Biostimulants and Nano-Potassium on the Yield and Fruit Quality of Date Palm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Applied Treatments, Location, and Experimental Design
2.2. Palm Yield (kg/Tree)
2.3. Fruit Quality
2.3.1. Fruit Physical Characteristics
2.3.2. Fruit Chemical Characteristics
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chao, C.T.; Krueger, R.R. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef]
- Al-Harrasi, I.; Jana, G.A.; Patankar, H.V.; Al-Yahyai, R.; Rajappa, S.; Kumar, P.P.; Yaish, M.W. A novel tonoplast Na+/H+ antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis. Plant Cell Rep. 2020, 39, 1079–1093. [Google Scholar] [CrossRef]
- Hazzouri, K.M.; Flowers, J.M.; Visser, H.J.; Khierallah, H.S.; Rosas, U.; Pham, G.M.; Meyer, R.S.; Johansen, C.K.; Fresquez, Z.A.; Masmoudi, K. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat. Commun. 2015, 6, 8824. [Google Scholar] [CrossRef]
- Siddiq, M.; Greiby, I. Overview of date fruit production, postharvest handling, processing, and nutrition. In Dates: Postharvest Science, Processing Technology and Health Benefits; Wiley: Hoboken, NJ, USA, 2013; pp. 1–28. [Google Scholar] [CrossRef]
- Al-Shahib, W.; Marshall, R.J. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2003, 54, 247–259. [Google Scholar] [CrossRef]
- Aljaloud, S.; Colleran, H.L.; Ibrahim, S.A. Nutritional value of date fruits and potential use in nutritional bars for athletes. Food Nutr. Sci. 2020, 11, 463. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I. Effect of foliar application of growth biostimulant on quality and nutritive value of meadow sward. Ecol. Chem. Eng. A 2013, 20, 1205–1211. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Taha, R.; Alharby, H.; Bamagoos, A.; Medani, R.; Rady, M. Elevating tolerance of drought stress in Ocimum basilicum using pollen grains extract; a natural biostimulant by regulation of plant performance and antioxidant defense system. S. Afr. J. Bot. 2020, 128, 42–53. [Google Scholar] [CrossRef]
- Wanas, A. Response of faba bean (Vicia faba, L.) plants to seed soaking application with natural yeast and carrot extracts. Ann. Agric. Sci. 2002, 40, 83–102. [Google Scholar] [CrossRef]
- El-Serafy, R.S. Growth and productivity of roselle (Hibiscus sabdariffa L.) as affected by yeast and humic acid. Sci. J. Flowers Ornam. Plants 2018, 5, 195–203. [Google Scholar] [CrossRef]
- Fu, S.-F.; Sun, P.-F.; Lu, H.-Y.; Wei, J.-Y.; Xiao, H.-S.; Fang, W.-T.; Cheng, B.-Y.; Chou, J.-Y. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol. 2016, 120, 433–448. [Google Scholar] [CrossRef]
- Hassan, N.M.; Marzouk, N.M.; Fawzy, Z.F.; Saleh, S.A. Effect of bio-stimulants foliar applications on growth, yield, and product quality of two Cassava cultivars. Bull. Nat. Res. Cent. 2020, 44, 1–9. [Google Scholar] [CrossRef]
- Abd-Alrahman, H.A.; Aboud, F.S. Response of sweet pepper plants to foliar application of compost tea and dry yeast under soilless conditions. Bull. Nat. Res. Cent. 2021, 45, 1–9. [Google Scholar] [CrossRef]
- Dawood, M.G.; Sadak, M.S.; Abdallah, M.M.S.; Bakry, B.A.; Darwish, O.M. Influence of biofertilizers on growth and some biochemical aspects of flax cultivars grown under sandy soil conditions. Bull. Nat. Res. Cent. 2019, 43, 81. [Google Scholar] [CrossRef]
- Lonhienne, T.; Mason, M.G.; Ragan, M.A.; Hugenholtz, P.; Schmidt, S.; Paungfoo-Lonhienne, C. Yeast as a biofertilizer alters plant growth and morphology. Crop Sci. 2014, 54, 785–790. [Google Scholar] [CrossRef]
- Kalayu, G. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. Int. J. Agron. 2019, 2019, 4917256. [Google Scholar] [CrossRef]
- Agamy, R.; Hashem, M.; Alamri, S. Effect of soil amendment with yeasts as bio-fertilizers on the growth and productivity of sugar beet. Afr. J. Agric. Res. 2013, 8, 46–56. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Bahram Parvar, M. Some physical and mechanical properties of kiwifruit. Int. J. Food Eng. 2007, 3, 1–14. [Google Scholar] [CrossRef]
