The Influences of Genotype and Year on Some Biologically Active Compounds in Honeysuckle Berries
Abstract
:1. Introduction
2. Material and Method
2.1. Experimental Site
2.2. Sampling
2.3. Chemicals and Reagents
2.4. Analysis Methods
2.4.1. Extraction Procedures
2.4.2. Determination of Total Phenolic Content
2.4.3. Determination of Total Tannin Content
2.4.4. Determination of Total Flavonoid Content
2.4.5. Determination of Total Monomeric Anthocyanin Content
2.4.6. Determination of Vitamin C Content
2.4.7. Determination of Lycopene and β-Carotene Content
2.4.8. HPLC-DAD Analysis
2.5. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holubec, V.; Smekalova, T.; Leisova-Svobodova, L. Morphological and molecular evaluation of the Far East fruit genetic resources of Lonicera caerulea L.—Vegetation, ethnobotany, use and conservation. Genet. Resour. Crop Evol. 2019, 66, 121–141. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Zannou, O.; Karim, I.; Awad, N.M.H.; Gołaszewski, J.; Heinz, V.; Smetana, S. Avoiding food neophobia and increasing consumer acceptance of new food trends—A decade of research. Sustainability 2022, 14, 10391. [Google Scholar] [CrossRef]
- Sumedrea, D.; Isac, I.; Iancu, M.; Olteanu, A.; Coman, M.; Duțu, I. Lonicera. In Pomi, Arbuștifructiferi, Căpșun. Ghidtehnicși Economic [Fruit Trees, Shrubs, Strawberries. Technical and Economical Guide]; Invel Multimedia: Otopeni, Romania, 2014; pp. 265–267. [Google Scholar]
- Becker, R.; Szakiel, A. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J. Herb. Med. 2019, 16, 100237. [Google Scholar] [CrossRef]
- Chitu, E.; Paltineanu, C.; Sumedrea, D.; Butac, M.; Militaru, M.; Tănăsescu, N.; Sirbu, S.; Jakab, Z.; Petre, G.; Caplan, I.; et al. The effect of the extreme values of the air temperature from the last two winters in Romania on the viability of the apricot, peach and sweet cherry flower buds. Fruit Grow. Res. 2016, 32, 44–54. [Google Scholar]
- Chitu, E.; Paltineanu, C. Timing of phenological stages for apple and pear trees under climate change in a temperate-continental climate. Int. J. Biometeorol. 2020, 64, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Cosmulescu, S.; Ștefănescu, D.; Stoenescu, A.M. Variability of phenological behaviours of wild fruit tree species based on discriminant analysis. Plants 2021, 11, 45. [Google Scholar] [CrossRef]
- Mazilu, I.; Vîjan, L.E.; Cosmulescu, S. The influence of harvest moment and cultivar on variability of some chemical constituents and antiradical activity of dehydrated chokeberry pomace. Horticulturae 2022, 8, 544. [Google Scholar] [CrossRef]
- Coman, M.; Chițu, E. Istoricul zonării culturii pomilor în România. In Romanian Zonarea Speciilor Pomicole în Funcție de Condițiile Pedoclimatice şi Socioeconomice ale României; InvelMutimedia: Otopeni, Romania, 2014; pp. 6–10. [Google Scholar]
- Stoenescu, A.M.; Trandafir, I.; Cosmulescu, S. Determination of phenolic compounds using HPLC-UV method in wild fruit species. Horticulturae 2022, 8, 84. [Google Scholar] [CrossRef]
