Preliminary Assessment of Four Wild Leafy Species to Be Used as Baby Salads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Growing Conditions, and Data Collection
2.2. Chemical Analysis
2.2.1. Elemental Composition
2.2.2. Chlorophyll and Carotenoids
2.2.3. Nitrate
2.3. Contribution to Mineral Requirement and Health Risk Assessment
2.4. Sensory Evaluation
2.5. Experimental Design and Statistical Analysis
3. Results
3.1. Crop Production and Quality
3.2. Contribution to Mineral Dietary Intake and Health Risk Assessment
3.3. Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, microgreens and “baby leaf” vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Springer: Boston, MA, USA, 2017; pp. 403–432. [Google Scholar] [CrossRef]
- Grand View Research. Packaged Salad Market Size, Share & Trends Analysis Report by Product (Vegetarian, Non-Vegetarian), by Processing (Organic, Conventional), by Type, by Distribution Channel, by Region, and Segment Forecasts, 2021–2028. San Francisco (CA). 2021. Available online: https://www.grandviewresearch.com/industry-analysis/packaged-salad-market (accessed on 5 April 2023).
- Saini, R.K.; Ko, E.Y.; Keum, Y.S. Minimally processed ready-to-eat baby-leaf vegetables: Production, processing, storage, microbial safety, and nutritional potential. Food Rev. Int. 2017, 33, 644–663. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Luna, M.C.; Selma, M.V.; Tudela, J.A.; Abad, J.; Gil, M.I. Baby-leaf and multi-leaf of green and red lettuces are suitable raw materials for the fresh-cut industry. Postharvest Biol. Technol. 2012, 63, 1–10. [Google Scholar] [CrossRef]
- Baldi, A.; Bruschi, P.; Campeggi, S.; Egea, T.; Rivera, D.; Obón, C.; Lenzi, A. The renaissance of wild food plants: Insights from Tuscany (Italy). Foods 2022, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Łuczaj, Ł.; Pieroni, A. Nutritional Ethnobotany in Europe: From Emergency Foods to Healthy Folk Cuisines and Contemporary Foraging Trends. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Sánchez-Mata, M.D.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 33–56. [Google Scholar] [CrossRef]
- Zargar, S.M.; Salgotra, R.K. Rediscovery of Genetic and Genomic Resources for Future Food Security; Springer: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Molina, M.; Pardo-de-Santayana, M.; Tardío, J. Natural Production and Cultivation of Mediterranean Wild Edibles. In Mediterranean Wild Edible Plants; Sánchez-Mata, M.D.C., Tardío, J., Eds.; Springer International Publishing: New York, NY, USA, 2016; pp. 81–107. [Google Scholar] [CrossRef]
- Razzaq, A.; Wani, S.H.; Saleem, F.; Yu, M.; Zhou, M.; Shabala, S. Rewilding crops for climate resilience: Economic analysis and de novo domestication strategies. J. Exp. Bot. 2021, 72, 6123–6139. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Maitra, S.; Pramanick, B.; Bhutia, K.L.; Ahmad, Z.; Moulick, D.; Syed, M.A.; Shankar, T.; Adeel, M.; Hassan, M.M.; et al. Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. In Plant Perspectives to Global Climate Changes; Academic Press: Cambridge, MA, USA, 2022; pp. 471–518. [Google Scholar] [CrossRef]
- Hajjar, R.; Hodgkin, T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Shelef, O.; Weisberg, P.J.; Provenza, F.D. The value of native plants and local production in an era of global agriculture. Front. Plant Sci. 2017, 8, 2069. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Madrid, P.C.; Isasa, M.E.T. Mineral elements determination in wild edible plants. Ecol. Food Nutr. 1999, 38, 209–222. [Google Scholar] [CrossRef]