- Olk, D.C.; Dinnes, D.L.; Rene Scoresby, J.; Callaway, C.R.; Darlington, J.W. Humic products in agriculture: Potential benefits and research challenges—A review. J. Soils Sediments 2018, 18, 2881–2891. [Google Scholar] [CrossRef]
- Aydin, A.; Kant, C.; Turan, M. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 2012, 7, 1073–1086. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Eyheraguibel, B.; Silvestre, J.; Morard, P. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour. Technol. 2008, 99, 4206–4212. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.; Zheng, J.; Shen, Z.; Xu, X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2019, 167, 10–19. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; Cong, L.; Wang, X.; Shi, S. Effect of fulvic acid on the phosphorus availability in acid soil. J. Soil Sci. Plant Nutr. 2013, 13, 526–533. [Google Scholar] [CrossRef]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron. 2014, 124, 37–89. [Google Scholar] [CrossRef]
- Khan, S.; Basra, S.; Nawaz, M.; Hussain, I.; Foidl, N. Combined application of moringa leaf extract and chemical growth-promoters enhances the plant growth and productivity of wheat crop (Triticum aestivum L.). S. Afr. J. Bot. 2020, 129, 74–81. [Google Scholar] [CrossRef]
- S. Taha, R.; Seleiman, M.F.; Alhammad, B.A.; Alkahtani, J.; Alwahibi, M.S.; Mahdi, A.H. Activated Yeast extract enhances growth, anatomical structure, and productivity of Lupinus termis L. plants under actual salinity conditions. Agronomy 2020, 11, 74. [Google Scholar] [CrossRef]
- Abdalla, M.M. The potential of Moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. Int. J. Plant Physiol. Biochem. 2013, 5, 42–49. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Ahmed, M.E.; Maswada, H.F.; Xuan, T.D. Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Arch. Agron. Soil Sci. 2017, 63, 687–699. [Google Scholar] [CrossRef]
- Buthelezi, N.M.D.; Ntuli, N.R.; Mugivhisa, L.L.; Gololo, S.S. Moringa oleifera Lam. seed extracts improve the growth, essential minerals, and phytochemical constituents of Lessertia frutescens L. Horticulturae 2023, 9, 886. [Google Scholar] [CrossRef]
- Rady, M.M.; Mohamed, G.F. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. 2015, 193, 105–113. [Google Scholar] [CrossRef]
- Howladar, S.M. A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol. Environ. Saf. 2014, 100, 69–75. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef] [PubMed]
- Mashamaite, C.V.; Ngcobo, B.L.; Manyevere, A.; Bertling, I.; Fawole, O.A. Assessing the usefulness of Moringa oleifera leaf extract as a biostimulant to supplement synthetic fertilizers: A Review. Plants 2022, 11, 2214. [Google Scholar] [CrossRef] [PubMed]
- keya Tudu, C.; Dey, A.; Pandey, D.K.; Panwar, J.S.; Nandy, S. Role of Plant Derived Extracts as Biostimulants in Sustainable Agriculture: A Detailed Study on Research Advances, Bottlenecks and Future Prospects. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–179. [Google Scholar]
- Sharma, H.S.; Fleming, C.; Selby, C.; Rao, J.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Norrie, J.; Keathley, J. Benefits of ascophyllum nodosum marine-plant extract applications to Thompson Seedless grape production. Acta Hortic. 2005, 727, 243–248. [Google Scholar] [CrossRef]
- Gajc-Wolska, J.; Spiżewski, T.; Grabowska, A. The effect of seaweed extracts on the yield and quality parameters of broccoli (Brassica oleracea var. cymosa L.) in open field production. Acta Hortic. 2012, 1009, 83–89. [Google Scholar] [CrossRef]
- Aremu, A.O.; Plačková, L.; Gruz, J.; Bíba, O.; Novák, O.; Stirk, W.A.; Doležal, K.; Van Staden, J. Seaweed-derived biostimulant (Kelpak®) influences endogenous cytokinins and bioactive compounds in hydroponically grown Eucomis autumnalis. J. Plant Growth Regul. 2016, 35, 151–162. [Google Scholar] [CrossRef]
- Patel, S. Seaweed-Derived Sulfated Polysaccharides: Scopes and Challenges in Implication in Health Care. In Bioactive Seaweeds for Food Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 71–93. [Google Scholar]