- Mazilu, I.E.; Paraschiv, M.; Dinu, M.D.; Cosmulescu, S.N. Biochemical changes in two Aronia melanocarpa cultivars’ berries during the harvest season. Not. Bot. Horti Agrobot. Cluj-Napoca. 2021, 49, 12393. [Google Scholar] [CrossRef]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Morello, S.; Peiretti, P.G. Bioactive compounds and antioxidant capacity of small berries. Foods 2020, 9, 623. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Rodríguez, A.; Stucken, K. Antioxidant, functional properties and health-promoting potential of native South American berries: A review. J. Sci. Food Agric. 2021, 101, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Boudet, A.M. Polyphenols: From plant adaptation to useful chemical resources. In Recent Advances in Polyphenol Research; Cheynier, V., Sarni-Manchado, P., Quideau, S., Eds.; Wiley-Backwell: Chichester, UK, 2012; Volume 3, pp. 41–70. [Google Scholar] [CrossRef]
- Cosmulescu, S.N.; Trandafir, I.; Cornescu, F. Antioxidant capacity, total phenols, total flavonoids and colour component of cornelian cherry (Cornus mas L.) wild genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health properties and composition of honeysuckle berry Lonicera caerulea L. An update on recent studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anggraini, T.; Wilma, S.; Syukri, D.; Azima, F. Total phenolic, anthocyanin, Catechins, DPPH radical scavenging activity, and toxicity of Lepisanthesalata (Blume) Leenh. Int. J. Food Sci. 2019, 2019, 9703176. [Google Scholar] [CrossRef] [Green Version]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Botu, M. Total phenolic, flavonoid distribution and antioxidant capacity in skin, pulp and fruit extracts of plum cultivars. J. Food Biochem. 2015, 39, 64–69. [Google Scholar] [CrossRef]
- Giura, S.; Botu, M.; Vulpe, M.; Vîjan, L.E.; Mitrea, R. Evolution of the polyphenols, flavonoids, and tannins content in walnut leaves and green walnut husk during growing season. Not. Bot. Horti. Agrobot. Cluj-Napoca 2019, 47, 1264–1271. [Google Scholar] [CrossRef] [Green Version]
- AL-Ghudani, M.K.N.; Hossain, M.A. Determination of total phenolics, flavonoids and antioxidant activity of root crude extracts of Adenium obesum traditionally used for the treatment of bone dislocations and rheumatism. Asian Pac. J. Trop. Dis. 2015, 5, S155–S158. [Google Scholar] [CrossRef]
- Segura Campos, M.R.; Ruiz Ruiz, J.; Chel-Guerrero, L.; Betancur Ancona, D. Coccoloba uvifera (L.) (Polygonaceae) fruit: Phytochemical screening and potential antioxidant activity. J. Chem. 2015, 9, 534954. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Radu, M.; Vijan, L.E.; Tudor-Radu, C.M.; Tita, I.; Sima, R.; Mitrea, R. Assessment of ascorbic acid, polyphenols, flavonoids, anthocyanins and carotenoids content in tomato fruits. Not. Bot. Horti. Agrobot. Cluj-Napoca 2016, 44, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Senica, M.; Bavec, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex Herder) Hultén.) berries and changes in their ingredients across different locations. J. Sci. Food Agric. 2018, 98, 3333–3342. [Google Scholar] [CrossRef]