- García-Herrera, P.; Sánchez-Mata, M.D.C. The contribution of wild plants to dietary intakes of micronutrients (II): Mineral Elements. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Sánchez-Mata, M.D.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 141–171. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.D.C.; Matallana-González, M.C.; Morales, P. The contribution of wild plants to dietary intakes of micronutrients (I): Vitamins. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Sánchez-Mata, M.D.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 111–139. [Google Scholar] [CrossRef]
- Ranfa, A.; Maurizi, A.; Romano, B.; Bodesmo, M. The importance of traditional uses and nutraceutical aspects of some edible wild plants in human nutrition: The case of Umbria (central Italy). Plant Biosyst. 2014, 148, 297–306. [Google Scholar] [CrossRef]
- Barros, L.; Morales, P.; Carvalho, A.M.; Ferreira, I.C.F.R. Antioxidant potential of wild plant foods. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Sánchez-Mata, M.D.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 209–232. [Google Scholar] [CrossRef]
- Di Venere, D.; Gatto, M.A.; Ippolito, A.; Bianco, V.V. Antimicrobial potential of wild edible herbaceous species. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Sánchez-Mata, M.D.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 233–252. [Google Scholar] [CrossRef]
- Heinrich, M.; Kerrouche, S.; Bharij, K.S. Recent advances in research on wild food plants and their biological pharmacological activity. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Sánchez-Mata, M.D.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 253–269. [Google Scholar] [CrossRef]
- Brunetti, G.; Soler-Rovira, P.; Farrag, K.; Senesi, N. Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil 2009, 318, 285–298. [Google Scholar] [CrossRef]
- Sánchez-Mata, D.; Morales, R. The Mediterranean landscape and wild edible plants. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Sánchez-Mata, M.D.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 15–31. [Google Scholar] [CrossRef]
- Tesi, R. Orticoltura Mediterranea Sostenibile; Pàtron Editore: Bologna, Italy, 2010. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The water culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 29–31. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Method Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Elgueta, S.; Fuentes, M.; Valenzuela, M.; Zhao, G.; Liu, S.; Lu, H.; Correa, A. Pesticide residues in ready-to-eat leafy vegetables from markets of Santiago, Chile, and consumer’s risk. Food Addit. Contam. Part B Surveill. 2019, 12, 259–267. [Google Scholar] [CrossRef] [PubMed]
- SINU. Livelli di Assunzione di Riferimento di Nutrienti ed Energia, IV Revisione. Società Italiana di Nutrizione Umana. Available online: http://www.sinu.it/html/pag/12-MINERALI.asp (accessed on 18 April 2023).
- Barnes, D.G.; Dourson, M. Reference Dose (RfD): Description and Use in Health risk Assessments. Regul. Toxicol. Pharmacol. 1988, 8, 471–486. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Safety of aluminium from dietary intake—Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). EFSA J. 2008, 6, 754. [Google Scholar]
- Taylor, A.A.; Tsuji, J.S.; McArdle, M.E.; Adams, W.J.; Goodfellow, W.L., Jr. Recommended reference values for risk assessment of oral exposure to copper. Risk Anal. 2023, 43, 211–218. [Google Scholar] [CrossRef]
- Esposito, M.; De Roma, A.; Cavallo, S.; Miedico, O.; Chiaravalle, E.; Soprano, V.; Baldi, L.; Gallo, P. Trace elements in vegetables and fruits cultivated in Southern Italy. J. Food Compos. Anal. 2019, 84, 103302. [Google Scholar] [CrossRef]
- ISO. International Standard 13299. Sensory Analysis. Methodology. General Guidance for Establishing a Sensory Profile. International Organization for Standardization; Ref. No. ISO 13299:2016 (E); ISO: Genéve, Switzerland, 2016. [Google Scholar]
- ISO 5492:2008; Sensory Analysis—Vocabulary. ISO (International Organization for Standardization): Geneva, Switzerland, 2008.