- Renaut, S.; Masse, J.; Norrie, J.P.; Blal, B.; Hijri, M. A commercial seaweed extract structured microbial communities associated with tomato and pepper roots and significantly increased crop yield. Microb. Biotechnol. 2019, 12, 1346–1358. [Google Scholar] [CrossRef] [PubMed]
- Yalçın, S.; Şükran Okudan, E.; Karakaş, Ö.; Önem, A.N.; Sözgen Başkan, K. Identification and quantification of some phytohormones in seaweeds using UPLC-MS/MS. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 475–484. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Mosa, W.F.; Sas-Paszt, L.; Głuszek, S.; Górnik, K.; Anjum, M.A.; Saleh, A.A.; Abada, H.S.; Awad, R.M. Effect of some biostimulants on the vegetative growth, yield, fruit quality attributes and nutritional status of apple. Horticulturae 2022, 9, 32. [Google Scholar] [CrossRef]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, J.; Sharma, S.; Raliya, R. Nanotechnology: Interdisciplinary science of applications. Afr. J. Biotechnol. 2013, 12, 219–226. [Google Scholar] [CrossRef]
- Sekhon, B.S. Nanotechnology in agri-food production: An overview. Nanotechnol. Sci. Appl. 2014, 7, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Kaphle, A.; Navya, P.; Umapathi, A.; Daima, H.K. Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation. Environ. Chem. Lett. 2018, 16, 43–58. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Ghosh, S.; Bhattachrya, S.K. Improved catalysis of green-synthesized Pd-Ag alloy-nanoparticles for anodic oxidation of methanol in alkali. Electrochim. Acta 2017, 225, 310–321. [Google Scholar] [CrossRef]
- Tanou, G.; Ziogas, V.; Molassiotis, A. Foliar nutrition, biostimulants and prime-like dynamics in fruit tree physiology: New insights on an old topic. Front. Plant Sci. 2017, 8, 75. [Google Scholar] [CrossRef]
- Rameshraddy; Pavithra, G.; Rajashekar Reddy, B.; Salimath, M.; Geetha, K.; Shankar, A. Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian J. Plant Physiol. 2017, 22, 287–294. [Google Scholar] [CrossRef]
- Rengel, Z.; Damon, P.M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 2008, 133, 624–636. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. Improving potassium acquisition and utilisation by crop plants. J. Plant. Nutr. Soil Sci. 2013, 176, 305–316. [Google Scholar] [CrossRef]
- Adams, E.; Shin, R. Transport, signaling, and homeostasis of potassium and sodium in plants. J. Integr. Plant Biol. 2014, 56, 231–249. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists-International. Official Methods of Analysis, 18th ed.; Hortwitz, W., Latimer, G.W., Eds.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Nielsen, S.S. Phenol-Sulfuric Acid Method for Total Carbohydrates. In Food Analysis Laboratory Manual; Nielsen, S.S., Ed.; Food Science Texts Series; Springer: Boston, MA, USA, 2010; pp. 47–53. [Google Scholar]
- Nielsen, S.S. Vitamin C Determination by Indophenol Method. In Food Science Text Series; Springer: Cham, Switzerland, 2017; pp. 143–146. [Google Scholar]
- Ogawa, S.; Yazaki, Y. Tannins from Acacia mearnsii De Wild. Bark: Tannin determination and biological activities. Molecules 2018, 23, 837. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef]
- Aquino, C.F.; Salomão, L.C.C.; Pinheiro-Sant’ana, H.M.; Ribeiro, S.M.R.; Siqueira, D.L.D.; Cecon, P.R. Carotenoids in the pulp and peel of bananas from 15 cultivars in two ripening stages. Rev. Ceres 2018, 65, 217–226. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; Iowa State University Press: Ames, IA, USA, 1990; p. 507. [Google Scholar]
- El-Yazied, A.A.; Mady, M. Effect of boron and yeast extract foliar application on growth, pod setting and both green pod and seed yield of broad bean (Vicia faba L.). J. Am. Sci. 2012, 8, 517–533. [Google Scholar]
- Hamed, S.A.; Zewail, R.; Abdalrahman, H.; Fekry, G.E.-A.; Khaitov, B.; Park, K.W. Promotion of growth, yield and fiber quality attributes of Egyptian cotton by bacillus strains in combination with mineral fertilizers. J. Plant Nutr. 2019, 42, 2337–2348. [Google Scholar] [CrossRef]