- Česonienė, L.; Labokas, J.; Jasutienė, I.; Šarkinas, A.; Kaškonienė, V.; Kaškonas, P.; Kazernavičiūtė, R.; Pažereckaitė, A.; Daubaras, R. Bioactive compounds, antioxidant, and antibacterial properties of Lonicera caerulea berries: Evaluation of 11 cultivars. Plants 2021, 10, 624. [Google Scholar] [CrossRef] [PubMed]
- Chaovanalikit, A.; Thompson, M.M.; Wrolstad, R.E. Characterization and quantification of anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.). J. Agric. Food Chem. 2004, 52, 848–852. [Google Scholar] [CrossRef]
- Šic Žlabur, J.; Colnar, D.; Voća, S.; Lorenzo, J.M.; Munekata, P.E.S.; Barba, F.J.; Dobričević, N.; Galić, A.; Dujmić, F.; Pliestić, S.; et al. Effect of ultrasound pre-treatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). Ultrason. Sonochem. 2019, 56, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, L.; Tereshchenko, Y.; Vintskovska, Y.; Levchuk, L.; Babenko, S.; Hrynyk, R. Yield and content of biologically active substances in blue honeysuckle fruit (Lonicera caerulea L.) grown in the Forest Steppe of Ukraine. Agron. Res. 2022, 20, 814–826. [Google Scholar] [CrossRef]
- Rinaldi, A.; Moio, L. Salivary protein-tannin interaction: The binding behind astringency. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Mladin, P.; Mladin, G.; Oprea, E.; Nicola, C. Variability of the anthocyanins and tannins in berries of some Lonicera caerulea var. kamchatica, Aronia melanocarpa and Berberis thunbergii var. atropurpurea genotypes. Sci. Pap. Res. Inst. Fruit Grow. 2011, 27, 1–5. [Google Scholar]
- Rupasinghe, H.V.; Yu, L.J.; Bhullar, K.S.; Bors, B. Haskap (Lonicera caerulea): A new berry crop with high antioxidant capacity. Can. J. Plant Sci. 2012, 92, 1311–1317. [Google Scholar] [CrossRef]
- Raudonė, L.; Liaudanskas, M.; Vilkickytė, G.; Kviklys, D.; Žvikas, V.; Viškelis, J.; Viškelis, P. Phenolic profiles, antioxidant activity and phenotypic characterization of Lonicera caerulea L. berries, cultivated in Lithuania. Antioxidants 2021, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Rop, O.; Řezníček, V.; Mlček, J.; Juríková, T.; Balík, J.; Sochor, J.; Kramářová, D. Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit. Hort. Sci. 2011, 38, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Kusznierewicz, B.; Piekarska, A.; Mrugalska, B.; Konieczka, P.; Namieśnik, J.; Bartoszek, A. Phenolic composition and antioxidant properties of Polish blue-berried honeysuckle genotypes by HPLC-DAD-MS, HPLC postcolumn derivatization with ABTS or FC, and TLC with DPPH visualization. J. Agric. Food Chem. 2012, 60, 1755–1763. [Google Scholar] [CrossRef]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Haskap berries (Lonicera caerulea L.)—A critical review of antioxidant capacity and health-related studies for potential value-added products. Food. Bioproc. Tech. 2014, 7, 1541–1554. [Google Scholar] [CrossRef]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology. Ultrason. Sonochem. 2015, 27, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Lin, L.; Zhang, Y.; Li, S.; Tang, Z. Component characteristics and reactive oxygen species scavenging activity of anthocyanins from fruits of Lonicera caerulea L. J. Food Chem. 2023, 403, 134391. [Google Scholar] [CrossRef]