- Lenzi, A.; Orlandini, A.; Bulgari, R.; Ferrante, A.; Bruschi, P. Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods 2019, 8, 487. [Google Scholar] [CrossRef]
- Alexopoulos, A.A.; Assimakopoulou, A.; Panagopoulos, P.; Bakea, M.; Vidalis, N.; Karapanos, I.C.; Petropoulos, S.A. Impact of salinity on the growth and chemical composition of two underutilized wild edible greens: Taraxacum officinale and Reichardia picroides. Horticulturae 2021, 7, 160. [Google Scholar] [CrossRef]
- Truschi, S.; Baldi, A.; Bruschi, P.; Cacciari, I.; Marvasi, M.; Lenzi, A. Foliar roughness and water content impact on Escherichia coli attachment in baby leafy greens. Biology 2023, 12, 102. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Manzocco, L.; Foschia, M.; Tomasi, N.; Maifreni, M.; Dalla Costa, L.; Marino, M.; Cortella, G.; Cesco, S. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb’s lettuce (Valerianella locusta L. Laterr). J. Sci. Food Agric. 2011, 91, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Karnoutsos, P.; Karagiovanidis, M.; Bantis, F.; Chatzistathis, T.; Koukounaras, A.; Ntinas, G.K. Controlled root-zone temperature effect on baby leaf vegetables yield and quality in a floating system under mild and extreme weather conditions. J. Sci. Food Agric. 2021, 101, 3933–3941. [Google Scholar] [CrossRef] [PubMed]
- Min, Q.; Marcelis, L.F.; Nicole, C.C.; Woltering, E.J. High light intensity applied shortly before harvest improves lettuce nutritional quality and extends the shelf life. Front. Plant Sci. 2021, 12, 615355. [Google Scholar] [CrossRef] [PubMed]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Tech. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Liu, Y.J.; Tong, Y.P.; Zhu, Y.G.; Ding, H.; Smith, F.A. Leaf chlorophyll readings as an indicator for spinach yield and nutritional quality with different nitrogen fertilizer applications. J. Plant Nutr. 2006, 29, 1207–1217. [Google Scholar] [CrossRef]
- Tuncay, O. Relationships between nitrate, chlorophyll and chromaticity values in rocket salad and parsley. Afr. J. Biotechnol. 2011, 10, 17152–17159. [Google Scholar] [CrossRef]
- Mendoza-Tafolla, R.O.; Juarez-Lopez, P.; Ontiveros-Capurata, R.E.; Sandoval-Villa, M.; Iran, A.T.; Alejo-Santiago, G. Estimating nitrogen and chlorophyll status of romaine lettuce using SPAD and at LEAF readings. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 751–756. [Google Scholar] [CrossRef]
- Amitrano, C.; Rouphael, Y.; De Pascale, S.; De Micco, V. Modulating vapor pressure deficit in the plant micro-environment may enhance the bioactive value of lettuce. Horticulturae 2021, 7, 32. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef] [PubMed]
- Žnidarčič, D.; Ban, D.; Šircelj, H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2011, 129, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Ašimović, Z.; Čengić, L.; Hodžić, J.; Murtić, S. Spectrophotometric determination of total chlorophyll content in fresh vegetables. God. LXI Broj 2016, 66, 104–108. [Google Scholar]