- Mukherjee, A.; Verma, J.P.; Gaurav, A.K.; Chouhan, G.K.; Patel, J.S.; Hesham, A.E.-L. Yeast a potential bio-agent: Future for plant growth and postharvest disease management for sustainable agriculture. Appl. Microbiol. Biotechnol. 2020, 104, 1497–1510. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.M.; Tauk-Tornisielo, S.M.; Rampazzo, P.E.; Ceccato-Antonini, S.R. Evaluation of the biological control by the yeast Torulaspora globosa against Colletotrichum sublineolum in sorghum. World J. Microbiol. Biotechnol. 2010, 26, 1491–1502. [Google Scholar] [CrossRef]
- Hashem, M.; Omran, Y.A.; Sallam, N.M. Efficacy of yeasts in the management of root-knot nematode Meloidogyne incognita, in flame seedless grape vines and the consequent effect on the productivity of the vines. Biocontrol Sci. Technol. 2008, 18, 357–375. [Google Scholar] [CrossRef]
- Darwesh, R.S. Improving growth of date palm plantlets grown under salt stress with yeast and amino acids applications. Ann. Agric. Sci. 2013, 58, 247–256. [Google Scholar] [CrossRef]
- Al-Rawi, R.H.H.; Al-Dulaimi, R. Effect of foliar spraying with chelated iron (chi) and dry yeast extract (dye) on vegetative growth and yield properties of ashrassi cultivar olive trees. IOP Conf. Ser. Earth Environ. Sci. 2022, 1060, 012047. [Google Scholar] [CrossRef]
- Ahmed, M.A.-A.; Alebidi, A.; Al-Obeed, R.; Omar, A. Effect of foliar spray of yeast extract and potassium nitrate on yield and fruit quality on Ziziphus jujuba L. trees. Acta Sci. Pol. Hortorum Cultus. 2023, 22, 3–10. [Google Scholar] [CrossRef]
- Harhash, M.; Saad, R.; Mosa, W. Response of “Wonderful” pomegranate cultivar to the foliar application of some biostimulants. Plant Arch. 2021, 21, 474–487. [Google Scholar]
- Mao, J.; Cory, R.M.; McKnight, D.M.; Schmidt-Rohr, K. Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR. Org. Geochem. 2007, 38, 1277–1292. [Google Scholar] [CrossRef]
- Anjum, S.; Wang, L.; Farooq, M.; Xue, L.; Ali, S. Fulvic acid application improves the maize performance under well-watered and drought conditions. J. Agron. Crop Sci. 2011, 197, 409–417. [Google Scholar] [CrossRef]
- Huang, S.; Xiong, B.; Sun, G.; He, S.; Liao, L.; Wang, J.; Wang, B.; Wang, Z. Effects of fulvic acid on photosynthetic characteristics of citrus seedlings under drought stress. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 032007. [Google Scholar] [CrossRef]
- Justi, M.; Morais, E.G.; Silva, C.A. Fulvic acid in foliar spray is more effective than humic acid via soil in improving coffee seedlings growth. Arch. Agron. Soil Sci. 2019, 65, 1969–1983. [Google Scholar] [CrossRef]
- Priya, B.; Mahavishnan, K.; Gurumurthy, D.; Bindumadhava, H.; Ambika, P.; Navin, K. Fulvic acid (fa) for enhanced nutrient uptake and growth: Insights from biochemical and genomic studies. J. Crop Improv. 2014, 28, 740–757. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 2002, 130, 1951–1957. [Google Scholar] [CrossRef]
- Dinçsoy, M.; Sönmez, F. The effect of potassium and humic acid applications on yield and nutrient contents of wheat (Triticum aestivum L. var. Delfii) with same soil properties. J. Plant Nutr. 2019, 42, 2757–2772. [Google Scholar] [CrossRef]
- Yazdani, B.; Nikbakht, A.; Etemadi, N. Physiological effects of different combinations of humic and fulvic acid on Gerbera. Commun. Soil Sci. Plant Anal. 2014, 45, 1357–1368. [Google Scholar] [CrossRef]
- Shah, Z.H.; Rehman, H.M.; Akhtar, T.; Alsamadany, H.; Hamooh, B.T.; Mujtaba, T.; Daur, I.; Al Zahrani, Y.; Alzahrani, H.A.; Ali, S. Humic substances: Determining potential molecular regulatory processes in plants. Front. Plant Sci. 2018, 9, 263. [Google Scholar] [CrossRef]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot-growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Hatami, E.; Shokouhian, A.A.; Ghanbari, A.R.; Naseri, L.A. Alleviating salt stress in almond rootstocks using of humic acid. Sci. Hortic. 2018, 237, 296–302. [Google Scholar] [CrossRef]
- Qin, K.; Leskovar, D.I. Humic substances improve vegetable seedling quality and post-transplant yield performance under stress conditions. Agriculture 2020, 10, 254. [Google Scholar] [CrossRef]
