Nutrient Uptake and Partitioning in Oriental Lilium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Plant Material
2.2. Cultural Conditions
2.3. Sampling and Processing of Samples
2.4. Modeling of Nutrient Accumulation
3. Results and Discussion
3.1. Nitrogen
3.2. Phosphorus
3.3. Potassium
3.4. Calcium
3.5. Magnesium
3.6. Sulfur
3.7. Micronutrients
3.8. Nutrient Allocation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robertson, G.P.; Swinton, S.M. Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Front. Ecol. Environ. 2005, 3, 38–46. [Google Scholar] [CrossRef]
- Johnston, A.M.; Bruulsema, T.W. 4R nutrient stewardship for improved nutrient use efficiency. Procedia Eng. 2014, 83, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Schut, A.G.; Giller, K.E. Soil-based, field-specific fertilizer recommendations are a pipe-dream. Geoderma 2020, 380, 114680. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.L.; Qiang, L.; Zeng, X.P.; Liu, Y.; Li, Y.R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef] [PubMed]
- Scavia, D.; Kalcic, M.; Muenich, R.L.; Read, J.; Aloysius, N.; Bertani, I.; Boles, C.; Confesor, R.; De Pinto, J.; Gildow, M.; et al. Multiple models guide strategies for agricultural nutrient reductions. Front. Ecol. Environ. 2017, 15, 126–132. [Google Scholar] [CrossRef]
- Bullerjahn, G.S.; McKay, R.M.; Davis, T.W.; Baker, D.B.; Boyer, G.L.; D’Anglada, L.V.; Doucette, G.J.; Ho, J.C.; Irwin, E.G.; Kling, C.L.; et al. Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms, a Lake Erie case study. Harmful Algae 2016, 54, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.; Gu, B.; Wu, Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Soratto, R.P.; Silva, B.L. Nutrient extraction and exportation by potato cultivars: I-macronutrients. Rev. Bras. Cienc. Solo 2011, 35, 2039–2056. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Arunachalam, T.; Chavan, K.M. Dry matter accumulation and nutrient uptake patterns of onion seed crop. J. Plant Nutr. 2018, 41, 1879–1889. [Google Scholar] [CrossRef]
- de Moraes, C.C.; Factor, T.L.; de Araújo, H.S.; Purquerio, L.F.V. Plant growth and nutrient accumulation in two tomato hybrids under tropical conditions. Aust. J. Crop Sci. 2018, 12, 1419–1425. [Google Scholar] [CrossRef]
- Duarte, L.O.; Clemente, J.; Caixeta, I.A.B.; Senoski, M.D.P.; Aquino, L.A.D. Dry matter and nutrient accumulation curve in cabbage crop. Rev. Caatinga 2019, 32, 679–689. [Google Scholar] [CrossRef]
- Gómez, M.I.; Magnitskiy, S.; Rodríguez, L.E. Nitrogen, phosphorus and potassium accumulation and partitioning by the potato group Andigenum in Colombia. Nutr. Cycl. Agroecosyst. 2019, 113, 349–363. [Google Scholar] [CrossRef]
- Araújo, W.A.D.; Santana, R.S.; Mauad, M.; da Silva, R.S. Dry matter accumulation and nutrient uptake in determinate and indeterminate soybeans. J. Plant Nutr. 2020, 44, 508–522. [Google Scholar] [CrossRef]
- Bender, R.R.; Haegele, J.W.; Below, F.E. Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agron. J. 2015, 107, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Marques Pires, M.F.; de Souza, H.A.; Medeiros, J.C.; Rosa, J.D.; de Souza Martins, R.V.; Sales Sobral, A.H.; Carvalho, S.P.; de Sousa Vera, G.; de Melo, P.F.; Vieira, J.; et al. Nutrient uptake by soybean plants in succession of cover crops in northeast of Brazil. Commun. Soil Sci. Plant Anal. 2023, 54, 945–963. [Google Scholar] [CrossRef]