- Bulgari, R.; Baldi, A.; Ferrante, A.; Lenzi, A. Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. N. Z. J. Crop Hortic. Sci. 2017, 45, 119–129. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Incrocci, L.; Pardossi, A.; Venturi, F.; Taglieri, I.; Ferroni, G.; Guidi, L. Comparison of three domestications and wild-harvested plants for nutraceutical properties and sensory profiles in five wild edible herbs: Is domestication possible? Foods 2020, 9, 1065. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Bi, X.; Henry, C.J. Carotenoids, tocopherols and phylloquinone content of 26 green leafy vegetables commonly consumed in Southeast Asia. Food Chem. 2022, 385, 132729. [Google Scholar] [CrossRef]
- Natesh, H.N.; Abbey, L.; Asiedu, S.K. An overview of nutritional and antinutritional factors in green leafy vegetables. Hortic. Int. J. 2017, 1, 58–65. [Google Scholar] [CrossRef]
- Ceccanti, C.; Brizzi, A.; Landi, M.; Incrocci, L.; Pardossi, A.; Guidi, L. Evaluation of major minerals and trace elements in wild and domesticated edible herbs traditionally used in the Mediterranean area. Biol. Trace Elem. Res. 2021, 199, 3553–3561. [Google Scholar] [CrossRef]
- Disciglio, G.; Tarantino, A.; Frabboni, L.; Gagliardi, A.; Giuliani, M.M.; Tarantino, E.; Gatta, G. Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity. Ital. J. Agron. 2017, 12, 383–394. [Google Scholar] [CrossRef]
- Cheng, H.H.; Lai, M.H.; Hou, W.C.; Huang, C.L. Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects. J. Agric. Food Chem. 2004, 5, 1385–1389. [Google Scholar] [CrossRef]
- Shadreck, M.; Mugadza, T. Chromium, an essential nutrient and pollutant: A review. Afr. J. Pure Appl. Chem. 2013, 7, 310–317. [Google Scholar]
- Chamandoost, S.; Moradi, M.F.; Hosseini, M.J. A review of nitrate and nitrite toxicity in foods. J. Hum. Environ. Health Promot. 2016, 1, 80–86. [Google Scholar] [CrossRef]
- Alexopoulos, A.A.; Marandos, E.; Assimakopoulou, A.; Vidalis, N.; Petropoulos, S.A.; Karapanos, I.C. Effect of nutrient solution pH on the growth, yield and quality of Taraxacum officinale and Reichardia picroides in a floating hydroponic system. Agronomy 2021, 11, 1118. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Filipovic-Trajkovic, R.; Ilic, Z.S.; Sunic, L.; Andjelkovic, S. The potential of different plant species for heavy metals accumulation and distribution. J. Food Agric. Environ. 2012, 10, 959–964. [Google Scholar]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 2020, 15, 0227883. [Google Scholar] [CrossRef]
- Jiao, W.; Chen, W.; Chang, A.C.; Page, A.L. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environ. Pollut. 2012, 168, 44–53. [Google Scholar] [CrossRef]
- Gunter, M.E.; Singleton, E.; Bandli, B.R.; Lowers, H.A.; Meeker, G.P. Differentiation of commercial vermiculite based on statistical analysis of bulk chemical data: Fingerprinting vermiculite from Libby, Montana U.S.A. Am. Mineral. 2005, 90, 749–754. [Google Scholar] [CrossRef]
- Simon, L.; Martin, H.W.; Adriano, D.C. Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Web.) as phytoindicators of cadmium contamination. Water Air Soil Pollut. 1996, 91, 351–362. [Google Scholar] [CrossRef]
- Porębska, G.; Ostrowska, A. Heavy metal accumulation in wild plants: Implications for phytoremediation. Pol. J. Environ. Stud. 1999, 8, 433–442. [Google Scholar]
- Czarnowska, K.; Milewska, A. The content of heavy metals in an indicator plant (Taraxacum officinale) in Warsaw. Pol. J. Environ. Stud. 2000, 9, 125–128. [Google Scholar]