- El-Hassanin, A.S.; Samak, M.R.; Moustafa, A.N.; Shafika, N.K.; Inas, M.I. Effect of foliar application with humic acid substances under nitrogen fertilization levels on quality and yields of sugar beet plant. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 668–680. [Google Scholar] [CrossRef]
- Khan, O.; Sofi, J.; Kirmani, N.; Hassan, G.; Bhat, S.; Chesti, M.; Ahmad, S. Effect of N, P and K Nano-fertilizers in comparison to humic and fulvic acid on yield and economics of red delicious (Malus × domestica Borukh.). J. Pharmacogn. Phytochem. 2019, 8, 978–981. [Google Scholar]
- Sardar, H.; Nisar, A.; Anjum, M.A.; Naz, S.; Ejaz, S.; Ali, S.; Javed, M.S.; Ahmad, R. Foliar spray of moringa leaf extract improves growth and concentration of pigment, minerals and stevioside in stevia (Stevia rebaudiana Bertoni). Ind. Crops Prod. 2021, 166, 113485. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Khan, S.; Basra, S.M.A.; Afzal, I.; Wahid, A. Screening of moringa landraces for leaf extract as biostimulant in wheat. Int. J. Agric. Biol. 2017, 19, 999–1006. [Google Scholar] [CrossRef]
- Merwad, A.-R.M. Using Moringa oleifera extract as biostimulant enhancing the growth, yield and nutrients accumulation of pea plants. J. Plant Nutr. 2018, 41, 425–431. [Google Scholar] [CrossRef]
- Makkar, H.; Francis, G.; Becker, K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef]
- Mazrou, R.M. Moringa leaf extract application as a natural biostimulant improves the volatile oil content, radical scavenging activity and total phenolics of coriander. J. Med. Plant Stud. 2019, 7, 45–51. [Google Scholar]
- Nasir, M.; Khan, A.; Basra, S.; Malik, A. Improvement in growth, productivity and quality of ‘Kinnow’mandarin fruit after exogenous application of Moringa olifera leaf extract. S. Afr. J. Bot. 2020, 129, 263–271. [Google Scholar] [CrossRef]
- Yaseen, A.A.; Takacs-Hajos, M. Evaluation of moringa (Moringa oleifera Lam.) leaf extract on bioactive compounds of lettuce (Lactuca sativa L.) grown under glasshouse environment. J. King Saud. Univ. Sci. 2022, 34, 101916. [Google Scholar] [CrossRef]
- Nasir, M.; Khan, A.S.; Basra, S.A.; Malik, A.U. Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘Kinnow’mandarin. Sci. Hortic. 2016, 210, 227–235. [Google Scholar] [CrossRef]
- Arif, Y.; Bajguz, A.; Hayat, S. Moringa oleifera extract as a natural plant biostimulant. J. Plant Growth Regul. 2023, 42, 1291–1306. [Google Scholar] [CrossRef]
- Bakhsh, A.; Javaad, H.; Hussain, F.; Akhtar, A.; Raza, M. Application of Moringa oleifera leaf extract improves quality and yield of peach (Prunus persica). J. Pure Appl. Agric. 2020, 5, 42–51. [Google Scholar]
- Al-Saif, A.M.; Ali, M.M.; Ben Hifaa, A.B.; Mosa, W.F. Influence of spraying some biostimulants on yield, fruit quality, oil fruit content and nutritional status of olive (Olea europaea L.) under salinity. Horticulturae 2023, 9, 825. [Google Scholar] [CrossRef]
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M. Minerals from macroalgae origin: Health benefits and risks for consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef] [PubMed]
- Hayyawi, N.J.H.; Al-Issawi, M.H.; Alrajhi, A.A.; Al-Shmgani, H.; Rihan, H. Molybdenum Induces Growth, Yield, and Defence System Mechanisms of the Mung Bean (Vigna radiata L.) under Water Stress Conditions. Int. J. Agron. 2020, 2020, 8887329. [Google Scholar] [CrossRef]
- Patel, R.V.; Pandya, K.Y.; Jasrai, R.; Brahmbhatt, N. Significance of green and brown seaweed liquid fertilizer on seed germination of Solanum melongena, Solanum lycopersicum and Capsicum annum by paper towel and pot method. Int. J. Recent Sci. Res. 2018, 9, 24065–24072. [Google Scholar] [CrossRef]
