Hydrocarbons in Corn-Steep-Liquor-Treated Soil Microcosm. Soil Sediment Contam. 2015, 24, 731–743. [Google Scholar] [CrossRef]
- Chinta, Y.D.; Kano, K.; Widiastuti, A.; Fukahori, M.; Kawasaki, S.; Eguchi, Y.; Misu, H.; Odani, H.; Zhou, S.; Narisawa, K.; et al. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f.sp. lactucae) in hydroponic cultures. J. Sci. Food Agric. 2014, 94, 2317–2323. [Google Scholar] [CrossRef]
- Zhu, M.M.; Liu, E.Q.; Bao, Y.; Duan, S.L.; She, J.; Liu, H.; Wu, T.T.; Cao, X.Q.; Zhang, J.; Li, B. Low concentration of corn steep liquor promotes seed germination, plant growth, biomass production and flowering in soybean. Plant Growth Regul. 2019, 87, 29–37. [Google Scholar] [CrossRef]
- Navarro-Morillo, I.; Navarro-Perez, V.; Perez-Millan, R.; Navarro-León, E.; Blasco, B.; Cámara-Zapata, J.M.; Garcia-Sanchez, F. Effects of Root and Foliar Application of Corn Steep Liquor on Pepper Plants: A Physiological, Nutritional, and Morphological Study. Horticulturae 2023, 9, 221. [Google Scholar] [CrossRef]
- Strasser, R.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation, 1st ed.; Yunus, M., Pathre, U., Mohanty, U., Eds.; Taylor and Francis: London, UK, 2000; Chapter 25; pp. 443–480. [Google Scholar]
- Fu, J.; Huang, B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 2001, 45, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Choudhuri, M. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 2006, 58, 166–170. [Google Scholar] [CrossRef]
- Barrameda-Medina, Y.; Montesinos-Pereira, D.; Romero, L.; Blasco Leon, M.B.; Ruiz, J. Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance. Plant Sci. 2014, 227, 110–121. [Google Scholar] [CrossRef]
- Rivero, R.M.; Ruiz, J.M.; Garcıa, P.C.; López-Lefebre, L.R.; Sánchez, E.; Romero, L. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001, 160, 315–321. [Google Scholar] [CrossRef]
- Law, M.Y.; Charles, S.A.; Halliwell, B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Bichem. J. 1983, 210, 899–903. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Ann. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Irigoyen, J.; Einerich, D.; Sanchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 2006, 84, 55–60. [Google Scholar] [CrossRef]
- Wolf, B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Gedeon, S.; Ioannou, A.; Balestrini, R.; Fotopoulos, V.; Antoniou, C. Application of Biostimulants in Tomato Plants (Solanumlycopersicum) to Enhance Plant Growth and Salt Stress Tolerance. Plants 2022, 11, 3082. [Google Scholar] [CrossRef]
- Oosten, M.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Rajabi Hamedani, S.; Rouphael, Y.; Colla, G.; Colantoni, A.; Cardarelli, M. Biostimulants as a Tool for Improving Environmental. Sustainability of Greenhouse Vegetable Crops. Sustainability 2020, 12, 5101. [Google Scholar] [CrossRef]
- Zou, P.; Yang, X.; Yuan, Y.; Jing, C.; Cao, J.; Wang, Y.; Zhang, L.; Zhang, C.; Li, Y. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. Int. J. Biol. Macromol. 2021, 180, 547–558. [Google Scholar] [CrossRef]
- Chanda, M.; Rachidi, F.; Hachimi Alaoui, M.; Mernissi, N.; Aasfar, A.; Mustapha, B.; Danouche, M.; Sbabou, L.; El Arroussi, H. Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. J. Appl. Phycol. 2021, 33, 3779–3795. [Google Scholar] [CrossRef]