- Gawęda, M. Heavy metal content in common correl plants (Rumex acetosa L.) obtained from natural sites in Małopolska Province. Pol. J. Environ. Stud. 2009, 18, 213–218. [Google Scholar]
Attribute | Attribute Definition | Intensity Scale |
---|---|---|
Green colour | Assessment of the green colour tone of the products. | 1 = light green; 5 = dark green |
Herbaceous odour | Intensity of the odour attributable to the herbaceous and green notes perceived directly by the olfactory system. | 1 = absent; 5 = high |
Sour | Basic taste typical of organic acid (i.e., citric acid) perceptible inside the oral cavity. | 1 = absent; 5 = high |
Sweet | Basic taste typical of sugar (i.e., sucrose) perceptible inside the oral cavity. | 1 = absent; 5 = high |
Bitter | Basic taste typical of caffeine and quinine perceptible inside the oral cavity. | 1 = absent; 5 = high |
Herbaceous aroma | Intensity of the flavour attributable to herbaceous and green notes perceived indirectly by the olfactory system. | 1 = absent; 5 = high |
Crunchiness | Property linked to the modality of deformation of the product and to the intensity of the characteristic sound generated during the breaking phase. The product breaks and reproduces the characteristic sound. | 1 = low; 5 = high |
Chewiness | Characteristic that measures the deformation capacity of the product following its compression and evaluates the ability of the product to return to its original shape without breaking. | 1 = low; 5 = high |
Chilliness | Burning sensation perceived in the throat or diffusely in the oral cavity. | 1 = absent; 5 = high |
Astringency | A sensation characterized by contraction of the gums, increase of dryness and roughness on the tongue, and marked decrease in salivation, which commonly occurs by eating unripe fruits. | 1 = absent; 5 = high |
Dandelion | Sorrel | Wild Chicory | Wild Lettuce | |
---|---|---|---|---|
SPAD | 35.55 ± 2.69 b | 33.01 ± 4.17 b | 40.10 ± 4.03 a | 35.17 ± 3.50 b |
Colour parameters | ||||
a* | −7.98 ± 0.56 b | −8.74 ± 0.67 b | −7.74 ± 0.55 b | −3.40 ± 1.31 a |
b* | 26.73 ± 0.49 ab | 23.03 ± 0.69 b | 27.26 ± 3.70 ab | 29.61 ± 2.69 a |
L* | 42.23 ± 0.90 a | 40.80 ± 2.27 ab | 41.74 ± 1.80 a | 38.03 ± 1.03 b |
Minerals and Metals (mg/kg F.W.) | Dandelion | Sorrel | Wild Chicory | Wild Lettuce |
---|---|---|---|---|
Al | 9.22 ± 5.14 b | 9.45 ± 6.46 a | 2.26 ± 0.68 a | 3.13 ± 2.03 a |
Ba | 0.78 ± 0.21 a | 1.16 ± 0.34 a | 0.72 ± 0.05 a | 0.79 ± 0.33 a |
Ca | 590.81 ± 42.48 a | 225.07 ± 18.46 b | 467.01 ± 99.29 a | 524.46 ± 49.31 a |
Cr | 0.14 ± 0.09 a | 0.21 ± 0.08 a | 0.47 ± 0.21 a | 0.26 ± 0.16 a |
Cu | 1.03 ± 0.06 a | 0.40 ± 0.04 c | 0.44 ± 0.04 bc | 0.61 ± 0.11 b |
Fe | 16.92 ± 6.16 a | 9.74 ± 4.03 a | 9.15 ± 2.27 a | 8.30 ± 1.19 a |
K | 3330.59 ± 95.22 a | 2714.08 ± 86.52 b | 3294.62 ± 163.31 a | 3554.13 ± 271.03 a |
Mg | 426.74 ± 46.08 b | 565.19 ± 17.60 a | 474.31 ± 53.44 ab | 422.03 ± 8.97 b |
Mn | 2.78 ± 0.25 a | 5.30 ± 0.14 a | 4.93 ± 0.86 a | 5.69 ± 2.74 a |
Mo | 0.15 ± 0.06 a | 0.03 ± 0.01 b | 0.04 ± 0.01 b | 0.02 ± 0.00 b |
Na | 107.77 ± 13.94 bc | 39.52 ± 3.31 c | 254.91 ± 11.42 ab | 321.90 ± 134.27 a |
Ni | 0.04 ± 0.02 a | 0.10 ± 0.05 a | 0.22 ± 0.11 a | 0.09 ± 0.10 a |
P | 409.56 ± 29.12 a | 459.39 ± 40.68 a | 306.09 ± 23.87 a | 480.54 ± 145.93 a |
Se | 0.18 ± 0.01 a | 0.10 ± 0.02 a | 0.16 ± 0.05 a | 0.12 ± 0.02 a |
Sr | 2.24 ± 0.18 a | 0.38 ± 0.08 c | 0.71 ± 0.04 bc | 1.140.51 b |