- Almaroai, Y.A.; Eissa, M.A. Role of marine algae extracts in water stress resistance of onion under semiarid conditions. J. Soil Sci. Plant Nutr. 2020, 20, 1092–1101. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Critchley, A.T.; Prithiviraj, B. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun. Soil Sci. Plant Anal. 2013, 44, 1873–1884. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Rengasamy, K.R.; Pendota, S.C.; Gruz, J.; Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, A.A.; Elansary, H.O. Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation. Plant Physiol. Biochem. 2018, 129, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Chouliaras, V.; Tasioula, M.; Chatzissavvidis, C.; Therios, I.; Tsabolatidou, E. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J. Sci. Food Agric. 2009, 89, 984–988. [Google Scholar] [CrossRef]
- Machado, L.P.; de Carvalho, L.R.; Young, M.C.M.; Zambotti-Villela, L.; Colepicolo, P.; Andreguetti, D.X.; Yokoya, N.S. Comparative chemical analysis and antifungal activity of Ochtodes secundiramea (Rhodophyta) extracts obtained using different biomass processing methods. J. Appl. Phycol. 2014, 26, 2029–2035. [Google Scholar] [CrossRef]
- Ben Salah, I.; Aghrouss, S.; Douira, A.; Aissam, S.; El Alaoui-Talibi, Z.; Filali-Maltouf, A.; El Modafar, C. Seaweed polysaccharides as bio-elicitors of natural defenses in olive trees against verticillium wilt of olive. J. Plant Interact. 2018, 13, 248–255. [Google Scholar] [CrossRef]
- Cabo, S.; Morais, M.C.; Aires, A.; Carvalho, R.; Pascual-Seva, N.; Silva, A.P.; Gonçalves, B. Kaolin and seaweed-based extracts can be used as middle and long-term strategy to mitigate negative effects of climate change in physiological performance of hazelnut tree. J. Agron. Crop Sci. 2020, 206, 28–42. [Google Scholar] [CrossRef]
- Khompatara, K.; Pettongkhao, S.; Kuyyogsuy, A.; Deenamo, N.; Churngchow, N. Enhanced resistance to leaf fall disease caused by Phytophthora palmivora in rubber tree seedling by Sargassum polycystum extract. Plants 2019, 8, 168. [Google Scholar] [CrossRef]
- El Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS ONE 2019, 14, e0216710. [Google Scholar] [CrossRef]
- Kapur, B.; Sarıdaş, M.A.; Çeliktopuz, E.; Kafkas, E.; Kargı, S.P. Health and taste related compounds in strawberries under various irrigation regimes and bio-stimulant application. Food Chem. 2018, 263, 67–73. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef]
- Gomathi, R.; Kohila, S.; Ramachandiran, K. Evaluating the effect of seaweed formulations on the quality and yield of sugarcane. Madras Agric. J. 2017, 104, 1. [Google Scholar] [CrossRef]
- Ayub, R.A.; Sousa, A.M.d.; Viencz, T.; Botelho, R.V. Fruit set and yield of apple trees cv. Gala treated with seaweed extract of Ascophyllum nodosum and thidiazuron. Rev. Bras. Frutic. 2019, 41, e-072. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.; Puthur, J.T.; Abdi, G.; Sarraf, M.; Hasanuzzaman, M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 2022, 172, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita; Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Mohamed, I.A.; Shalby, N.; MA El-Badri, A.; Saleem, M.H.; Khan, M.N.; A. Nawaz, M.; Qin, M.; Agami, R.A.; Kuai, J.; Wang, B. Stomata and xylem vessels traits improved by melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napus L. plants. Agronomy 2020, 10, 1186. [Google Scholar] [CrossRef]
- S. Taha, R.; Seleiman, M.F.; Alotaibi, M.; Alhammad, B.A.; Rady, M.M.; H.A. Mahdi, A. Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy 2020, 10, 1741. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Rajasheker, G.; Kishor, P.K.; Kumar, S.A.; Kumari, P.H.; Saritha, K.; Rathnagiri, P.; Pandey, G.K. Role of Protein Phosphatases in Signaling, Potassium Transport, and Abiotic Stress Responses; Springer: Cham, Switzerland, 2020; pp. 203–232. [Google Scholar]
- Wang, K.; Brown, R.C.; Homsy, S.; Martinez, L.; Sidhu, S.S. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresour. Technol. 2013, 127, 494–499. [Google Scholar] [CrossRef]