- Bender, R.R.; Haegele, J.W.; Ruffo, M.L.; Below, F.E. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Agron. J. 2013, 105, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Couch, A.; Jani, A.; Mulvaney, M.; Hochmuth, G.; Bennett, J.; Gloaguen, R.; Langham, R.; Rowland, D. Nitrogen accumulation, partitioning, and remobilization by diverse sesame cultivars in the humid southeastern USA. Field Crops Res. 2017, 203, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Garcia, D.V.; Alia-Tejacal, I.; Valdez-Aguilar, L.A.; Colinas-Leon, M.T.; Villegas-Torres, O.G.; Lopez-Martinez, V.; Sainz-Aispuro, M.J.; Guillen-Sanchez, D. Macronutrient extraction and growth of mexican native sun poinsettia varieties. Rev. Fitotec. Mex. 2015, 38, 305–312. [Google Scholar]
- Valdez-Aguilar, L.A.; Hernández-Pérez, A.; Alvarado-Camarillo, D.; Cruz-Altunar, Á. Diseño de un programa de fertilización para crisantemo en base a extracción de macronutrimentos. Rev. Mex. Cienc. Agríc. 2015, 6, 2263–2276. [Google Scholar]
- Castillo-González, A.M.; Avitia-García, E.; Valdez-Aguilar, L.A.; Velázquez-Maldonado, J. Extracción nutrimental en lisianthus (Eustoma grandiflorum [Raf.] Shinn) cv. Mariachi Pink. Rev. Mex. Cienc. Agríc. 2017, 8, 345–354. [Google Scholar]
- van Tuyl, J.M.; Arens, P.; Ramanna, M.S.; Shahin, A.; Khan, N.; Xie, S.; Marasek-Ciolakowska, A.; Lim, K.B.; Barba-Gonzalez, R. Lilium. In Wild Crop Relatives: Genomic and Breeding Resources; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 161–183. [Google Scholar] [CrossRef]
- Suh, J.K.; Wu, X.W.; Lee, A.K.; Roh, M.S. Growth and flowering physiology, and developing new technologies to increase the flower numbers in the Genus Lilium. Hortic. Environ. Biotechnol. 2013, 54, 373–387. [Google Scholar] [CrossRef]
- Faust, J.E.; Dole, J.M. (Eds.) Major cut flowers. In Cut Flowers and Foliages; CAB International: Boston, MA, USA, 2021; pp. 48–149. [Google Scholar] [CrossRef]
- Zhao, K.; Xiao, Z.; Zeng, J.; Xie, H. Effects of different storage conditions on the browning degree, PPO activity, and content of chemical components in fresh lilium bulbs (Lilium brownii FE Brown var. viridulum Baker.). Agriculture 2020, 11, 184. [Google Scholar] [CrossRef]
- Dole, J.M.; Wilkins, H.F. Floriculture, Principles and Species, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2005. [Google Scholar]
- Soltanpour, P.N.; Johnson, G.W.; Workman, S.M.; Jones, J.B.; Miller, R.O. Inductively coupled plasma emission spectrometry and inductively coupled plasma-mass spectrometry. In Methods of Soil Analysis Part 3 Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 91–139. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J.M. Nitrogen—Total. In Methods of Soil Analysis Part III Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1086. [Google Scholar] [CrossRef]
- Eisenreichova, E.; Haladova, M.; Buckova, A.; Ubik, K.; Uhrin, D. Derivatives of pyrroline in Lilium candidum L. Chem. Pap.-Chem. Zvesti 1991, 45, 709–711. [Google Scholar]
- Haladová, M.; Eisenreichová, E.; Bučková, A.; Tomko, J.; Uhrín, D. New nitrogen-containing compounds in Lilium candidum L. Collect. Czechoslov. Chem. Commun. 1988, 53, 157–160. [Google Scholar] [CrossRef]
- Salazar-Orozco, G.; Ruíz-Sánchez, M.C.; Valdez-Aguilar, L.A.; Pistelli, L.; Ruíz-Olmos, C.; Grassotti, A. Influencia de la fertilización nitrogenada y potásica en la calidad aromática de flores de Lilium “Starfighter”. Inf. Téc. Econ. Agrar. 2013, 109, 3–12. [Google Scholar]
- Kamenetsky, R. Flower biology in Lilium: Achievements and research challenges. Acta Hortic. 2014, 1027, 65–74. [Google Scholar] [CrossRef]
- Whipker, B.E.; Barnes, J.; McCall, I.; Gibson, J.; Poole, H. Nitrogen concentration and form effects on leaf tissue concentrations and lower leaf expansion of Lilium longiflorum ‘Nellie White’. Acta Hortic. 2010, 900, 125–132. [Google Scholar] [CrossRef]
- Varshney, A.; Sharma, M.P.; Adholeya, A.; Dhawan, V.; Srivastava, P.S. Enhanced growth of micropropagated bulblets of Lilium sp. inoculated with arbuscular mycorrhizal fungi at different P fertility levels in an alfisol. J. Hortic. Sci. Biotechnol. 2002, 77, 258–263. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018; pp. 269–295. [Google Scholar] [CrossRef]