- De Silva, A.K.H.; Rupasinghe, H.V. Polyphenols composition and anti-diabetic properties in vitro of haskap (Lonicera caerulea L.) berries in relation to cultivar and harvesting date. J. Food Compos. Anal. 2020, 88, 103402. [Google Scholar] [CrossRef]
- Juríková, T.; Sochor, J.; Rop, O.; Mlček, J.; Balla, Š.; Szekeres, L.; Žitný, R.; Zitka, O.; Adam, V.; Kizek, R. Evaluation of polyphenolic profile and nutritional value of non-traditional fruit species in the Czech Republic—A comparative study. Molecules 2012, 17, 8968–8981. [Google Scholar] [CrossRef]
- Juríková, T.; Ercisli, S.; Rop, O.; Mlček, J.; Balla, Š.; Žitný, R.; Sochor, J.; Hegedusova, A.; Benedikova, D.; Ďurišová, L. The evaluation of anthocyanin content of honeyberry (Lonicera kamtschatica) clones during freezing in relation to antioxidant activity and parameters of nutritional value. Zemdirbyste 2014, 101, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Palíková, I.; Heinrich, J.; Bednář, P.; Marhol, P.; Křen, V.; Cvak, L.; Ulrichová, J. Constituents and antimicrobial properties of blue honeysuckle: A novel source for phenolic antioxidants. J. Agric. Food Chem. 2008, 56, 11883–11889. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Petkovsek, M.M. Different extraction processes affect the metabolites in blue honeysuckle (Lonicera caerulea L. subsp. edulis) food products. Turk. J. Agric. For. 2019, 43, 576–585. [Google Scholar] [CrossRef]
- Orsavová, J.; Sytařová, I.; Mlček, J.; Mišurcová, L. Phenolic compounds, vitamins C and E and antioxidant activity of edible honeysuckle berries (Lonicera caerulea L. var. kamtschatica Pojark) in relation to their origin. Antioxidants 2022, 11, 433. [Google Scholar] [CrossRef]
- Boyarskih, I.G.; Syso, A.I.; Siromlya, T.I. Variability of chemical elements and biologically active polyphenols in Lonicera caerulea subsp. Altaica (Caprifoliaceae) plant organs along an altitudinal gradient. Contemp. Probl. Ecol. 2019, 12, 594–606. [Google Scholar] [CrossRef]
Climatic Parameters | Year | January | February | March | April | May | June | |
---|---|---|---|---|---|---|---|---|
Air temperature °C | Monthly mean | 2020 | 0.3 | 4.2 | 7.7 | 10.9 | 15.0 | 19.6 |
2021 | 0.5 | 3.0 | 4.1 | 8.6 | 15.6 | 19.3 | ||
2022 | 0.8 | 3.1 | 3.6 | 10.1 | 16.4 | 21.1 | ||
1969–2021 | −1.2 | 0.5 | 4.9 | 10.4 | 15.4 | 18.9 | ||
Sunshine (Sh, monthly sum, hours) | 2020 | 162.1 | 148.7 | 171.4 | 296.6 | 243.7 | 266.3 | |
2021 | 91.0 | 145.6 | 160.3 | 176.8 | 266.2 | 259.9 | ||
2022 | 161.1 | 161.4 | 185.4 | 215.3 | 286.0 | 286.3 | ||