- Shabala, S.; Pottosin, I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014, 151, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.J.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Skrumsager Moller, I.; White, P. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: Amsterdam, The Netherlands, 2012; pp. 135–189. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant 2008, 133, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture–status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, J.; Pan, Y.; Lu, P.; Li, X.; Cong, R.; Ren, T. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. Plant Cell Environ. 2016, 39, 2428–2439. [Google Scholar] [CrossRef]
- Cochrane, T.T.; Cochrane, T.A. The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. Plant Signal. Behav. 2009, 4, 240–243. [Google Scholar] [CrossRef] [PubMed]
Parameter | Soil Depth (cm) | |
---|---|---|
0–30 | 30–60 | |
Mechanical analysis % | ||
Sand | 93.0 | 92.0 |
Silt | 5.0 | 4.0 |
Clay | 2.0 | 4.0 |
Textural class | Sandy | Sandy |
CaCO3 (%) | 4.2 | 5.4 |
Organic matter (%) | 0.35 | 0.20 |
pH | 7.7 | 7.8 |
EC, dS/m(Soil extraction 1:5) | 0.801 | 0.823 |
Available nutrients (mg/kg) | ||
N | 117.5 | 117.5 |
P | 18.4 | 18.0 |
K | 405 | 190 |
Soluble cations (meq/L) | ||
Ca++ | 2.30 | 2.15 |
Mg++ | 1.70 | 1.30 |
Na+ | 3.78 | 3.54 |
K+ | 0.45 | 0.40 |
Soluble anions (meq/L) | ||
HCO3− | 3.22 | 3.02 |
CL− | 4.00 | 3.5 |
SO4− | 4.20 | 4.00 |
Treatment | Fruit Weight (g) | Seed Weight (g) | Flesh Weight (g) | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Control | 19.75h ± 0.20 | 20.69h ± 0.20 | 1.87f ± 0.03 | 1.79f ± 0.05 | 17.88g ± 0.21 | 15.52g ± 0.12 |
0.2% YE | 29.08e ± 0.92 | 30.02e ± 0.92 | 2.81c ± 0.07 | 2.72b ± 0.04 | 26.26d ± 0.85 | 24.08d ± 0.99 |
0.2% FA | 26.30g ± 0.48 | 27.24g ± 0.48 | 2.67d ± 0.04 | 2.56d ± 0.06 | 23.63f ± 0.45 | 21.24f ± 0.37 |
6% MLE | 30.79bc ± 0.48 | 31.73bc ± 0.49 | 2.68d ± 0.02 | 2.64c ± 0.04 | 28.12b ± 0.46 | 25.82b ± 0.47 |
0.4% SWE | 26.65g ± 0.52 | 27.59g ± 0.52 | 2.85bc ± 0.05 | 2.78 b ± 0.02 | 23.80f ± 0.48 | 21.48f ± 0.33 |
K NPs 0.02% | 29.50de ± 0.55 | 30.44de ± 0.54 | 2.55e ± 0.06 | 2.47e ± 0.03 | 26.96cd ± 0.49 | 24.58cd ± 0.50 |
0.2% YE + 0.02% K NPs | 35.80a ± 0.77 | 36.74a ± 0.77 | 2.90ab ± 0.01 | 2.86a ± 0.03 | 32.90a ± 0.75 | 30.95a ± 0.38 |
0.2% FA + 0.02% K NPs | 31.20b ± 0.33 | 32.14b ± 0.33 | 2.95a ± 0.03 | 2.77b ± 0.08 | 28.25b ± 0.31 | 26.08b ± 0.37 |
6% MLE + 0.02% K NPs | 27.99f ± 0.24 | 28.94f ± 0.24 | 2.65d ± 0.02 | 2.59cd ± 0.02 | 25.35e ± 0.22 | 22.93e ± 0.25 |
0.4% SWE + 0.02% K NPs | 30.10cd ± 0.28 | 31.04cd ± 0.28 | 2.81c ± 0.02 | 2.74b ± 0.01 | 27.29c ± 0.26 | 24.89c ± 0.34 |
LSD at 0.05 | 0.82 | 0.83 | 0.06 | 0.08 | 0.78 | 0.66 |
Treatment | Fruit Volume (cm3) | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Firmness (Ib/inch2) | ||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Control | 17.37f ± 0.57 | 15.82f ± 0.55 | 4.50f ± 0.06 | 4.15f ± 0.05 | 2.88e ± 0.03 | 2.69e ± 0.08 | 17.00e ± 1.00 | 16.67f ± 0.72 |
0.2% YE | 33.13c ± 0.61 | 31.73c ± 0.62 | 5.72c ± 0.07 | 5.20d ± 0.05 | 3.45bc ± 0.02 | 3.36b ± 0.02 | 18.23e ± 0.25 | 19.77de ± 0.25 |
0.2% FA | 29.10 d ± 0.36 | 27.65d ± 0.46 | 5.34e ± 0.03 | 4.93e ± 0.13 | 3.33c ± 0.02 | 3.24c ± 0.01 | 20.13d ± 1.10 | 18.67e ± 0.35 |
6% MLE | 33.66bc ± 0.35 | 32.23bc ± 0.34 | 5.74c ± 0.05 | 5.41c ± 0.08 | 3.54ab ± 0.05 | 3.40ab ± 0.05 | 22.17abc ± 1.04 | 22.17c ± 0.15 |
0.4% SWE | 29.10d ± 0.36 | 27.73d ± 0.54 | 5.64d ± 0.03 | 5.22d ± 0.08 | 3.42bc ± 0.08 | 3.34bc ± 0.06 | 21.50bcd ± 0.5 | 18.83e ± 0.57 |
0.02% K NPs | 33.67bc ± 0.76 | 32.42bc ± 0.70 | 5.56d ± 0.03 | 5.10d ± 0.05 | 3.41bc ± 0.01 | 3.29bc ± 0.04 | 21.10bcd ± 0.85 | 22.67c ± 0.58 |
0.2% YE + 0.02% K NPs | 38.07a ± 0.50 | 36.63a ± 0.84 | 6.28a ± 0.03 | 6.08a ± 0.08 | 3.63a ± 0.03 | 3.51a ± 0.06 | 23.30a ± 0.61 | 25.33a ± 1.04 |
0.2% FA + 0.02% K NPs | 34.57d ± 0.35 | 33.13b ± 0.69 | 5.68d ± 0.16 | 5.37c ± 0.10 | 3.51ab ± 0.01 | 3.41ab ± 0.01 | 21.70bc ± 0.61 | 21.97c ± 0.06 |
6% MLE + 0.02% K NPs | 25.37e ± 0.78 | 24.17e ± 0.82 | 5.36e ± 0.06 | 5.14d ± 0.04 | 3.13d ± 0.2 | 3.04d ± 0.12 | 20.80cd ± 0.2 | 20.65d ± 0.44 |
0.4% SWE + 0.02% K NPs | 34.50b ± 0.3 | 32.98b ± 0.68 | 5.95b ± 0.13 | 5.80b ± 0.05 | 3.48b ± 0.12 | 3.40ab ± 0.05 | 22.43ab ± 0.55 | 24.07b ± 1.05 |
