Nutritional Value of Wild and Domesticated Sanguisorba minor Scop. Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Nutritional Composition Analysis
2.2.1. Proximate Analysis
2.2.2. Fatty Acids
2.2.3. Free Sugars
2.2.4. Organic Acids
2.2.5. Tocopherols
2.2.6. Minerals
2.3. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Value
3.2. Sugar Content
3.3. Organic Acid and Tocopherol Content
3.4. Fatty Acids
3.5. Macromineral and Trace Element Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ceccanti, C.; Landi, M.; Rocchetti, G.; Moreno, M.B.M.; Lucini, L.; Incrocci, L.; Pardossi, A.; Guidi, L. Hydroponically grown Sanguisorba minor scop.: Effects of cut and storage on fresh-cut produce. Antioxidants 2019, 8, 631. [Google Scholar] [CrossRef] [PubMed]
- Finimundy, T.C.; Karkanis, A.; Fernandes, Â.; Petropoulos, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020, 327, 127043. [Google Scholar] [CrossRef] [PubMed]
- Tausch, S.; Leipold, M.; Poschlod, P.; Reisch, C. Molecular markers provide evidence for a broad-fronted recolonisation of the widespread calcareous grassland species Sanguisorba minor from southern and cryptic northern refugia. Plant Biol. 2017, 19, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef] [PubMed]
- Flyman, M.V.; Afolayan, A.J. The suitability of wild vegetables for alleviating human dietary deficiencies. S. Afr. J. Bot. 2006, 72, 492–497. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean Wild Edible Plants: Weeds or “New Functional Crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Fernandes, Â.; Vaz, J.; Petropoulos, S.; Georgiou, E.; Ciric, A.; Sokovic, M.; Oludemi, T.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of Sanguisorba minor Scop. under Mediterranean growing conditions. Food Funct. 2019, 10, 1340–1351. [Google Scholar] [CrossRef]
- Viano, J.; Masotti, V.; Gaydou, E.M. Nutritional value of Mediterranean sheep’s burnet (Sanguisorba minor ssp. muricata). J. Agric. Food Chem. 1999, 47, 4645–4648. [Google Scholar] [CrossRef]
- Pirhofer-Walzl, K.; Søegaard, K.; Høgh-Jensen, H.; Eriksen, J.; Sanderson, M.A.; Rasmussen, J.; Rasmussen, J. Forage herbs improve mineral composition of grassland herbage. Grass Forage Sci. 2011, 66, 415–423. [Google Scholar] [CrossRef]
- Mallet, J.F.; Cerrati, C.; Ucciani, E.; Gamisans, J.; Gruber, M. Antioxidant activity of plant leaves in relation to their alpha-tocopherol content. Food Chem. 1994, 49, 61–65. [Google Scholar] [CrossRef]
- Engin, K.N. Alpha-tocopherol: Looking beyond an antioxidant. Mol. Vis. 2009, 15, 855. [Google Scholar] [PubMed]
- O’Leary, K.A.; De Pascual-Tereasa, S.; Needs, P.W.; Bao, Y.P.; O’Brien, N.M.; Williamson, G. Effect of flavonoids and Vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2004, 551, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.M.; Graham, R.D. A new paradigm for world agriculture: Meeting human needs. Productive, sustainable, nutritious. Field Crops Res. 1999, 60, 1–10. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Incrocci, L.; Pardossi, A.; Venturi, F.; Taglieri, I.; Ferroni, G.; Guidi, L. Comparison of three domestications and wild-harvested plants for nutraceutical properties and sensory profiles in five wild edible herbs: Is domestication possible? Foods 2020, 9, 1065. [Google Scholar] [CrossRef] [PubMed]