1969–2021 | 99.9 | 115.6 | 160.2 | 193.9 | 246.2 | 276.0 | ||
Rain (Monthly sum, mm) | 2020 | 1.8 | 22.5 | 30.0 | 21.1 | 104.1 | 166.2 | |
2021 | 73.6 | 12.4 | 66.8 | 38.4 | 65.4 | 104.0 | ||
2022 | 6.4 | 10.8 | 19.4 | 88.0 | 72.6 | 25.6 | ||
1969–2021 | 33.9 | 33.0 | 37.7 | 55.0 | 81.8 | 100.6 |
TPC (mg GAE 100 g−1) | TTC (mg GAE 100 g−1) | TFC (mg CE 100 g−1) | TAC (mg C3G 100 g−1) | Vitamin C (mg 100 g−1) | |
---|---|---|---|---|---|
Average | 923.98 | 535.08 | 525.58 | 472.39 | 63.63 |
Standard deviation | 252.74 | 139.80 | 151.33 | 163.72 | 7.66 |
CV (%) | 27.35 | 26.13 | 28.79 | 34.66 | 12.04 |
Range | 905.67 | 442.57 | 558.51 | 563.95 | 30.66 |
Minimum | 516.52 | 354.43 | 332.95 | 289.89 | 47.66 |
Maximum | 1422.19 | 797.00 | 891.46 | 853.84 | 78.32 |
TTC | TFC | TAC | Vitamin C | ||
---|---|---|---|---|---|
TPC | Pearson Correlation | 0.804 *** | 0.906 *** | 0.889 *** | 0.596 ** |
Sig. (p) | ˂0.001 | ˂0.001 | ˂0.001 | 0.001 | |
TTC | Pearson Correlation | 1 | 0.896 *** | 0.888 *** | 0.578 ** |
Sig. (p) | ˂0.001 | ˂0.001 | 0.002 | ||
TFC | Pearson Correlation | 1 | 0.991 *** | 0.595 ** | |
Sig. (p) | ˂0.001 | 0.001 | |||
TAC | Pearson Correlation | 1 | 0.623 ** | ||
Sig. (p) | 0.001 |
Cultivar/Year | TPC (mg GAE 100 g−1) | TTC (mg GAE 100 g−1) | TFC (mg CE 100 g−1) | TAC (mg C3G 100 g−1) | Vitamin C (mg 100 g−1) | ||
---|---|---|---|---|---|---|---|
‘Cera’ | 832.03 b ** | 584.03 a | 534.85 b | 482.29 b | 61.59 b | ||
‘Kami’ | 790.20 b | 412.18 b | 404.98 c | 343.83 c | 58.94 c | ||
‘Loni’ | 1149.72 a | 609.04 a | 636.91 a | 591.06 a | 70.35 a | ||
Cultivar | p | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | |
PES | 0.894 | 0.833 | 0.908 | 0.918 | 0.887 | ||
2020 | 731.50 c | 428.18 c | 416.60 c | 358.55 c | 60.07 c | ||
2021 | 883.51 b | 531.22 b | 494.42 b | 435.94 b | 67.27 a | ||
2022 | 1156.94 a | 645.84 a | 665.72 a | 622.68 a | 63.54 b | ||
Year | p | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | |
PES | 0.910 | 0.837 | 0.923 | 0.931 | 0.740 | ||
2020 | ‘Cera’ | 580.54 a | 439.82 ab | 413.87 b | 357.49 b | 55.34 b | |
‘Kami’ | 673.55 b | 365.08 b | 355.00 b | 298.87 c | 63.15 a | ||
‘Loni’ | 940.41 b | 479.64 a | 480.92 a | 419.29 a | 61.72 a | ||
Cultivar | p | 0.002 | 0.048 | 0.009 | 0.004 | ˂0.001 | |
2021 | ‘Cera’ | 806.46 b | 550.29 a | 508.19 b | 426.20 b | 62.77 b | |
‘Kami’ | 708.14 c | 394.86 b | 372.48 c | 327.72 c | 61.89 b | ||
‘Loni’ | 1135.94 a | 648.52 a | 602.58 a | 553.90 a | 77.15 a | ||
Cultivar | p | ˂0.001 | 0.004 | ˂0.001 | ˂0.001 | ˂0.001 | |
2022 | ‘Cera’ | 1109.10 b | 761.99 a | 682.47 b | 663.17 b | 66.65 a | |
‘Kami’ | 988.90 b | 476.60 b | 487.47 c | 404.89 c | 51.79 b | ||
‘Loni’ | 1372.82 a | 698.94 a | 827.22 a | 799.98 a | 72.19 a | ||
Cultivar | p | 0.003 | ˂0.001 | ˂0.001 | ˂0.001 | 0.001 | |
Cultivar × Year | p | 0.077 | 0.007 | 0.002 | ˂0.001 | ˂0.001 | |
PES | 0.360 | 0.529 | 0.590 | 0.723 | 0.874 |
Lycopene (mg 100 g−1) | β-Carotene (mg 100 g−1) | CA (mg 100 g−1) | NCA (mg 100 g−1) | CCA (mg 100 g−1) | C (mg 100 g−1) | R (mg 100 g−1) | IQ (mg 100 g−1) | |