LSD at 0.05 | 0.88 | 1.09 | 0.14 | 0.13 | 0.13 | 0.11 | 1.29 | 1.11 |
Treatment | TSS (%) | Acidity (%) | TSS–Acid Ratio | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Control | 19.13e ± 0.86 | 20.70f ± 1.08 | 0.46a ± 0.05 | 0.48a ± 0.04 | 103.83g ± 2.56 | 105.83f ± 2.35 |
0.2% YE | 26.47b ± 1.50 | 27.90b ± 1.30 | 0.22ef ± 0.01 | 0.25fg ± 0.01 | 168.94ab ± 11.36 | 154.99b ± 4.27 |
0.2% FA | 22.20d ± 0.79 | 23.63e ± 0.66 | 0.27de ± 0.02 | 0.29def ± 0.02 | 136.80de ± 1.54 | 134.16c ± 2.55 |
6% MLE | 24.40 b ± 0.2 | 25.90cd ± 0.17 | 0.32c ± 0.01 | 0.36bc ± 0.03 | 128.70e ± 1.81 | 123.72d ± 3.03 |
0.4% SWE | 26.40b ± 0.43 | 27.13bc ± 0.35 | 0.22f ± 0.03 | 0.24g ± 0.02 | 159.94bc ± 3.48 | 157.44b ± 3.34 |
0.02% K NPs | 27.2b ± 0.52 | 28.33b ± 0.06 | 0.30cd ± 0.03 | 0.32cd ± 0.02 | 142.62d ± 6.75 | 137.97c ± 6.61 |
0.2% YE + 0.02% K NPs | 30.27a ± 1.10 | 31.40a ± 0.53 | 0.25def ± 0.03 | 0.27efg ± 0.02 | 176.76a ± 6.34 | 169.44a ± 4.18 |
0.2% FA + 0.02% K NPs | 23.47cd ± 0.97 | 25.17d ± 1.05 | 0.37b ± 0.02 | 0.39b ± 0.01 | 117.15f ± 2.47 | 113.44e ± 0.45 |
6% MLE + 0.02% K NPs | 26.13b ± 0.45 | 27.20bc ± 1.00 | 0.27de ± 0.02 | 0.31de ± 0.04 | 145.97d ± 7.30 | 131.94c ± 2.23 |
0.4% SWE + 0.02% K NPs | 26.93b ± 0.38 | 27.83b ± 0.76 | 0.26def ± 0.01 | 0.29def ± 0.02 | 157.33 c ± 8.07 | 138.64c ± 4.14 |
LSD at 0.05 | 1.44 | 1.41 | 0.05 | 0.04 | 10.68 | 6.21 |
Treatment | Total Sugars (%) | Reducing Sugars (%) | Non-Reduce Sugars (%) | Vitamin C (mg/100 mL) | ||||
---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Control | 22.35i ± 0.59 | 23.48h ± 0.60 | 15.58h ± 0.52 | 15.80h ± 0.72 | 6.77a ± 0.30 | 7.68a ± 0.14 | 2.72e ± 0.08 | 2.41f ± 0.09 |
0.2% YE | 33.35e ± 0.87 | 36.55de ± 0.54 | 27.98e ± 0.40 | 30.50e ± 0.50 | 5.37bc ± 1.04 | 6.05d ± 0.14 | 4.31b ± 0.21 | 4.11bc ± 0.15 |
0.2% FA | 26.20h ± 0.26 | 27.63g ± 0.07 | 22.60g ± 0.56 | 24.53g ± 0.05 | 3.60d ± 0.53 | 3.10i ± 0.10 | 3.55cd ± 0.19 | 3.35e ± 0.13 |
6% MLE | 27.32g ± 0.51 | 28.75g ± 0.83 | 23.88f ± 0.28 | 24.68g ± 0.74 | 3.43d ± 0.23 | 4.07h ± 0.10 | 3.77c ± 0.21 | 3.78d ± 0.12 |
0.4% SWE | 33.30e ± 0.46 | 35.80e ± 0.85 | 28.05e ± 0.51 | 31.48de ± 0.97 | 5.25bc ± 0.18 | 4.32g ± 0.15 | 3.80c ± 0.24 | 3.79d ± 0.13 |
0.02% K NPS | 36.12d ± 0.17 | 37.55d ± 0.61 | 31.20d ± 0.25 | 32.02cd ± 0.55 | 4.92c ± 0.24 | 5.53e ± 0.12 | 3.42d ± 0.14 | 3.35e ± 0.08 |
0.2% YE + 0.02% K NPS | 44.67a ± 0.50 | 48.49a ± 0.79 | 38.68a ± 0.45 | 41.11a ± 0.73 | 5.98ab ± 0.84 | 7.38b ± 0.14 | 4.89a ± 0.19 | 5.02a ± 0.12 |
0.2% FA+ 0.02% K NPS | 30.83f ± 0.91 | 32.25f ± 1.00 | 27.32e ± 0.75 | 27.43f ± 0.85 | 3.52d ± 0.15 | 4.82f ± 0.15 | 3.78c ± 0.12 | 3.93cd ± 0.08 |
6% MLE + 0.02% K NPS | 37.27c ± 0.32 | 39.23c ± 0.54 | 33.62c ± 0.48 | 33.13c ± 0.61 | 3.65d ± 0.48 | 6.10d ± 0.07 | 4.18b ± 0.18 | 4.30b ± 0.18 |
0.4% SWE + 0.02% K NPS | 40.17b ± 0.60 | 41.86b ± 0.88 | 35.70b ± 0.78 | 35.31b ± 0.74 | 4.47cd ± 0.42 | 6.55c ± 0.15 | 3.55cd ± 0.22 | 3.31e ± 0.22 |
LSD at 0.05 | 0.93 | 1.23 | 0.84 | 1.17 | 0.94 | 0.23 | 0.29 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saif, A.M.; Sas-Paszt, L.; Saad, R.M.; Abada, H.S.; Ayoub, A.; Mosa, W.F.A. Biostimulants and Nano-Potassium on the Yield and Fruit Quality of Date Palm. Horticulturae 2023, 9, 1137. https://doi.org/10.3390/horticulturae9101137
Al-Saif AM, Sas-Paszt L, Saad RM, Abada HS, Ayoub A, Mosa WFA. Biostimulants and Nano-Potassium on the Yield and Fruit Quality of Date Palm. Horticulturae. 2023; 9(10):1137. https://doi.org/10.3390/horticulturae9101137
Chicago/Turabian StyleAl-Saif, Adel M., Lidia Sas-Paszt, Ragab. M. Saad, Hesham S. Abada, Ahmed Ayoub, and Walid F. A. Mosa. 2023. "Biostimulants and Nano-Potassium on the Yield and Fruit Quality of Date Palm" Horticulturae 9, no. 10: 1137. https://doi.org/10.3390/horticulturae9101137
APA StyleAl-Saif, A. M., Sas-Paszt, L., Saad, R. M., Abada, H. S., Ayoub, A., & Mosa, W. F. A. (2023). Biostimulants and Nano-Potassium on the Yield and Fruit Quality of Date Palm. Horticulturae, 9(10), 1137. https://doi.org/10.3390/horticulturae9101137