- Ceccanti, C.; Finimundy, T.C.; Heleno, S.A.; Pires, T.C.; Calhelha, R.C.; Guidi, L.; Ferreira, I.C.F.R.; Barros, L. Differences in the phenolic composition and nutraceutical properties of freeze dried and oven-dried wild and domesticated samples of Sanguisorba minor Scop. LWT 2021, 145, 111335. [Google Scholar] [CrossRef]
- Ceccanti, C.; Brizzi, A.; Landi, M.; Incrocci, L.; Pardossi, A.; Guidi, L. Evaluation of major minerals and trace elements in wild and domesticated edible herbs traditionally used in the Mediterranean area. Biol. Trace Elem. Res. 2021, 199, 3553–3561. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, P.M.; Savo, V. Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. J. Ethnopharmacol. 2013, 146, 659–680. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W., Jr. Official Methods of Analysis of AOAC International, 18th ed.AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Tsugkiev, B.; Gagieva, L.; Cherniavskih, V.; Dumacheva, E.; Korolkova, S. Dynamics of the Accumulation of the Biologically Active Substances Sanguisorba officinalis L. Depending on Vertical Zonal. In Proceedings of the 1st International Symposium Innovations in Life Sciences (ISILS 2019), Belgorod, Russia, 10–11 October 2019; Atlantis Press: Dordrecht, The Netherlands, 2019; pp. 60–64. [Google Scholar]
- Agarwal, P.; Saha, S.; Hariprasad, P. Agro-industrial-residues as potting media: Physicochemical and biological characters and their influence on plant growth. Biomass Convers. Biorefin. 2021, 1–24. [Google Scholar] [CrossRef]
- Trinchieri, A. Diet and renal stone formation. Minerva Med. 2013, 104, 41–54. [Google Scholar]
- Gemede, H.F.; Haki, G.D.; Beyene, F.; Woldegiorgis, A.Z.; Rakshit, S.K. Proximate, mineral, and antinutrient compositions of indigenous Okra (Abelmoschus esculentus) pod accessions: Implications for mineral bioavailability. Food Sci. Nutr. 2016, 4, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Liebman, M. Effect of different cooking methods on vegetable oxalate content. J. Agric. Food Chem. 2005, 53, 3027–3030. [Google Scholar] [CrossRef] [PubMed]
- Trebst, A.; Depka, B.; Holländer-Czytko, H. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett. 2002, 516, 156–160. [Google Scholar] [CrossRef]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A 1996, 719, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, A.; Orlandini, A.; Bulgari, R.; Ferrante, A.; Bruschi, P. Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods 2019, 8, 487. [Google Scholar] [CrossRef]
Proximate Composition | |||
---|---|---|---|
W | F | t-Student p-Value | |
Moisture (g/100 g) | 75.02 ± 0.04 | 71.20 ± 1.00 | 0.0054 |
Ash (g/100 g) | 7.80 ± 0.60 | 10.10 ± 0.40 | 0.0491 |
Proteins (g/100 g) | 18.80 ± 0.40 | 23.10 ± 0.30 | 0.0063 |
Fat (g/100 g) | 2.72 ± 0.04 | 4.00 ± 0.30 | 0.0213 |
Carbohydrates (g/100 g) | 70.70 ± 0.20 | 62.79 ± 0.40 | 0.0018 |
Energy (kcal/100 g) | 382.00 ± 3.00 | 379.20 ± 0.50 | 0.2507 |