- Barrera-Aguilar, E.; Valdez-Aguilar, L.A.; Castillo-González, A.M.; Cartmill, A.D.; Cartmill, D.L.; Avitia-García, E.; Ibarra-Jímenez, L. Potassium nutrition in lilium: Critical concentrations, photosynthesis, water potential, leaf anatomy, and nutrient status. HortScience 2013, 48, 1537–1542. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Pérez, L.; Valdez-Aguilar, L.A.; Cadena-Zapata, M.; Cartmill, D.L.; Cartmill, A.D.; Benavides-Mendoza, A. Biomass and accumulation of potassium, calcium, and magnesium in gladiolus as affected by heat units and corm size. Commun. Soil Sci. Plant Anal. 2018, 49, 344–357. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Academic Press: San Diego, CA, USA, 2023; pp. 201–260. [Google Scholar]
- Sha, X.; Zhang, P.; Yang, Y.; Bu, H.; Ma, Y.; Jin, L. Effects of potassium application on Lilium davidii var. unicolor growth, polysaccharide accumulation, and metabolism. Horticulturae 2022, 8, 940. [Google Scholar] [CrossRef]
- Chang, Y.C.; Miller, W.B. Growth and calcium partitioning in lilium Star Gazer in relation to leaf calcium deficiency. J. Am. Soc. Hortic. Sci. 2003, 128, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, N.K.; White, P.J.; Broadley, M.R.; Ramsay, G. The three-dimensional distribution of minerals in potato tubers. Ann. Bot. 2011, 107, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.; Dalamu; Sharma, V.; Dua, V.K.; Gupta, V.K.; Kumar, D. Variations in micronutrient content in tubers of Indian potato varieties. Potato J. 2017, 44, 101–109. [Google Scholar]
- White, P.J.; Ding, G. Long-distance transport in the xylem and phloem. In Marschner’s Mineral Nutrition of Higher Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Academic Press: San Diego, CA, USA, 2023; pp. 73–104. [Google Scholar]
Nutrient | Total Nutrient Accumulated mg/Plant | Supplied by the Bulb mg/Plant | Nutrient Uptake mg/Plant |
---|---|---|---|
Nitrogen | 719 ± 18.7 | 390 ± 21.4 | 329 ± 32.3 |
Phosphorus | 105 ± 1.66 | 57.8 ± 8.23 | 47.2 ± 8.39 |
Potassium | 1273 ± 41.3 | 569 ± 42.0 | 704 ± 73.1 |
Calcium | 120 ± 6.92 | 16.2 ± 1.71 | 104 ± 8.53 |
Magnesium | 54.4 ± 3.21 | 20.2 ± 1.59 | 34.2 ± 4.71 |
Sulfur | 54.3 ± 2.39 | 28.3 ± 2.27 | 26.1 ± 3.97 |
Nutrient | Total Nutrient Accumulated mg/Plant | Supplied by the Bulb mg/Plant | Nutrient Uptake mg/Plant |
---|---|---|---|
Iron | 138 ± 11.1 | 107 ± 13.9 | 30.3 ± 4.36 |
Zinc | 160 ± 9.93 | 71.3 ± 7.66 | 88.4 ± 12.0 |
Manganese | 109 ± 6.89 | 16.6 ± 2.28 | 92.5 ± 8.47 |
Copper | 18.9 ± 1.19 | 7.9 ± 1.14 | 11.0 ± 2.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarado-Camarillo, D.; Cárdenas-Medina, G.; Valdez-Aguilar, L.A.; Preciado-Rangel, P.; Cartmill, A.D. Nutrient Uptake and Partitioning in Oriental Lilium. Horticulturae 2023, 9, 473. https://doi.org/10.3390/horticulturae9040473
Alvarado-Camarillo D, Cárdenas-Medina G, Valdez-Aguilar LA, Preciado-Rangel P, Cartmill AD. Nutrient Uptake and Partitioning in Oriental Lilium. Horticulturae. 2023; 9(4):473. https://doi.org/10.3390/horticulturae9040473
Chicago/Turabian StyleAlvarado-Camarillo, Daniela, Guillermo Cárdenas-Medina, Luis Alonso Valdez-Aguilar, Pablo Preciado-Rangel, and Andrew D. Cartmill. 2023. "Nutrient Uptake and Partitioning in Oriental Lilium" Horticulturae 9, no. 4: 473. https://doi.org/10.3390/horticulturae9040473
APA StyleAlvarado-Camarillo, D., Cárdenas-Medina, G., Valdez-Aguilar, L. A., Preciado-Rangel, P., & Cartmill, A. D. (2023). Nutrient Uptake and Partitioning in Oriental Lilium. Horticulturae, 9(4), 473. https://doi.org/10.3390/horticulturae9040473