---|---|---|---|---|---|---|---|---|
Average | 0.47 | 1.27 | 72.80 | 7.77 | 11.25 | 164.32 | 21.59 | 2.54 |
SD | 0.20 | 0.34 | 13.17 | 2.58 | 5.73 | 101.79 | 6.18 | 0.38 |
CV% | 42.76 | 27.03 | 18.09 | 33.17 | 50.94 | 61.95 | 28.61 | 15.14 |
Range | 0.49 | 0.90 | 37.47 | 6.29 | 13.24 | 241.20 | 16.12 | 1.13 |
Minimum | 0.27 | 0.83 | 53.40 | 4.17 | 7.06 | 68.69 | 14.40 | 1.95 |
Maximum | 0.76 | 1.73 | 90.87 | 10.46 | 20.30 | 309.89 | 30.52 | 3.08 |
β-Carotene | CA | NCA | CCA | C | R | IQ | ||
---|---|---|---|---|---|---|---|---|
Lycopene | Pearson Correlation | −0.638 | 0.876 ** | 0.826 ** | −0.677 * | 0.902 ** | 0.967 *** | 0.631 |
Sig. (p) | 0.064 | 0.002 | 0.006 | 0.045 | 0.001 | ˂0.001 | 0.068 | |
β-carotene | Pearson Correlation | 1 | −0.353 | −0.153 | −0.104 | −0.896 ** | −0.559 | −0.010 |
Sig. (p) | 0.351 | 0.694 | 0.790 | 0.001 | 0.118 | 0.980 | ||
CA | Pearson Correlation | 1 | 0.963 *** | −0.794 * | 0.709 * | 0.963 *** | 0.876 ** | |
Sig. (p) | ˂0.001 | 0.011 | 0.032 | ˂0.001 | 0.002 | |||
NCA | Pearson Correlation | 1 | −0.927 *** | 0.562 | 0.901 ** | 0.898 ** | ||
Sig. (p) | ˂0.001 | 0.115 | 0.001 | 0.001 | ||||
CCA | Pearson Correlation | 1 | −0.323 | −0.720 * | −0.775 * | |||
Sig. (p) | 0.396 | 0.029 | 0.014 | |||||
C | Pearson Correlation | 1 | 0.861 ** | 0.382 | ||||
Sig. (p) | 0.003 | 0.310 | ||||||
R | Pearson Correlation | 1 | 0.754 * | |||||
Sig. (p) | 0.019 |
Cultivar | Lycopene (mg 100 g−1) | β-Carotene (mg 100 g−1) | CA (mg 100 g−1) | NCA (mg 100 g−1) | CCA (mg 100 g−1) | C (mg 100 g−1) | R (mg 100 g−1) | IQ (mg 100 g−1) |
---|---|---|---|---|---|---|---|---|
‘Cera’ | 0.29 c ** | 1.21 b | 58.19 c | 4.51 c | 18.82 a | 121.50 b | 15.54 c | 2.11 b |
‘Kami’ | 0.39 b | 1.69 a | 73.32 b | 8.60 b | 7.61 b | 74.60 c | 19.98 b | 2.71 a |
‘Loni’ | 0.73 a | 0.91 c | 86.90 a | 10.19 a | 7.33 b | 296.86 a | 29.26 a | 2.80 a |
p | ˂0.001 | ˂0.001 | 0.001 | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosmulescu, S.N.; Enescu, I.C.; Badea, G.; Vijan, L.E. The Influences of Genotype and Year on Some Biologically Active Compounds in Honeysuckle Berries. Horticulturae 2023, 9, 455. https://doi.org/10.3390/horticulturae9040455
Cosmulescu SN, Enescu IC, Badea G, Vijan LE. The Influences of Genotype and Year on Some Biologically Active Compounds in Honeysuckle Berries. Horticulturae. 2023; 9(4):455. https://doi.org/10.3390/horticulturae9040455
Chicago/Turabian StyleCosmulescu, Sina Niculina, Ivona Cristina Enescu (Mazilu), Georgiana Badea, and Loredana Elena Vijan. 2023. "The Influences of Genotype and Year on Some Biologically Active Compounds in Honeysuckle Berries" Horticulturae 9, no. 4: 455. https://doi.org/10.3390/horticulturae9040455
APA StyleCosmulescu, S. N., Enescu, I. C., Badea, G., & Vijan, L. E. (2023). The Influences of Genotype and Year on Some Biologically Active Compounds in Honeysuckle Berries. Horticulturae, 9(4), 455. https://doi.org/10.3390/horticulturae9040455