Sugar Content (g/100 g) | |||
---|---|---|---|
W | F | t-Student p-Value | |
Fructose | 0.50 ± <0.01 | 0.30 ± 0.10 | 0.0492 |
Glucose | 1.00 ± 0.10 | 0.30 ± 0.10 | 0.0182 |
Sucrose | 3.61 ± 0.04 | 4.10 ± 0.20 | 0.0825 |
Raffinose | 0.31 ± 0.01 | 0.28 ± 0.02 | 0.3491 |
Total sugars | 5.42 ± 0.03 | 4.98 ± 0.20 | 0.1068 |
Organic Acid Content (g/100 g) | |||
W | F | t-Student p-Value | |
Oxalic acid | 2.64 ± 0.05 | 11.50 ± 0.70 | 0.0028 |
Quinic acid | 0.16 ± 0.01 | 1.70 ± 0.10 | 0.0007 |
Malic acid | 1.14 ± 0.02 | 0.79 ± 0.01 | 0.0027 |
Citric acid | 1.76 ± <0.01 | 5.94 ± 0.01 | <0.0001 |
Fumaric acid | 0.11 ± <0.01 | 0.50 ± 0.03 | 0.00256 |
Total organic acids | 5.82 ± 0.06 | 20.43 ± 0.70 | 0.0013 |
Tocopherols (mg/100 g) | |||
W | F | t-Student p-value | |
α-Tocopherol (vitamin E) | 0.50 ± 0.10 | 11.00 ± 1.00 | 0.0001 |
Fatty Acids (%) | |||
---|---|---|---|
W | F | t-Student p-Value | |
C8:0 | 0.25 ± 0.02 | 0.16 ± 0.03 | 0.0691 |
C10:0 | 0.46 ± 0.04 | 0.37 ± 0.02 | 0.1027 |
C12:0 | 1.24 ± 0.04 | 0.74 ± 0.04 | 0.0062 |
C13:0 | nd | 1.10 ± 0.04 | - |
C14:0 | 3.00 ± 0.10 | nd | - |
C15:0 | 0.49 ± 0.02 | 0.35 ± 0.03 | 0.0212 |
C16:0 | 25.10 ± 0.30 | 22.23 ± 0.05 | 0.0069 |
C16:1 | 2.60 ± 0.20 | 2.00 ± 0.40 | 0.2196 |
C17:0 | 0.87 ± 0.03 | 0.60 ± 0.10 | 0.1447 |
C18:0 | 6.30 ± 0.10 | 5.00 ± 0.10 | 0.0048 |
C18:1n9 | 5.40 ± 0.10 | 11.40 ± 0.10 | 0.0003 |
C18:2n6 | 11.33 ± 0.03 | 13.40 ± 0.10 | 0.0009 |
C18:3n3 | 36.30 ± 0.30 | 37.50 ± 0.40 | 0.0739 |
C22:0 | 1.90 ± 0.40 | 1.03 ± 0.04 | 0.087 |
C24:0 | 1.79 ± 0.03 | 0.96 ± 0.01 | 0.0004 |
SFA | 41.40 ± 0.10 | 34.50 ± 0.10 | 0.0003 |
MUFA | 7.95 ± 0.10 | 13.40 ± 0.30 | 0.0017 |
PUFA | 47.61 ± 0.30 | 50.90 ± 0.50 | 0.0136 |
PUFA/SFA | 1.15 ± <0.01 | 1.47 ± 0.02 | <0.0001 |
SFA/MUFA | 5.21 ± 0.003 | 2.58 ± 0.002 | <0.0001 |
ω6/ω3 | 0.31 ± <0.01 | 0.36 ±< 0.01 | 0.0037 |
Na | K | Ca | Mg | Cu | Mn | Fe | Zn | |
---|---|---|---|---|---|---|---|---|
W | 1.48 ± 0.13 | 8.30 ± 0.45 | 1.59 ± 0.03 | 0.51 ± 0.02 | 7.09 ± 0.33 | 37.06 ± 1.90 | 56.33 ± 3.42 | 16.97 ± 0.17 |
F | 0.34 ± 0.02 | 5.51 ± 0.16 | 4.52 ± 0.26 | 1.44 ± 0.07 | 4.55 ± 0.38 | 13.23 ± 1.59 | 39.21 ± 5.68 | 16.39 ± 0.31 |
t-Student p-value | <0.0001 | 0.0005 | <0.0001 | <0.0001 | 0.0010 | <0.0001 | 0.0107 | 0.0469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccanti, C.; Finimundy, T.C.; Barros, L. Nutritional Value of Wild and Domesticated Sanguisorba minor Scop. Plant. Horticulturae 2023, 9, 560. https://doi.org/10.3390/horticulturae9050560
Ceccanti C, Finimundy TC, Barros L. Nutritional Value of Wild and Domesticated Sanguisorba minor Scop. Plant. Horticulturae. 2023; 9(5):560. https://doi.org/10.3390/horticulturae9050560
Chicago/Turabian StyleCeccanti, Costanza, Tiane C. Finimundy, and Lillian Barros. 2023. "Nutritional Value of Wild and Domesticated Sanguisorba minor Scop. Plant" Horticulturae 9, no. 5: 560. https://doi.org/10.3390/horticulturae9050560
APA StyleCeccanti, C., Finimundy, T. C., & Barros, L. (2023). Nutritional Value of Wild and Domesticated Sanguisorba minor Scop. Plant. Horticulturae, 9(5), 560. https://doi.org/10.3390/horticulturae9050560