Treatments | Aerial Fresh Biomass (g plant−1) | Aerial Dry Biomass (g plant−1) | Leaf Area (cm2) |
---|---|---|---|
T1 | 55 ± 7 a | 5.2 ± 0.7 a | 1200 ± 200 a |
T2 | 19 ± 2 c | 2.5 ± 0.2 c | 510 ± 50 c |
T3 | 27 ± 2 b | 3.1 ± 0.3 b | 780 ± 60 b |
T4 | 30 ± 2 b | 3.2 ± 0.2 b | 830 ± 40 b |
p-value | *** | *** | *** |
Treatments | A (μmol m−2 s−1) | E (mmol m−2 s−1) | r (s cm−1) | WUE |
---|---|---|---|---|
T1 | 6.1 ± 0.7 a | 0.67 ± 0.05 a | 6.6 ± 0.4 c | 9.0 ± 0.5 a |
T2 | 1.3 ± 0.3 d | 0.34 ± 0.04 c | 9.3 ± 0.3 a | 4.0 ± 0.6 d |
T3 | 2.2 ± 0.2 c | 0.40 ± 0.04 bc | 8.8 ± 0.4 ab | 5.3 ± 0.2 c |
T4 | 3.4 ± 0.2 b | 0.44 ± 0.06 b | 8.4 ± 0.5 b | 7.7 ± 1.4 b |
p-value | *** | *** | *** | *** |
Treatments | Fv/Fm | RC/ABS | PIABS | 1-Vj |
---|---|---|---|---|
T1 | 0.849 ± 0.010 a | 0.94 ± 0.10 a | 9.9 ± 1.1 a | 0.69 ± 0.01 a |
T2 | 0.793 ± 0.013 c | 0.71 ± 0.10 b | 7.2 ± 1.2 b | 0.70 ± 0.01 a |
T3 | 0.830 ± 0.006 b | 0.86 ± 0.04 a | 9.2 ± 0.5 a | 0.70 ± 0.01 a |
T4 | 0.829 ± 0.006 b | 0.87 ± 0.04 a | 9.9 ± 1.2 a | 0.72 ± 0.02 a |
p-value | *** | * | * | NS |
Treatments | MDA (µM g−1 FW) | O2 (µg g−1 FW) | H2O2 (µg g−1 FW) |
---|---|---|---|
T1 | 3.4 ± 0.2 c | 4 ± 1 c | 32 ± 3 c |
T2 | 6.2 ± 0.4 a | 14 ± 1 a | 45 ± 4 a |
T3 | 4.2 ± 0.1 b | 8 ± 1 b | 39 ± 4 b |
T4 | 4.0 ± 0.2 b | 8 ± 1 b | 39 ± 3 b |
p-value | *** | *** | *** |
Treatments | Phenols (mg g−1 FW) | Ascorbate (mg g−1 FW) | Glutathione (mg g−1 FW) |
---|---|---|---|
T1 | 2.1 ± 0.1 c | 0.04 ± 0.01 c | 0.08 ± 0.01 c |
T2 | 5.9 ± 1.1 b | 0.11 ± 0.01 b | 0.10 ± 0.01 b |
T3 | 7.0 ± 1.1 a | 0.14 ± 0.01 a | 0.14 ± 0.02 a |
T4 | 4.8 ± 1.1 b | 0.09 ± 0.01 b | 0.10 ± 0.01 b |
p-value | *** | *** | *** |
Treatments | Na+ (mg g−1 DW) | Cl− (mg g−1 DW) | K+ (mg g−1 DW) |
---|---|---|---|
T1 | 2.4 ± 0.5 c | 2.3 ± 0.5 c | 64.3 ± 2.4 a |
T2 | 35.9 ± 3.2 a | 36.1 ± 4.6 a | 44.8 ± 1.2 c |
T3 | 15.6 ± 1.9 b | 16.9 ± 2.0 b | 44.8 ± 0.6 c |
T4 | 34.7 ± 4.6 a | 37.0 ± 3.3 a | 55.3 ± 3.1 b |
p-value | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Morillo, I.; Pardo-Pina, S.; Garcia-Sánchez, F.; Ruiz, J.M.; Laserna-Arcas, S.; Plasencia, F.; Cámara-Zapata, J.M. Corn Steep Liquor Application Improves Pepper (Capsicum annum L.) Tolerance to Salinity. Horticulturae 2023, 9, 785. https://doi.org/10.3390/horticulturae9070785
Navarro-Morillo I, Pardo-Pina S, Garcia-Sánchez F, Ruiz JM, Laserna-Arcas S, Plasencia F, Cámara-Zapata JM. Corn Steep Liquor Application Improves Pepper (Capsicum annum L.) Tolerance to Salinity. Horticulturae. 2023; 9(7):785. https://doi.org/10.3390/horticulturae9070785
Chicago/Turabian StyleNavarro-Morillo, Iván, Sofía Pardo-Pina, Francisco Garcia-Sánchez, Juan Manuel Ruiz, Santiago Laserna-Arcas, Felix Plasencia, and José M. Cámara-Zapata. 2023. "Corn Steep Liquor Application Improves Pepper (Capsicum annum L.) Tolerance to Salinity" Horticulturae 9, no. 7: 785. https://doi.org/10.3390/horticulturae9070785
APA StyleNavarro-Morillo, I., Pardo-Pina, S., Garcia-Sánchez, F., Ruiz, J. M., Laserna-Arcas, S., Plasencia, F., & Cámara-Zapata, J. M. (2023). Corn Steep Liquor Application Improves Pepper (Capsicum annum L.) Tolerance to Salinity. Horticulturae, 9(7), 785. https://doi.org/10.3390/horticulturae9070785