Zn | 2.56 ± 0.45 a | 2.55 ± 0.51 a | 1.76 ± 0.57 a | 2.61 ± 0.84 a |
Mineral | RDI/AI a (mg day−1) | Dandelion | Sorrel | Wild Chicory | Wild Lettuce |
---|---|---|---|---|---|
Ca | 1000 | 2.95 | 1.13 | 2.34 | 2.62 |
Cr | 0.035 | 19.35 | 29.49 | 66.54 | 37.28 |
Cu | 0.9 | 5.71 | 2.23 | 2.42 | 3.38 |
Fe | 10 | 8.46 | 4.87 | 4.57 | 4.15 |
K | 3900 | 4.27 | 3.48 | 4.22 | 4.56 |
Mg | 240 | 8.89 | 11.77 | 9.88 | 8.79 |
Mn | 2.7 | 5.15 | 9.81 | 9.13 | 10.53 |
Mo | 0.045 | 11.34 | 2.39 | 3.04 | 1.41 |
Na | 1500 | 0.36 | 0.13 | 0.85 | 1.07 |
P | 700 | 2.93 | 3.28 | 2.19 | 3.43 |
Se | 0.055 | 16.70 | 9.44 | 14.13 | 11.32 |
Zn | 11 | 1.07 | 1.06 | 0.73 | 1.09 |
Metal | Dandelion | Sorrel | Wild Chicory | Wild Lettuce | |
---|---|---|---|---|---|
Ba (RfD (2) = 0.2) | EDIBW | 0.000561 | 0.000827 | 0.000517 | 0.000566 |
HRI | 0.002803 | 0.004135 | 0.002586 | 0.002828 | |
Cr (RfD = 0.003) | EDIBW | 0.000097 | 0.000147 | 0.000333 | 0.000186 |
HRI | 0.032254 | 0.049154 | 0.110908 | 0.062130 | |
Cu (RfD = 0.04) | EDIBW | 0.000734 | 0.000287 | 0.000312 | 0.000435 |
HRI | 0.018343 | 0.007165 | 0.007794 | 0.010864 | |
Fe (RfD = 0.7) | EDIBW | 0.012085 | 0.006957 | 0.006533 | 0.005930 |
HRI | 0.017265 | 0.009938 | 0.009334 | 0.008471 | |
Mn (RfD = 0.14) | EDIBW | 0.001986 | 0.003784 | 0.003523 | 0.004062 |
HRI | 0.014186 | 0.027027 | 0.025165 | 0.029018 | |
Mo (RfD = 0.005) | EDIBW | 0.000105 | 0.000022 | 0.000028 | 0.000013 |
HRI | 0.021066 | 0.004437 | 0.005652 | 0.002622 | |
Ni (RfD = 0.02) | EDIBW | 0.000027 | 0.000073 | 0.000156 | 0.000061 |
HRI | 0.001357 | 0.003668 | 0.007776 | 0.003074 | |
Se (RfD = 0.005) | EDIBW | 0.000131 | 0.000074 | 0.000111 | 0.000089 |
HRI | 0.026247 | 0.014832 | 0.022199 | 0.017788 | |
Sr (RfD = 0.6) | EDIBW | 0.001599 | 0.000268 | 0.000507 | 0.000817 |
HRI | 0.002665 | 0.000447 | 0.000844 | 0.001362 | |
Zn (RfD = 0.3) | EDIBW | 0.001599 | 0.001821 | 0.001258 | 0.001862 |
HRI | 0.006096 | 0.006071 | 0.004192 | 0.006207 |
Attribute | Dandelion | Sorrel | Wild Chicory | Wild Lettuce |
---|---|---|---|---|
Green colour | 4.5 | 4.5 | 4.0 | 4.0 |
Herbaceous odour | 4.0 | 2.5 | 4.0 | 4.5 |
Sour | 1.0 | 4.5 | 1.0 | 1.0 |
Sweet | 1.0 | 1.5 | 1.0 | 3.0 |
Bitter | 4.5 | 2.0 | 5.0 | 3.0 |
Herbaceous aroma | 4.5 | 2.5 | 4.5 | 5.0 |
Crunchiness | 4.0 | 4.5 | 4.0 | 4.0 |
Chewiness | 3.0 | 2.0 | 3.0 | 3.0 |
Chilliness | 2.0 | 1.0 | 3.0 | 2.0 |
Astringency | 3.0 | 3.0 | 2.5 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldi, A.; Truschi, S.; Bruschi, P.; Lenzi, A. Preliminary Assessment of Four Wild Leafy Species to Be Used as Baby Salads. Horticulturae 2023, 9, 650. https://doi.org/10.3390/horticulturae9060650
Baldi A, Truschi S, Bruschi P, Lenzi A. Preliminary Assessment of Four Wild Leafy Species to Be Used as Baby Salads. Horticulturae. 2023; 9(6):650. https://doi.org/10.3390/horticulturae9060650
Chicago/Turabian StyleBaldi, Ada, Stefania Truschi, Piero Bruschi, and Anna Lenzi. 2023. "Preliminary Assessment of Four Wild Leafy Species to Be Used as Baby Salads" Horticulturae 9, no. 6: 650. https://doi.org/10.3390/horticulturae9060650
APA StyleBaldi, A., Truschi, S., Bruschi, P., & Lenzi, A. (2023). Preliminary Assessment of Four Wild Leafy Species to Be Used as Baby Salads. Horticulturae, 9(6), 650. https://doi.org/10.3390/horticulturae9060650